1.5. Training-based Equalization — Adaptive Algorithm

- **Principle:** minimize
 \[J = E[(S_n - d - f^H X(w))^2]^\frac{3}{2} \]
 recursively

- **Advantage:**
 i) Reduce computational complexity
 ii) Track time-variation

- **Approach:**
 \[f_{n+1} = f_n - \mu \frac{\partial J}{\partial f_n} \]
Algorithm:

i) Initialization: \(f_0 \)

ii) For \(n = 1, 2, \ldots, M \) (training)

\[
\begin{align*}
 f_{n+1} &= f_n + \mu [S_{a-d} - f_n^H x(n)] x^H(n) \\
 E_{n+1} &= S_{a-d} - f_n^H x(n)
\end{align*}
\]

iii) Check SER

Sample algorithms in MATLAB

Draw plots of:

1) Convergence in \(|E_n| \sim n \)

2) SER \sim \text{SNR}

3) SER \sim M
2. Blind Equalization

- Remove training, improve bandwidth efficiency

2.1. Estimate channel or equalizer with received samples and statistics of symbols

2.1.1. Adaptive blind equalization. CMA (constant modulus algorithm)

- Symbol sequences have constant modulus, i.e., higher-order statistics,
 \[R_z = \frac{E[S_n^4]}{E[S_n^2]} \]
• Principle: force equalizer output to have the same modulus

\[\min J = E(\left| f^H x(n) \right|^2 - R_2)^2 \]

• Algorithms:

 i) Initialization \(f_0 \)

 ii) For each \(n = 1, 2, \ldots \)

\[f_{n+1} = f_n - \mu \cdot 2 \left[f^H x(n) - R_2 \right] x(n) \cdot f_n \]

\[E_n = \left| f^H x(n) \right|^2 - R_2 \]

 iii) Check SER.
• Try to implement the adaptive CMA in MATLAB

• Draw plots:
 1. Convergence $|\Delta u|^2 \sim n$
 2. SER \sim SNR
 3. SER \sim Sample amount