<table>
<thead>
<tr>
<th># Lectures</th>
<th>Dates</th>
<th>Topic</th>
</tr>
</thead>
</table>
| | 1/24 | **Ch. 1 Introduction**
Lossless vs. Lossy Compression |
| 1 | 1/24 | **Ch. 2 Math Preliminaries for Lossless Compression**
Appendix A: Review of Probability
2.2 Brief Intro to Information Theory
(Skip Starred Sections)
2.3 Models
2.4 Coding
 Uniquely Decodable Code:
 Prefix Codes
 Kraft-McMillan Inequality |
| 0.5 | 1/26a | **Ch. 3 Huffman Coding**
3.2 Basic Algorithm
3.2.1 Minimum Variance Huffman Code:
3.2.2 Optimality of Huffman Codes
3.2.3 Length of Huffman Codes
 (We’ll just state the result)
3.2.4 Extended Huffman Codes |
| | 1/26b, 1/31a | **Ch. 4 Arithmetic Coding**
We'll Skip It |
| 1 | | **Ch. 7 Mathematical Preliminaries for Lossy Coding**
Appendix A & Class Notes: Random Processes
7.2 Introduction
7.3 Distortion Criteria
7.4 Information Theory for Lossy
7.5 Rate-Distortion Theory
7.6 Models |
Ch. 8 Scalar Quantization (SQ)
 8.2 Introduction
 8.3 Quantization Problem
 8.4 Uniform Quantization
 8.5 Adaptive Quantization
 8.6 Nonuniform Quantization
 8.7 Entropy-Coded Quantization

Ch. 9 Vector Quantization (VQ)
 9.2 Introduction
 9.3 Advantages of VQ Over SQ
 9.4 LBZ Algorithm for VQ Design

Ch. 11 Math for Transforms, Subbands, and Wavelets
 (All other sections are for Review Reading
 11.2 Introduction
 11.3 Vector Spaces (also notes on web)
 Appendix B: Matrices

Ch. 12 Transform Coding
 12.2 Introduction
 12.3 The Transform
 12.4 Transforms of Interest
 12.5 Quantization & Coding of Coefficients
 12.6 Application to Images: JPEG
 12.7 Application to Audio

Ch. 13 Subband Coding
 13.2 Introduction
 13.3 Filters
 13.4 Basic Subband Algorithm
 13.5 Design of Filter Banks
 13.6 Perfect Reconstruction
 13.7 M-Band QMF Filter Banks
13.8 Skip This Section (Polyphase)
13.9 Bit Allocation
13.10 Application: Speech
13.11 Application: Audio
13.12 Application: Image

2 2/21b, 2/23, 2/28a Ch. 14 Wavelet Methods
 14.2 Introduction
 14.3 Wavelets
 14.4 Multiresolution Analysis
 14.5 Implementation via Filters
 14.6 Image Compression
 14.7 Embedded Zerotree (EZW)
 14.8 SPIHT
 14.9 JPEG 2000

1.5 2/28b, 3/2 Ch. 16 Video Compression
 16.2 Introduction
 16.3 Motion Compensation
 16.4 Video Signal Representation
 16.5 Video Conferencing
 16.6 Asymmetric Applications
 16.7 Packet Video

2 3/7, 3/9 Current Topics
 A. Ortega and K. Ramachandran, “Rate-Distortion
 Methods for Image and Video Compression,”
 IEEE Signal Processing Magazine , pp. 23 – 50,
 November 1998.

Others To Be Determined As Time Permi: