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ABSTRACT

In this paper, we present a pitch detection algorithm that is 

extremely robust for both high quality and telephone speech. 

The kernel method for this algorithm is the “NCCF or 

Normalized Cross Correlation” reported by David Talkin [1]. 

Major innovations include: processing of the original acoustic 

signal and a nonlinearly processed version of the signal to 

partially restore very weak F0 components; intelligent peak 

picking to select multiple F0 candidates and assign merit 

factors; and, incorporation of highly robust pitch contours 

obtained from smoothed versions of low frequency portions of 

spectrograms.  Dynamic programming is used to find the “best” 

pitch track among all the candidates, using both local and 

transition costs. We evaluated our algorithm using the Keele 

pitch extraction reference database as “ground truth” for both 

“high quality” and “telephone” speech.  For both types of 

speech, the error rates obtained are lower than the lowest 

reported in the literature.

1. INTRODUCTION

Numerous studies show the importance of prosody for human 

speech recognition, but only a few automatic systems actually 

combine and use fundamental frequency (F0) or pitch as it 

commonly called. Combined with other acoustic features, 

prosody can be used to significantly increase the performance of 

automatic speech recognition (ASR) systems [2]. A big 

stumbling block remains the lack of robust algorithms for F0 

tracking. F0 is especially important for ASR in tonal languages 

such as Mandarin speech, for which pitch patterns are 

phonemically important [5].  Other applications for accurate F0 

tracking include devices for speech analysis, transmission, 

synthesis; speaker recognition; speech articulation training aids 

for the deaf ([4], [6]), and foreign language training.  

An important consideration for any speech-processing algorithm 

is performance using telephone speech, due to the many 

applications of ASR in this domain [3]. However, since the 

fundamental frequency is often weak or missing for telephone 

speech, and the signal distorted and noisy and overall degraded 

in quality, pitch detection for telephone speech is especially 

difficult [3]. 

Although many pitch detection algorithms have been reported, 

using a variety of techniques and with varying degrees of 

accuracy (see [7], [8] for summary), robust, easy to integrate 

methods, are still problematic. Therefore we introduce Yet 

Another Algorithm for Pitch Tracking (YAAPT). 

The “kernel” of YAAPT is based on the “Robust Algorithm for 

Pitch Tracking (RAPT)” as discussed in  [1].   However both the 

signal processing and the tracking algorithms are very different.     

One of the key contributions is the extensive use of 

spectrographic information to guide the tracking.   That is, gross 

errors in F0 tracking can often be identified, by overlaying pitch 

tracks with the low frequency part of a spectrogram.    In this 

paper, we describe methods for extracting this spectrographic 

information, and combining it with pitch estimates from 

correlation methods, in order to create a robust overall pitch 

track. Another innovation is to separately compute pitch 

candidates from both the original speech signal, and a 

nonlinearly processed version of the signal, and then to find the 

“lowest cost” track from among the candidates using dynamic 

programming.   In this paper, we give a detailed description of 

the new innovations and the formal evaluation results. 

2.  ALGORITHM 

The entire F0 tracking algorithm can be divided into five main 

steps, 

1.  Preprocessing. 

2.  F0 candidate selection based on NCCF. 

3. Candidate refinement based on spectral information (both 

local and global). 

4. Candidate modifications based on plausibility and continuity 

constraints.

5. Final path determination using dynamic programming. 

2.1 Pre-processing 

The first step of preprocessing is to create two versions of the 

signal, the original and absolute value of the signal. Except for 

the use of the second signal, which is discussed later, the rest of 

the preprocessing is fairly conventional.   This is, each signal is 

bandpass filtered (bandpass of 100 Hz to 900 Hz) and center 

clipped.

The motivation for the nonlinear operation (absolute value) is 

illustrated in Figure 1. In particular, for a certain telephone 

sentence, with the acoustic signal shown in the top panel, the 

low frequency spectrograms are shown in the middle panel 

(original signal) and bottom panel (absolute value signal). The 

two curves overlaid on each spectrogram are explained in detail 

later. This figure illustrates that F0 is much more prominent in 

the lower panel than the middle panel (also verified by 

comparison with TIMIT version of same sentence). Similar 

effects were noted for many other sample signals, some studio 

quality as well. The strategy adopted was to completely process 



the signals, compute multiple F0 candidates from each, and then

find the ‘single’ best track as described later. 

Figure 1: The first panel depicts a time domain NTIMIT

sentence, the second panel depicts the spectrogram of the 

original signal with NLFER and spectral F0 track overlaid, and 

the third panel depicts the spectrogram of the nonlinearly

processed signal with its NFLER and spectral F0 track overlaid. 

2.2 F0 candidate estimation from the NCCF 

The basic idea of correlation based F0-tracking is that the

correlation signal will have a peak of large magnitude at a lag 

corresponding to the pitch period. If the magnitude of the largest

peak is above some threshold (about 0.6), then the frame of 

speech is usually voiced. A modification to the basic

autocorrelation, is the normalized cross correlation function 

(NCCF) defined as follows:

Given a frame of speech sampled, s(n), 0  n N-1

Then:
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As reported in [1], NCCF is better suited for pitch detection than 

the ‘standard’ autocorrelation function as the peaks are more

prominent and less affected by the rapid variations in the signal

amplitude. Nevertheless, it is still possible for the largest peak to 

occur at double or half the correct lag value or some other 

“incorrect” value thus giving rise to small and large errors. 

Thus, the additional processing described below is used.

Given the possibility of errors in the peaks of the NCCF, for the 

algorithm presented in this paper, we first attempt to find all 

large peaks in the NCCF, over some specified search range, and

consider these as F0 candidates (typically, Max_cand=3). A

final decision as to the actual F0 is made later, based on

additional information sources and continuity considerations. In 

the remainder of this subsection, we describe how F0 candidates 

are chosen from the peaks and how merits are assigned to each

selected peak. 

The intelligent peak-picking algorithm is a multi-pass method

as follows.  In the first pass, a point in the NCCF is considered 

to be a peak, if it is larger than L points (L=2) on either side of 

the peak, and larger than a very low threshold (typically .3).

Thus, it is possible (and likely) that a large number of peaks will 

be found in this first pass.  In the second pass, any first pass 

peaks, which are closer (in lag) than 2 ms to even larger peaks

are eliminated. All peaks remaining at this point are assigned a 

merit value equal to the magnitude of the NCCF at that lag

value. In the third pass, each peak which also has a peak at twice

the lag value has its merit increased by a small amount (.025), 

since the presence of the peak at the twice lag value is further 

evidence that the lower lag value peak is the ‘correct’ one. 

The peaks still retained, with their associated merit values, are

the F0 candidates considered for the final F0 track. In those

cases where no peaks are found which satisfy the constraints just

mentioned, the frame is considered to be unvoiced.   Despite the 

relative robustness of the NCCF and the intelligent peak picking 

mentioned above, considerable experimental testing indicated 

that some errors still occurred in a final F0 track obtained from

this information alone. Errors were most likely to occur for 

telephone speech or weakly voiced sections. Therefore,

additional information and processing, as described in the next 

two sections, was used to improve the overall robustness of the 

algorithm.

2.3 Candidate refinement based on spectral 

information

For all signals examined, the patterns in the spectrogram

appeared to clearly show voiced versus unvoiced regions of

speech, and clearly showed the approximate F0 contour.

Spectrograms were computed for both the original and 

nonlinearly processed versions of the signal, as mentioned 

above.   In this section we describe the empirically determined 

methods used to help determine an additional measure to making

voiced/unvoiced decisions, and methods used to determine a 

very smooth pitch contour with extremely few gross errors. 

The normalized low-frequency energy ratio (NLFER) is 

computed to help indicate voiced versus unvoiced regions. The 

sum of absolute values of spectral samples (the average energy

per frame) over the low frequency regions is taken, and then

normalized by dividing by the average low frequency energy per

frame over the utterance.  In equation form NLFER is given by:
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In general, NLFER is high for voiced regions, and low for 

unvoiced regions, with a threshold value of approximately 0.65

as a good decision point. Note, however, that final 

voiced/unvoiced decisions did not use such a hard threshold. The 

smooth but robust pitch track is obtained using the following

steps:

1. The low frequency portion of the spectrogram is smoothed 

using a mask approximately 60 Hz wide in frequency and 3 

frames in time.



2. Simple peak picking is used to determine the first peak in the 

search range (F0_min: F0_max).   If no peak is found, the frame

is assumed to be unvoiced.

3. The track found from step 2 is median smoothed with a 3-

point median filter. 

4. An estimate of the average F0, and standard deviation of F0,

is computed using the middle third  (voiced frames are sorted in

order of frequency) of the voiced frames from step 3. 

5. All unvoiced frames in the estimate from step 3, and all those

frames that differ significantly from the average F0, are replaced 

by the average F0 value. 

6. The track from step 5 is again median smoothed with a 5-

point median filter. 

7.   Simple heuristics are used to combine the two spectral F0

tracks to determine an overall smooth track.

For voiced frames in the speech, the F0 candidates from the 

NCCF are tested for “closeness” to the corresponding spectral 

F0 point. For candidates less than 1.5 F0_min away from the 

spectral F0 value, the merit is increased by a factor of 1.25,

whereas peaks far away from the spectral F0 are reduced in 

merit according to distance.

3. THE TRACKING ALGORITHM 

The end result of the processing steps mentioned above are the 

F0 candidate matrix, a merit matrix, an NLFER curve (from the 

original signal), and the spectrographic F0 track. These data are 

used to obtain local and transition cost matrices, from which the 

lowest cost pitch track thru all available candidates can be found

using dynamic programming. Several processing steps, as 

outlined below, are used to compute the two cost matrices.

First, the frames are pre-classified according to the NFLER as

either definitely unvoiced (NLFER < = .5) or probably voiced 

(NFLER > .5). Thus, for the definitely unvoiced region (region 

1), all F0 candidates are set to 0, and the associated merit is to

0.99.  For region 2, which could be either voiced or unvoiced,

the basic idea is to make sure that every frame has at least 1 

viable pitch estimate, and an unvoiced option, and that merits

for both voiced and unvoiced options are assigned to roughly

approximate probabilities. For each frame in region 2, the 

spectral F0 is also included as one candidate, with a merit set at 

a midpoint.    The merit of the unvoiced candidate is set equal to

[1 – (merit of best voiced candidate)].

After all of these merits are assigned, the local cost is computed

as: , using a single matrix operation in 

MATLAB.

merittlocal 1cos

The main points in the computation of transition costs, are as

follows (“i” is the present frame index in these equations): 

1.For each pair of successive voiced candidates (i.e., non zero 

F0 candidates)
2

))1(0*)(0()(cos iFiFittransition

2.For each pair of successive candidates, only one of which is

voiced, transition .)_()(cos frameunvoicedNFLERit

3.For each pair of successive candidates, both of which are 

unvoiced, )1(*)()(cos iNFLERiNFLERittransition .

The various proportionality constants mentioned above, plus 

one additional constant used to adjust the overall ratio of local to

dynamic costs, were empirically determined based on an 

inspection of several hundred sample recordings. The overall

algorithm is illustrated by the four panels in Figure 2.

Figure 2: Illustration of the overall pitch-tracking algorithm.

All the algorithms mentioned in this paper were developed as a 

set of Matlab functions, which are intended to be easily

integrated with other software.   Key routines include one for

computing multiple F0 candidates and merits for each frame,

routines for spectral F0 tracking, and a routine for overall 

tracking.   Another routine is under development to determine 

individual pitch period markers, given the results of the tracking 

described in this paper.  As developed, the routines typically

require about twice real time on a 500 MHz PC.

4. EXPERIMENTAL EVALUATION

We evaluated YAAPT using the Keele pitch extraction database 

[9].  This high quality speech (20 kHz sampling rate) contains 5 

male and 5 female speakers, each speaking for about 35 seconds. 

The telephone version of this data, obtained from the spoken

language systems group at MIT, was transmitted through a

telephone channel and re-sampled at 8 kHz.

Although the Keele database includes what should be a very

reliable control (which we call control ), inspection of this track

showed several instances of what appeared to be F0 halving.

Therefore, we formed a second control (control 2 ) by simply

setting all male pitch values below 70 Hz to 0, and all female 

pitch values below 110 Hz to 0. Fig. 3 depicts an example of 

control and control signals of a typical sentence by a female

speaker.   Note that the control signal appears to have many

instances of pitch having, whereas most of these appear to be 

eliminated in control .
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Figure 3:  Illustration of F0 halving in control , mainly

eliminated in control .
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Of the many error measures that can be used to quantify F0

tracking accuracy, we used the following four measures to

evaluate the tracking method reported in this paper: 

1.Gross errors (G_err): This is computed as the percentage of

frames such that the pitch estimate of the tracker deviates

significantly (20%) from the pitch estimate of the reference. The

measure is based only on those frames for which both the

reference and tracker indicate voiced frames.

2.Voicing errors (V_err):  This is the percentage of frames such

that the tracker and the reference disagree in voicing decision.

3.Overall mean square error (NM ):  The overall normalized

mean square error (NM ) for the entire signal is given by:

2

2

framevoicedpresentofindexi

trackcomputediytrackreferenceix
ix

iyix
NM ,)(,)(

)]([

)]()(
2

2

2

4. Voiced region mean square error (NMv ): This error is 

computed the same as is NMv  except only those frames that 

are indicated as voiced for both the reference and computed are

used in computation. 

2

2

Results for YAAPT, using the four-error measures are reported 

below in Table 1. Only G_err error is reported for control ; the 

other error measures were slightly lower for control compared

with control 1 , but not dramatically so.    Note that even if 

control is not “correct,” these results do indicate that many of 

the gross errors for control 1 are due to the very low F0 values in 

control 1 . The only directly comparable results in the literature

[3] report a gross error result of 4.25 % for high quality speech,

and 4.34% for telephone speech.

2

2

2

Data                     Control 1 Control 2

V_err NM
NMv

2 G_err G_err

Studio 10.77 19.16 0.48 1.7 0.88

Tele 19.62 35.77 1.29 3.37 3.00

Tabel 1: Error analysis table showing the various error types.

5.  SUMMARY 

In this paper, a new pitch-tracking algorithm has been developed 

which combines multiple information sources to enable accurate 

robust F0 tracking. The multiple information sources include 

peaks selected from the normalized cross correlation of both the 

original and rectified signal and smoothed pitch tracks obtained

from spectrograms.  These multiple information sources are 

combined using experimentally determined heuristics and 

dynamic programming. An analysis of errors indicates better

performance for both high quality and telephone speech than 

reported performance for any pitch tracking.   The routines 

mentioned in paper are available from the second author of this 

paper as MATLAB functions.
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