Laplace Transform Table

<table>
<thead>
<tr>
<th>Time Signal</th>
<th>Laplace Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u(t)$</td>
<td>$1/s$</td>
</tr>
<tr>
<td>$u(t) - u(t - c), \ c > 0$</td>
<td>$(1 - e^{-ct})/s, \ c > 0$</td>
</tr>
<tr>
<td>$t^n u(t), \ N = 1, 2, 3, \ldots$</td>
<td>$N! / s^{N+1}, \ N = 1, 2, 3, \ldots$</td>
</tr>
</tbody>
</table>

$\delta(t)$	1
$\delta(t - c), \ c \ \text{real}$	$e^{-cs}, \ c \ \text{real}$
$e^{-bt} u(t), \ b \ \text{real or complex}$	$\frac{1}{s + b}, \ b \ \text{real or complex}$
$t^n e^{-bt} u(t), \ N = 1, 2, 3, \ldots$	$\frac{N!}{(s + b)^{N+1}}, \ N = 1, 2, 3, \ldots$

$\cos(\omega_o t) u(t)$	$\frac{s}{s^2 + \omega_o^2}$
$\sin(\omega_o t) u(t)$	$\frac{\omega_o}{s^2 + \omega_o^2}$
$\cos^2(\omega_o t) u(t)$	$\frac{s^2 + 2\omega_o^2}{s(s^2 + 4\omega_o^2)}$
$\sin^2(\omega_o t) u(t)$	$\frac{2\omega_o^2}{s(s^2 + 4\omega_o^2)}$
$e^{-bt} \cos(\omega_o t) u(t)$	$\frac{s + b}{(s + b)^2 + \omega_o^2}$
$e^{-bt} \sin(\omega_o t) u(t)$	$\frac{\omega_o}{(s + b)^2 + \omega_o^2}$
$t \cos(\omega_o t) u(t)$	$\frac{s^2 - \omega_o^2}{(s^2 + \omega_o^2)^2}$
$t \sin(\omega_o t) u(t)$	$\frac{2\omega_o s}{(s^2 + \omega_o^2)^2}$

| $A e^{-\varsigma \omega_o t} \sin\left[\omega_o \sqrt{1 - \zeta^2} t\right] u(t)$ | $A = \frac{\alpha}{\omega_n \sqrt{1 - \zeta^2}}$ |

where: $A = \frac{\alpha}{\omega_n \sqrt{1 - \zeta^2}}$

| $A e^{-\varsigma \omega_o t} \sin\left[\omega_n \sqrt{1 - \zeta^2} t + \phi\right] u(t)$ | $\frac{s + \alpha}{s^2 + 2\zeta \omega_n s + \omega_n^2}$ |

$A = \beta \frac{\sqrt{(\alpha - \zeta \omega_o)^2}}{\omega_n^2 (1 - \zeta^2)} + 1 \ \phi = \tan^{-1}\left(\frac{\omega_n \sqrt{1 - \zeta^2}}{\alpha - \zeta \omega_o}\right)$

| $te^{-bt} \cos(\omega_o t) u(t)$ | $\frac{(s + b)^2 - \omega_o^2}{((s + b)^2 + \omega_o^2)^2}$ |
| $te^{-bt} \sin(\omega_o t) u(t)$ | $\frac{2\omega_o (s + b)}{((s + b)^2 + \omega_o^2)^2}$ |
Laplace Transform Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td>(ax(t) + bv(t))</td>
</tr>
<tr>
<td>Right Time Shift (Causal Signal)</td>
<td>(x(t - c), \quad c > 0)</td>
</tr>
<tr>
<td>Time Scaling</td>
<td>(x(at), \quad a > 0)</td>
</tr>
<tr>
<td>Multiply by (t^n)</td>
<td>(t^n x(t), \quad n = 1, 2, 3, \ldots)</td>
</tr>
<tr>
<td>Multiply by Exponential</td>
<td>(e^{a} x(t), \quad a \text{ real or complex})</td>
</tr>
<tr>
<td>Multiply by Sine</td>
<td>(\sin(\omega_o t) x(t))</td>
</tr>
<tr>
<td>Multiply by Cosine</td>
<td>(\cos(\omega_o t) x(t))</td>
</tr>
<tr>
<td>Time Differentiation 2nd Derivative</td>
<td>(\dot{x}(t))</td>
</tr>
<tr>
<td>Time Differentiation n-th Derivative</td>
<td>(\ddot{x}(t))</td>
</tr>
<tr>
<td>Time Differentiation n-th Derivative</td>
<td>(x^{(N)}(t))</td>
</tr>
<tr>
<td>Time Integration</td>
<td>(\int_{-\infty}^{t} x(\lambda) d\lambda)</td>
</tr>
<tr>
<td>Convolution in Time</td>
<td>(x(t) * h(t))</td>
</tr>
<tr>
<td>Initial-Value Theorem</td>
<td>(x(0) = \lim_{s \to \infty} [sX(s)])</td>
</tr>
<tr>
<td>Initial-Value Theorem</td>
<td>(\dot{x}(0) = \lim_{s \to \infty} [s^2 X(s) - sx(0)])</td>
</tr>
<tr>
<td>Initial-Value Theorem</td>
<td>(x^{(N)}(0) = \lim_{s \to \infty} [s^{N+1} X(s) - s^N x(0) - s^{N-1} \dot{x}(0) - \ldots - s x^{(N-2)}(0)])</td>
</tr>
<tr>
<td>Final-Value Theorem</td>
<td>If (\lim_{t \to \infty} x(t)) exists, then (\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s))</td>
</tr>
</tbody>
</table>