JPEG2000 Notes

Based on the papers:

JPEG2000 Overview [1]

• A New Standard:
 – efficient, flexible, interactive

• Big emphasis on providing a scalable data stream:
 – an embedded set of smaller streams, where each sub-stream gives an efficient R-D compression of the image

• Other JPEG2000 Advantages include:
 – Better R-D performance than past standards
 – Progressive lossy-to-lossless stream
 – Can resequence compressed stream
 – Can crop in compressed domain
 – Can define regions of interest (ROI) to have better quality
 – Can work with “truly enormous” images
Scalability [1]

- JPEG2000 provides four types of scalability
 - **Resolution Scalability**
 - As the stream progresses you first get low resolution data, then medium resolution, etc.
 - **Distortion (or SNR) Scalability**
 - As the stream progresses you first get low SNR version, then medium SNR, etc.
 - **Spatial Scalability**
 - As the stream progresses you first get a specific spatial region, then an expanded spatial region, etc.
 - **Component Scalability**
 - Example: As the stream progresses you first get gray-scale image, then color, etc.

- Can have combinations of these types
Advantages of Scalability [1]

• “Compress Once… Decompress in Many Ways”
 – At compression… no need to know consumer’s needs

• Can distribute to multiple clients with different:
 – display resolutions, regions of interest, communication rates

• Can send to a single client interactively:
 – Dynamically change ROI, resolution, SNR…. as client’s interest or link speed changes

• Elegant solution to transmission-time limited cases:
 – Truncate stream when deadline occurs
 – You get the best quality image possible within that deadline
Basic JPEG2000 Architecture [1,2]

Image → Component Extraction & Transformation (e.g., RGB to YCbCr) → Tiling (optional) → DC Shift → JPEG2000 Encoding

Tiling (optional) → DC Shift → JPEG2000 Encoding

Tiling (optional) → DC Shift → JPEG2000 Encoding

JPEG2000 Encoding → Compressed Stream

DWT → Form “Code-Blocks” → SQ → EBCOT → Adaptive Arith. Coder → Quality Layers

Resolution Scaling

Distortion Scaling

Resolution & Distortion “Ordering”

Truncation Points for R-D Optimization
- **Discrete Wavelet Transform (DWT)**
 - Provides Multiresolution Decomposition
 - Enables Resolution Scaling
 - Each lower resolution level: dimensions of subband images are halved

This figure is Fig. 2 in [1]
• **DWT for JPEG2000**
 – Two different filter pairs used: 5/3 and 9/7
 ▪ Symmetric PR filters of odd length must differ in length by two
 ▪ 5/3 is used to ensure integer sample values get transformed to integer wavelet values → allows lossless wavelet-based coding
 – DWT is implemented using so-called “lifting” method
 ▪ Lifting is essential to enabling lossless wavelet-based coding
 ▪ It also enables computational and memory savings
Form “Code-Blocks”
- Each subband is partitioned into code-blocks:
 - typical block sizes are 32×32 or 64×64
- Each code-block is coded separately
- Code-blocks constitute one aspect of Embedding
 - Enables resolution scaling
 - Enables spatial scaling

This figure is based on Fig. 3 in [1]
Scalar Quantizer viewed as Embedded Quantizers w/ Dead-Zone

- Embedded Coders necessarily call for Embedded Quantizers:
- Embedded Quantizers lead to idea of “Bit Planes”
- Dead-Zone (or “fat zero”) useful for image coding
 - The commonly small high-frequency coefficients get quantized to zero and lead to lots of insignificant coefficients
 - This structure gets exploited in the Arithmetic Coder

This figure is based on Fig. 13 in [1]
Coarser quantization is obtained by keeping the most significant bits and sign of the sample
EBCOT Bit-Plane Coding Procedure

EBCOT = Embedded Block Coding with Optimized Truncation
Each code-block is optimally embedded coded

This figure is Fig. 14 in [1]
EBCOT Fractional Bit-Plane Coding

• The above coding allows truncation only at bit-plane end-points
 – Not enough points to give “fine grain” operational R-D function

• So… Use Sequence of Three Fractional Bit-Plane Passes
 – First Pass: Code Magnitude & Sign Bit only for samples likely to give largest distortion improvement
 ▪ Samples for which
 □ All coded magn. bits have been so far been zero
 □ At least one neighbor is non-zero
 – Last Pass: Code those expected to be least effective in reducing distortion

This figure is based on Fig. 15 in [1]
• **Adaptive Arithmetic Coder**
 – Used to remove substantial redundancy between successive bit planes
 – Uses the so-called MQ coder implementation
 – Coder switches between 18 different adaptive probability models
 ▪ selects model based on previously coded bits from the current & previous bit planes
 ▪ each model adaptively estimates its probability distribution
 ▪ This is context coding using conditional probability
• Recall: Two Main Types of Scalability Structure
 – Resolution Scalability: drop components from high resolution sub-bands
 – Distortion Scalability: drop LSB’s from embedded quantization

• Quality Layers: Allow management of this scalability structure
 – Specifies how each code-block should be truncated in relation to others
 – Each layer in the embedded stream provides a progressive improvement
 – Layer structure is optimized during compression for optimal embedding

This figure is Fig. 4 in [1]
Performance of JPEG2000 vs. JPEG [1]

This figure is Fig. 21 in [1]

- Three different “modes” for JPEG2000
 - S-9,7: Single Layer using 9/7 Wavelet
 - Single layer is not distortion scalable; new stream is generated for each rate under test
 - P6-9,7: Six-Layer Quality Progressive using 9/7 Wavelet
 - P7-3,5: Seven-Layer Quality Progressive using 5/3 Wavelet

- Two different “modes” for JPEG (Optimized Huffman Tables)
 - P-DCT: Progressive Mode
 - S-DCT: Sequential Mode