Wavelet Transform Theory

Prof. Mark Fowler
Department of Electrical Engineering
State University of New York at Binghamton
What is a Wavelet Transform?

- Decomposition of a signal into constituent parts
- Note that there are many ways to do this. Some are:
 - Fourier series: harmonic sinusoids; single integer index
 - Fourier transform (FT): nonharmonic sinusoids; single real index
 - Walsh decomposition: “harmonic” square waves; single integer index
 - Karhunen-Loeve decomp: eigenfunctions of covariance; single real index
 - Short-Time FT (STFT): windowed, nonharmonic sinusoids; double index
 - provides time-frequency viewpoint
 - Wavelet Transform: time-compacted waves; double index
- Wavelet transform also provides time-frequency view
 - Decomposes signal in terms of duration-limited, band-pass components
 - high-frequency components are short-duration, wide-band
 - low-frequency components are longer-duration, narrow-band
 - Can provide combo of good time-frequency localization and orthogonality
 - the STFT can’t do this
 - More precisely, wavelets give time-scale viewpoint
 - this is connected to the multi-resolution viewpoint of wavelets
General Characteristics of Wavelet Systems

• Signal decomposition: build signals from “building blocks”, where the
 building blocks (i.e. basis functions) are doubly indexed.
• The components of the decomposition (i.e. the basis functions) are
 localized in time-frequency
 – ON can be achieved w/o sacrificing t-f localization
• The coefficients of the decomposition can be computed efficiently (e.g.,
 using $O(N)$ operations).

Specific Characteristics of Wavelet Systems

• Basis functions are generated from a single wavelet or scaling function
 by scaling and translation
• Exhibit multiresolution characteristics: dilating the scaling functions
 provides a higher resolution space that includes the original
• Lower resolution coefficients can be computed from higher resolution
 coefficients through a filter bank structure
Fourier Development vs. Wavelet Development

- Fourier and others:
 - expansion functions are chosen, then properties of transform are found
- Wavelets
 - desired properties are mathematical imposed
 - the needed expansion functions are then derived
- Why are there so many different wavelets
 - the basic desired property constraints don’t use all the degrees of freedom
 - remaining degrees of freedom are used to achieve secondary properties
 - these secondary properties are usually application-specific
 - the primary properties are generally application-nonspecific
- What kinds of signals are wavelets and Fourier good for?
 - Wavelets are good for transients
 - localization property allows wavelets to give efficient rep. of transients
 - Fourier is good for periodic or stationary signals
Why are Wavelets Effective?

• Provide unconditional basis for large signal class
 – wavelet coefficients drop-off rapidly
 – thus, good for compression, denoising, detection/recognition
 – goal of any expansion is
 • have the coefficients provide more info about signal than time-domain
 • have most of the coefficients be very small (sparse representation)
 – FT is not sparse for transients
• Accurate local description and separation of signal characteristics
 – Fourier puts localization info in the phase in a complicated way
 – STFT can’t give localization and orthogonality
• Wavelets can be adjusted or adapted to application
 – remaining degrees of freedom are used to achieve goals
• Computation of wavelet coefficient is well-suited to computer
 – no derivatives of integrals needed
 – turns out to be a digital filter bank
Multiresolution Viewpoint
Multiresolution Approach

• Stems from image processing field
 – consider finer and finer approximations to an image
• Define a nested set of signal spaces

\[\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2 \]

• We build these spaces as follows:
• Let \(V_0 \) be the space spanned by the integer translations of a fundamental signal \(\phi(t) \), called the scaling function:

that is, \(f(t) \) is in \(V_0 \) \textbf{then} it can be represented by:

\[f(t) = \sum_{k} a_k \phi(t - k) \]

• So far we can use just about any function \(\phi(t) \), but we’ll see that to get the nesting only certain scaling functions can be used.
Multiresolution Analysis (MRA) Equation

- Now that we have V_0 how do we make the others and ensure that they are nested?
- If we let V_1 be the space spanned by integer translates of $\phi(2t)$ we get the desired property that V_1 is indeed a space of functions having higher resolution.
- Now how do we get the nesting?
- We need that any function in V_0 also be in V_1; in particular we need that the scaling function (which is in V_0) be in V_1, which the requires that

$$
\phi(t) = \sum_{n} h(n) \sqrt{2} \phi(2t - n)
$$

where the expansion coefficient is $h(n)\sqrt{2}$
- This is the requirement on the scaling function to ensure nesting: it must satisfy this equation
 - called the multiresolution analysis (MRA) equation
 - this is like a differential equation that the scaling function is the solution to
The h(n) Specify the Scaling Function

- Thus, the coefficients h(n) determine the scaling function
 - for a given set of h(n), φ(t)
 - may or may not exist
 - may or may not be unique
- Want to find conditions on h(n) for φ(t) to exist and be unique, and also:
 - to be orthogonal (because that leads to an ON wavelet expansion)
 - to give wavelets that have desirable properties

h(n) must satisfy conditions

MRA Equation

φ(t)
Whence the Wavelets?

- The spaces V_j represent increasingly higher resolution spaces
- To go from V_j to higher resolution V_{j+1} requires the addition of “details”
 - These details are the part of V_{j+1} not able to be represented in V_j
 - This can be captured through the “orthogonal complement of V_j w.r.t V_{j+1}
- Call this orthogonal complement space W_j
 - all functions in W_j are orthogonal to all functions in V_j
 - That is:
 $$<\phi_{j,k}(t),\psi_{j,l}(t)> = \int \phi_{j,k}(t)\psi_{j,l}(t)dt = 0 \quad \forall j,k,l \in \mathbb{Z}$$

- Consider that V_0 is the lowest resolution of interest
- How do we characterize the space W_0?
 - we need to find an ON basis for W_0, say $\{\psi_{0,k}(t)\}$ where the basis functions arise from translating a single function (we’ll worry about the scaling part later):
 $$\psi_{0,k}(t) = \psi(t - k)$$
Finding the Wavelets

- The wavelets are the basis functions for the W_j spaces
 - thus, they lie in V_{j+1}
- In particular, the function $\psi(t)$ lies in the space V_1 so it can be expanded as
 \[\psi(t) = \sum_{n} h_1(n)\sqrt{2}\phi(2t - n), \quad n \in \mathbb{Z} \]
- This is a fundamental result linking the scaling function and the wavelet
 - the $h_1(n)$ specify the wavelet, via the specified scaling function
Wavelet-Scaling Function Connection

- There is a fundamental connection between the scaling function and its coefficients $h(n)$, the wavelet function and its coefficients $h_1(n)$:

$$h_1(n)$$

$\psi(t)$

$h(n)$

$\phi(t)$

How are $h_1(n)$ and $h(n)$ related?

MR Equation (MRE)

Wavelet Equation (WE)
Relationship Between $h_1(n)$ and $h(n)$

- We state here the conditions for the important special case of
 - finite number N of nonzero $h(n)$
 - ON within V_0: \[\int \phi(t)\phi(t-k)dt = \delta(k) \]
 - ON between V_0 and W_0: \[\int \psi(t)\phi(t-k)dt = \delta(k) \]
- Given the $h(n)$ that define the desired scaling function, then the $h_1(n)$ that define the wavelet function are given by
 \[h_1(n) = (-1)^n h(N - 1 - n) \]

- Much of wavelet theory addresses the origin, characteristics, and ramifications of this relationship between $h_1(n)$ and $h(n)$
 - requirements on $h(n)$ and $h_1(n)$ to achieve ON expansions
 - how the MRE and WE lead to a filter bank structure
 - requirements on $h(n)$ and $h_1(n)$ to achieve other desired properties
 - extensions beyond the ON case
The Resulting Expansions

- Let $f(t)$ be in $L^2(\mathbb{R})$
- There are three ways of interest that we can expand $f(t)$

1. We can give an limited resolution approximation to $f(t)$ via

$$f_j(t) = \sum_k a_k 2^{j/2} \phi(2^j t - k)$$

 - increasing j gives a better (i.e., higher resolution) approximation

$$\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2$$

 - this is in general not the most useful expansion
The Resulting Expansions (cont.)

2 A low-resolution approximation plus its wavelet details

\[f(t) = \sum_{k} c_{j_0}(k)2^{j_0/2} \phi(2^{j_0} t - k) + \sum_{j=j_0}^{\infty} \sum_{k} d_{j}(k)2^{j/2} \psi(2^{j} t - k) \]

- Low-Resolution Approximation
- Wavelet Details

- Choosing \(j_0 \) sets the level of the coarse approximation

\[L^2 = V_{j_0} \oplus W_{j_0} \oplus W_{j_0+1} \oplus W_{j_0+2} \oplus \cdots \]

- This is most useful in practice: \(j_0 \) is usually chosen according to application
 - Also in practice, the upper value of \(j \) is chosen to be finite
The Resulting Expansions (cont.)

3 Only the wavelet details

\[f(t) = \sum_{k} \sum_{j=-\infty}^{\infty} d_j(k) 2^{j/2} \psi(2^j t - k) \]

- Choosing \(j_0 = -\infty \) eliminates the coarse approximation leaving only details

\[L^2 = \cdots \oplus W_{-2} \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus W_2 \oplus \cdots \]

- This is most similar to the “true” wavelet decomposition as it was originally developed
- This is not that useful in practice: \(j_0 \) is usually chosen to be finite according to application
The Expansion Coefficients $c_{j0}(k)$ and $d_j(k)$

- We consider here only the simple, but important, case of ON expansion
 - i.e., the ϕ’s are ON, the ψ’s are ON, \textit{and} the ϕ’s are ON to the ψ’s
- Then we can use standard ON expansion theory:

 $c_{j0}(k) = \left\langle f(t), \varphi_{j0,k}(t) \right\rangle = \int f(t)\varphi_{j0,k}(t) \, dt$

 $d_j(k) = \left\langle f(t), \psi_{j,k}(t) \right\rangle = \int f(t)\psi_{j,k}(t) \, dt$

- We will see how to compute these without resorting to computing inner products
 - we will use the coefficients $h_1(n)$ and $h(n)$ instead of the wavelet and scaling function, respectively
 - we look at a relationship between the expansion coefficients at one level and those at the next level of resolution
Summary of Multiresolution View

- Nested Resolution spaces:
 \[\cdots \subset V_{-2} \subset V_{-1} \subset V_0 \subset V_1 \subset V_2 \subset \cdots \subset L^2 \]

- Wavelet Spaces provide orthogonal complement between resolutions
 \[L^2 = V_{j_0} \oplus W_{j_0} \oplus W_{j_0+1} \oplus W_{j_0+2} \oplus \cdots \]

- Wavelet Series Expansion of a continuous-time signal \(f(t) \):
 \[
 f(t) = \sum_{k} c_{j_0}(k)2^{j_0/2}\phi(2^{j_0}t - k) + \sum_{k} \sum_{j=j_0}^{\infty} d_{j}(k)2^{j/2}\psi(2^{j}t - k)
 \]

- MR equation (MRE) provides link between the scaling functions at successive levels of resolution:
 \[
 \phi(t) = \sum_{n} h(n)\sqrt{2}\phi(2t - n), \quad n \in \mathbb{Z}
 \]

- Wavelet equation (WE) provides link between a resolution level and its complement
 \[
 \psi(t) = \sum_{n} h_1(n)\sqrt{2}\phi(2t - n), \quad n \in \mathbb{Z}
 \]
Summary of Multiresolution View (cont.)

- There is a fundamental connection between the scaling function and its coefficients $h(n)$, the wavelet function and its coefficients $h_1(n)$:

$$h_1(n) \leftrightarrow \phi(t)$$

MR Equation (MRE)

How are $h_1(n)$ and $h(n)$ related?

$$h(n) \leftrightarrow \psi(t)$$

Wavelet Equation (WE)
Filter Banks and DWT
Generalizing the MRE and WE

- Here again are the MRE and the WE:

\[\phi(t) = \sum_{n} h(n)\sqrt{2}\phi(2t - n) \]

\[\psi(t) = \sum_{n} h_1(n)\sqrt{2}\phi(2t - n) \]

scale & translate: replace \(t \rightarrow 2^j t - k \)

- We get:

\[\phi(2^j t - k) = \sum_{m} h(m - 2k)\sqrt{2}\phi(2^{j+1} t - m) \]

Connects \(V_j \) to \(V_{j+1} \)

\[\psi(2^j t - k) = \sum_{m} h_1(m - 2k)\sqrt{2}\phi(2^{j+1} t - m) \]

Connects \(W_j \) to \(V_{j+1} \)
Linking Expansion Coefficients Between Scales

- Start with the Generalized MRA and WE:

\[
\phi(2^j t - k) = \sum_{m} h(m - 2k)\sqrt{2}\phi(2^{j+1} t - m) \quad \psi(2^j t - k) = \sum_{m} h_1(m - 2k)\sqrt{2}\phi(2^{j+1} t - m)
\]

\[
c_j(k) = \langle f(t), \phi_{j,k}(t) \rangle \quad d_j(k) = \langle f(t), \psi_{j,k}(t) \rangle
\]

\[
c_j(k) = \sum_{m} h(m - 2k)\langle f(t), 2^{(j+1)/2} \phi(2^{j+1} t - m) \rangle \quad d_j(k) = \sum_{m} h_1(m - 2k)\langle f(t), 2^{(j+1)/2} \phi(2^{j+1} t - m) \rangle
\]

\[
c_{j+1}(m) = \sum_{m} h(m - 2k)c_{j+1}(m) \quad d_{j+1}(m) = \sum_{m} h_1(m - 2k)c_{j+1}(m)
\]
Convolution-Decimation Structure

New Notation For Convenience: $h(n) \rightarrow h_0(n)$

$$c_j(k) = \sum_m h_0(m - 2k)c_{j+1}(m)$$

$$d_j(k) = \sum_m h_1(m - 2k)c_{j+1}(m)$$

Convolution

$$y_0(n) = c_{j+1}(n) * h_0(-n) = \sum_m h_0(m - n)c_{j+1}(m)$$

Decimation

n = 2k = 0 2 4 6 8

k = 0 1 2 3 4
Summary of Progression to Convolution-Decimation Structure

\[
\phi(2^j t - k) = \sum_m h(m - 2k)\sqrt{2}\phi(2^{j+1} t - m)
\]

\[
c_j(k) = \sum_m h(m - 2k)c_{j+1}(m)
\]

\[
\psi(2^j t - k) = \sum_m h_1(m - 2k)\sqrt{2}\phi(2^{j+1} t - m)
\]

\[
d_j(k) = \sum_m h_1(m - 2k)c_{j+1}(m)
\]
Computing The Expansion Coefficients

- The above structure can be cascaded:
 - given the scaling function coefficients at a specified level all the lower resolution c’s and d’s can be computed using the filter structure
Filter Bank Generation of the Spaces

\[V_{j-1} \downarrow 2 \rightarrow V_j \downarrow 2 \rightarrow V_{j+1} \]

\[V_{j-2} \downarrow 2 \rightarrow W_{j-2} \downarrow 2 \rightarrow W_{j-1} \downarrow 2 \rightarrow W_j \]

\[\frac{\pi}{8} \quad \frac{\pi}{4} \quad \frac{\pi}{2} \quad \pi \]

\[\text{LPF } h_0(-n) \quad \text{HPF } h_1(-n) \quad \downarrow 2 \quad \text{LPF } h_0(-n) \quad \downarrow 2 \quad \text{HPF } h_1(-n) \quad \downarrow 2 \quad \text{LPF } h_0(-n) \quad \downarrow 2 \quad \text{HPF } h_1(-n) \quad \downarrow 2 \quad \text{LPF } h_0(-n) \quad \downarrow 2 \quad V_{j-2} \]

\[W_j \quad W_{j-1} \quad W_{j-2} \quad V_j \quad V_{j-2} \]
Discrete Fourier Transform
WAVELET TRANSFORM

Freq

Time

28
WT-Based Compression Example

- Bits allocated to quantizers to minimize MSE
- Then allocations less than B_{min} are set to zero
 - Eliminates negligible cells
- Side info sent to describe allocations