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Two methods are described for speaker normalizing vowel spectral features: one is a
multivariable linear transformation of the features and the other is a polynomial warping of the
frequency scale. Both normalization algorithms minimize the mean-square error between the
transformed data of each speaker and vowel target values obtained from a “typical speaker.”
These normalization techniques were evaluated both for formants and a form of cepstral
coefficients (DCTCs) as spectral parameters, for both static and dynamic features, and with
and without fundamental frequency (F0) as an additional feature. The normalizations were
tested with a series of automatic classification experiments for vowels. For all conditions,
automatic vowel classification rates increased for speaker-normalized data compared to rates
obtained for nonnormalized parameters. Typical classification rates for vowel test data for
nonnormalized and normalized features respectively are as follows: static formants—

69% /79%; formant trajectories—76%/84%; static DCTCs 75%/84%; DCTC trajectories—
84%/91%. The linear transformation methods increased the classification rates slightly more
than the polynomial frequency warping. The addition of F0 improved the automatic
recognition results for nonnormalized vowel spectral features as much as 5.8%. However, the
addition of FO to speaker-normalized spectral features resulted in much smaller increases in

automatic recognition rates.

PACS numbers: 43.72.Fx, 43.70.Gr, 43.72.Ar

INTRODUCTION

The acoustic properties of phonologically equivalent
vowels vary greatly because of coarticulation with adjacent
phonemes and also because of individual speaker differ-
ences. Of these two sources of variations, the ones related to
speaker effects are in general larger (Nearey, 1989). The
speaker-dependent variations arise not only because of the
physics of speech production but also because of systematic
differences in pronunciation. For example, since children
have shorter vocal tracts than adult males, the frequency
components of children’s speech are higher than are those of
adult males. There are also consistent variations due to re-
gional accents, speaking habits, etc. Despite the many appar-
ent differences in acoustic cues, listeners can generally iden-
tify the vowel intended by the speaker. In contrast automatic
methods for vowel classification have achieved more limited
success in identifying vowels in a speaker-independent man-
ner.

Automatic classification rates for vowels can be im-
proved if the raw acoustic features are speaker normalized,
using either intrinsic or extrinsic factors (Nearey, 1989), to
account for the systematic differences among speakers. In-
trinsic factors for normalization are sources of information
contained within the vowel itself such as fundamental fre-
quency (F0) or the third formant frequency (F3) or some
combination of the two. Several investigators have utilized
intrinsic information to improve automatic vowel classifica-
tion accuracy [for example, Wakita (1977); Syrdal and Go-
pal (1986); Miller (1989); Hillenbrand and Gayvert
(1987) 1. In other studies, vowel normalization has been at-
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tempted with extrinsic factors such as a speaker-dependent
frequency scaling or the incorporation of additional features
that are dependent on the global characteristics of each
speaker [Gerstman (1968), Nearey (1978), Hindle
(1978)]. Nearey (1989) concluded that human listeners
themselves use both intrinsic and extrinsic factors for vowel
normalization. Disner (1980) evaluated several vowel nor-
malization techniques both in terms of speaker-related vari-
ance reduction in F'1/F2 vowel plots and also in terms of
their effects in preserving significant linguistic differences
among vowel tokens.

In this paper, we present two algorithms for extrinsic
speaker normalization of vowel spectral features and give
experimental results for the two techniques. One normaliza-
tion is a linear transformation of spectral features, i.e., a ma-
trix multiplication, with a separate transformation comput-
ed for each speaker. The other normalization is a
speaker-dependent frequency warping. In both cases, the
normalization parameters minimize the mean-square error
between the normalized spectral features for each vowel and
the “target” position for that vowel. These normalization
methods were tested using automatic classification experi-
ments using two feature sets: formants and DCTCs, a form
of cepstral coefficients. Automatic classification results
based on speaker-normalized spectral features were com-
pared with results obtained with nonnormalized features,
nonnormalized features plus 0, and a combination of nor-
malized features plus F 0. Bach extrinsic normalization tech-
nique was evaluated as a function of the number of vowels
used to compute the normalization for both static and dy-
namic spectral features. The normalization techniques pre-
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sented in this paper are an extension of methods previously
presented in the literature.

. DATABASE

The database for the experiments was obtained by re-
cording 99 CVCsyllables produced in isolation by each of 30
speakers. Appendix A lists these CVCs. Ten of the speakers
were adult males (M), 10 were adult females (F), and 10
were children (C) between the ages of 7 and 11 (5 male, 5
female). These speakers were all native speakers of English,
but had no formal phonetic training. Approximately half of
the speakers were natives of Virginia; the other half were
natives of other geographical regions of the United States,
predominantly the Northeast. The CVC syllable list con-
tained approximately 9 instances of each of the 11 vowels
/ai,u,2,3,1,6,0,4,0,0/. The initial consonant was one of
/b,d,gp,tkhl,w/. The final consonant was one of
/b,d,g,p,t.k,v,s/. .

Since the speakers were phonetically naive, the non-
word CVCs were reviewed with each speaker as to the in-
tended pronunciation. In the recording session, each syllable
was displayed on a computer monitor using an English-letter
pseudophonetic spelling, as given in Appendix A. The listen-
ers repeated syllables that the experimenter' judged to be
mispronounced. The typical sound level of speech sounds
was approximately 36 dB above the background noise level
in the sound proof room used for the recordings. The speech
signals were lowpass filtered at 7.5 kHz and sampled at 16
kHz with a 12-bit analog-to-digital converter. All recordings
were then digitally filtered at 240 Hz with a 62nd-order FIR
linear phase high-pass filter to remove low-level low-fre-
quency noisein the signal. For each token, the experimenters
manually labeled the transition to the vowel, the steady-state
vowel region, and the final transition. They also deleted
stimuli from the database that they judged to be mispron-
ounced. The total number of accepted vowel stimuli was
2922 (out of 99 X 30 = 2970).

Iil. SPEECH PARAMETERS AND CLASSIFICATION
METHODS

A. Speech parameters

The normalization techniques discussed in this paper
were investigated with two raw parameter sets—formants
and a form of cepstral coefficients. These two feature sets
enable a more comprehensive evaluation of normalization
techniques than would a single feature set. The algorithms
presented in this paper are very general in that they could
also be used with any other feature set derived from vowel
spectra.

Formants were computed in a multistage process as fol-
lows. The speech signal was first digitally low-pass filtered at
3.8 kHz with a 49th-order FIR linear-phase low-pass filter
and resampled at 8 kHz. The speech signal was then high-
frequency  preemphasized with transfer function
1 —0.75 z~'. The signal was windowed with a 25-ms Han-
ning window and a 10th-order LP model was computed. The
roots of the LP polynomial were computed to obtain up to
five formant candidates per frame. Formant candidates were

(
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computed for nine frames of the vowel, with frames equally
spaced throughout the steady-state portion of the vowel.
Finally a formant tracking routine (similar to McCandless,
1974) was used to track the first three formants over the
duration of the vowel. The resulting formant values for the
fifth frame were selected as the three formant values for each
vowel. :
The cepstral coeflicients were computed as the d; in the
equation:

j=N
H'(f)= > d;cos[(j— Daf']. (1)

Jj=1

The H' implies nonlinear amplitude scaling of the mag-
nitude spectra, and f” implies a nonlinear frequency scaling.
The frequency scale was normalized so that a selected fre-
quency range in fof £ <f<f, corresponds to 0<f’'< 1. In our
experiments the d;’s were computed after first high-frequen-
cy preemphasizing the signal (1 — 0.95 z~!), using a 25-ms
Hamming window, and computing the magnitude spectra
for each frame. Several experiments were conducted to
evaluate various nonlinear amplitude scales, nonlinear-fre-
quency scales and frequency ranges, in terms of their effect
on automatic vowel recognition accuracy without speaker
normalization. Based on these experiments, a log amplitude
scaling was used and bilinear frequency warping (Oppen-
heim and Johnson, 1972) with a coefficient of 0.6 was used.
That is,

7 =f+—71;tan”[ 2)

0.6 sin(27f) }
1—0.6cos(2mp) |

The cepstral coefficients were computed from the origi-
nal speech signal (i.e., no decimation and low-pass filter-
ing), but over a frequency range of 150-5000 Hz. Automatic
classification experiments without speaker normalization
also indicated that highest automatic recognition results for
test data were obtained using cepstral coeflicients 2-9. Since
the cepstral coefficients were computed as a discrete cosine
transform of a selected segment of the nonlinearly scaled
magnitude spectrum, we refer to them as DCT coefficients
or DCTCs throughout the remainder of this paper.

Fundamental frequency (F0) was computed using a
form of the SIFT fundamental frequency algorithm (Mar-
kel, 1972). That is, the LP residual was computed for a win-
dow of speech (50 ms for males, 40 ms for females and chil-
dren) in the steady-state portion of each vowel with a
12th-order LP inverse filter. Here, F 0 values were computed
from peaks in the autocorrelation of the residual after low-
pass filtering at 1 kHz. The details of the signal processing
for the F' O extraction, including the LP window lengths, were
developed and investigated in previous studies (Zahorian
and Gordy, 1983; Effer, 1985). For dynamic features, F0
values were computed for each frame of the vowel.

B. Dynamic features

Speech features were also computed for each of several
speech frames, in order to evaluate automatic recognition
accuracy of both nonnormalized and speaker-normalized
spectra for the case of dynamic spectra. Based on pilot ex-
periments, the approach used for the data given in this paper
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was to first sample the speech spectra with 25 frames equally
spaced from the beginning of the initial transition through
the end of the final transition. Thus the frame spacing de-
pended on the stimulus duration. The values of each param-
eter over the 25 frames (i.e., a vector of length 25) was then
expanded in a three-term cosine basis vector expansion. The
first basis vector was a constant, the second basis vector one-
half cycle of a cosine, and the third basis vector was one cycle
of a cosine. The coefficients of this cosine expansion were
then used as the input to the classifier. Thus dynamic fea-
tures consist of time-smoothed and time-normalized param-
eter trajectories. The total number of dynamic features is
3 X (number of parameters per frame), or 9 for the case of
formants and 24 for the case of the DCTCs. A similar proce-
dure has been used in studies with consonants (Tanaka,
1981).

C. Classifier

All speaker-normalization methods were evaluated in
terms of their effects on automatic vowel classification with
a Bayesian maximum likelihood (MXL) classifier. That is,
each stimulus was classified as a member of the category for
which the distance,

D;(x) = (x —x;) "R '(x — x;) + In|R;| — 2InP(G)),

1<Ii<G, (3)
is minimized. In Eq. (3), x, is the centroid for category G,
R, is the covariance matrix for category G;, P(G,) is the a
priori probability for category G;, and G is the number of
categories (i.e., vowels). Thus each category is character-
ized according to the centroid of all the data in that category
and the covariance matrix of the data in that category. This
classifier is optimum if the feature vector components are
multivariate Gaussian (Duda and Hart, 1973).

Iil. NORMALIZATION PROCEDURES
A. Linear transformation method

In general terms, a linear transformation was computed
for each speaker such that transformed features for each
speaker were as similar as possible to the feature vectors for a
single “typical” speaker. This type of normalization can be
applied to any feature set computed from the vowel signal
including formants and DCTCs. In mathematical terms, the
method consists of a speaker-specific linear transformation
T and offset o from raw feature vectors x to normalized fea-
ture vectors y, i.e.,

y=Tx + o. 4)
Thus each component of the speaker-normalized feature
vector y is a linear combination of the original feature vector
components plus an offset term.

The matrix T and vector o are computed such that nor-
malized feature vectors are as similar as possible, in a mean-
square error sense, to the target position for the correspond-
ing vowel. That is, the elements in T and o for each speaker
minimize

G NS() N

E= Z z Z (lei—yjik)23 (5)

=1 K=1j=1
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where xj; == jth component of the “target” position for the
ith vowel, NS(i) = number of training stimuli for vowel
and y;; = kth stimulus, component j for vowel i. Target
positions must first be computed for each vowel, as discussed
in more detail in a latter section. In Eq. (5), we assume there
are G vowels and N components in each feature vector.
Mean-square estimation methods can be used to compute
the elements in T and o so as to minimize ¥ in Eq. (5) (Za-
horian and Jagharghi, 1991).

It should be noted that this linear transformation algo-
rithm is quite different from a linear scaling of the frequency
axis (with frequency measured in either Hz, log Hz, or
Barks), as used in some previous studies as a normalization
technique. For example, the linear normalization presented
by Golibersuch (1983) is a linear frequency scaling. In con-
trast, the technique presented in this paper is a general linear
transformation or matrix multiplication of the original vow-
el features. The large number of variables in the normaliza-
tion matrix, in contrast to a single variable for a linear fre-
quency scaling, provides many more degrees of freedom for
characterizing the detailed behavior of each speaker. How-
ever, as with any statistically based parameter estimation
procedure, a model with a large number of variables might
not generalize as well to data outside the training set as
would a model with a small number of parameters. Our ob-
jectives in this study were to determine not only a transfor-
mation with good performance, in terms of vowel recogni-
tion rates for test data, but also to determine a
transformation that could be computed with a minimum of
training data.

In order to assess the linear normalization described, the
technique was tested with both formants and DCTCs as the
feature vector components. The normalization was also
evaluated both with and without the offset term in Eq. (4).
The number of vowels used to compute the normalization
coefficients was varied from 3 to 11 (see footnote 2). The
normalization coefficients were also computed for cases
such that only terms on the diagonal in T, or the diagonal in
T plus elements adjacent to the diagonal on each side, were
allowed to be nonzero. For example, for the case of the diag-
onal only, each normalized feature is simply a scaled version

" of the corresponding unnormalized feature. Each normali-

zation condition was evaluated with the MXL classifier
mentioned, applied to all 11 vowels.

B. Frequency-warping method for speaker
normalization

Another method of speaker normalization incorporates
a speaker-dependent frequency-warping function for each
speaker. Unlike the linear transformations described above,
this normalization is motivated from a physical basis—that
is, speaker-dependent differences in vocal tract lengths cause
a scaling in the frequency domain. For our experiments, fre-
quency warping was only used with DCTCs as parameters.
For this algorithm, speaker-dependent coefficients 4, b, and
¢ are to be determined so as to redefine the already-warped
frequency scale for each speaker according to

S =af*+bf +ec (7)
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The normalized DCTCs are the d;’s in the equation,

H'(f") = Z d; cos[(j— Dm f"],

j=1

for 0<f"<1 (8)

The a, b, and ¢ values are chosen for each speaker to mini-
mize
G NS(i) N
> (dj—~du)? 9
i=1k=1j=2
where d ; is the target value of d; for vowel /and d;;, is the d,
for the kth training stimulus of vowel 7.

Thus the speaker-normalized DCTCs are computed
with a speaker-normalized frequency scale. Note that the
speaker-dependent warping occurs after the fixed bilinear
frequency warping mentioned previously [Eq. (2)]. The
second-order polynomial allows more flexibility in the warp-
ing function than would be possible through a linear scaling
of the frequency axis, while parametrizing the warping func-
tion with only three coefficients. This method was used with
DCT coefficients 2~9 as the feature vector. For each speaker
the a, b, and c values were then determined such that DCT
coefficients computed with the warped frequency scale
would match the target positions as closely as possible. A
speaker-dependent frequency range, selected from a range of
0-8000 Hz for each speaker, was thus mapped to a range of
150-5000 Hz (used for the target speaker) with the polyno-
mial mapping given in Eq. (7). A gradient search was used
to solve the nonlinear optimization problem for the coeffi-
cients a, b, and ¢ for each speaker. This method is somewhat
similar to frequency-warping methods previously reported
in the literature. Two of these previous studies (Paliwal and
Ainsworth, 1985; Neuburg 1988) used frequency warping as
intrinsic normalization in that the warping function was
computed as a by-product of distance calculations between
unknown and reference spectra. In another study (Neuburg,
1980) both linear and nonparametric nonlinear frequency
scalings were used to match formant histograms derived
from a sample of each speaker’s speech. Although these im-
plementations of frequency warping did improve spectral
matching, no evidence was given for improved automatic
recognition rates for either vowels or isolated words.

C. Normalization based on F0

Normalization based on FO was straightforward—F0
was simply included as an additional parameter for the clas-
sifier. Although some researchers have modified their origi-
nal parameters according to F O values [for example, Syrdal
and Gopal (1986); Miller(1989)], other researchers have
obtained improved automatic recognition results simply by
augmenting the feature vector with the F0 value [Hillen-
brand and Gayvert (1987); Syrdal (1985) ]. Here, 0 nor-
malization was tested both with and without the two types of
extrinsic normalization.

D. Selection of target positions for each vowel

Target positions for each vowel were computed as fol-
lows. The first “estimate” of the target for each vowel is
simply the average of all the nonnormalized training data for
that vowel. The averages were computed using
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1 NS(D

*i = T NS() « Z 7
where NS(i), G, and N are as defined in a previous section.
Each speaker was then evaluated in terms of the mean-
square error match of that speaker’s training data to the
average-value targets. The speaker with the best match to
the overall speaker averages was considered to be the most
“typical” speaker. The final targets were the category aver- *
ages for this most typical speaker. Based on automatic vowel
recognition performance in pilot experiments, we chose the
averages from the typical speaker versus the targets from Eq.
(6) as the targets for the experiments reported in this paper.

w  1<IKG, 1N, (6)

IV. EXPERIMENTS

For all antomatic vowel recognition experiments, ap-
proximately half the database were used to train the classi-
fier and the other half were used to test the classifier. For
increased statistical reliability, the training and test data
were then interchanged and results are given as the average
of the two sets of test results. Only test results are given since
these results represent the ability of the classifier to genera-
lize, unlike the training results. For the case of speaker nor-
malization, approximately half the normalized data of each
speaker were used for training the classifier and the other
half for testing the classifier. A portion of each speaker’s
training data, varying from 3 to 11 Vowels, were used to
determine a normalization transformation for that speaker.?
The vowels used for computing the normalization were or-
dered as given in the list of 11 vowels in a previous section,
and as repeated in Table 1.> Test classification results thus
were derived from data that is independent of both data used
to train the classifier and to compute the speaker normaliza-
tions. As a result of pilot tests, the normalization conditions
listed in Table II were selected for the experimental evalua-
tions reported in this paper. The table also lists a code for
each condition for use in subsequent tables, figures, and dis-
cussion.

A. Steady-state vowel formants

1. Control results

Table III depicts training and test automatic recogni-
tion results for four control cases for formants. For case A,
the training and testing speakers are different. For this case
five adult females, five adult males, and five children were

TABLE 1. Order of vowel usage.for computing normalizing coefficients.

IPA DARPABET Example
a aa cot
i iy . beat
u uw " boot
® ® bat
3 er bird
I ih bit
€ eh bet
) a0 bought
A ah bud
U uh book
o ow home
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TABLE II. Explanation of codes used in paper.

NN No normalization.

NN + FO No normalization, F0 included as an
extra feature.

PN Polynomial frequency warping nor-
malization.

PN+ FO Polynomial frequency warping nor-

malization, plus F0.

PX Partial matrix linear normalization.
For the case of formants, a diagonal
matrix and no offset term. For the
case of DCTCs, a matrix with the
main diagonal plus 1 term on each
side of the diagonal plus an offset vec-

tor.

PX + FO Same as PX, plus FO.

FX . Fullmatrix linear normalization plus
an offset term.

FX + FO Same as FX, plus F0.

used for training with the remaining speakers used for test-
ing. For case B, half the data of each speaker were used for
training the classifier and the other half for testing. Thus this
case uses the same data management for the classifier as was
required for the speaker normalization cases, but does not
use explicit speaker normalization. Case C is the same as
case A, i.e., independent training and test speakers, except
FOisincluded as an additional parameter. Case Disthe same
as case B, except for the addition of 0 as a parameter. For
cases A and C results are also given for the three speaker
types in the study. The results for the males are slightly high-
er than for the females which in turn are slightly higher than
for the children; the difference between the males and chil-
dren is 2.3% for case A and 5.6% for case C. The results
averaged over all speakers range from 66.9% to 75.1% per-
cent correct depending on the condition. It thus can be seen
that speaker type, data management, and the addition of FO
as a parameter affect the classification rates.

2. Normalization results

Table IV lists test classification results for speaker-nor-
malized formants as a function of the number of vowels used
to determine the speaker-normalization transformations for
both the PX and FX conditions. For PX, the normalization
transformations are diagonal matrices with no offset. Thus
each speaker-normalized formant is simply a scaled version
of the nonnormalized formant. For FX, each normalized
formant is a linear combination of all three unnormalized
formants plus an offset term. Thus 3 coeflicients must be

TABLE III. Automatic vowel classification rates for 11 vowels based on
three formants without explicit speaker normalization.

-Separate

speakers
Case (Trn vs Tst) F0? Males Females Children All
A Yes No 68.3% 66.6% 66.0% 66.9%
B No No - 69.3%
C  Yes Yes 74.1% 73.5% 68.5% 72.1%
D No Yes 75.1%
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TABLE IV. Automatic classification rates for 11 vowels based on three
speaker-normalized formants. .

No. of normalizing

vowels PX FX

0 69.3% 69.3%
3 74.5% #

5 76.3% 75.2%
7 77.2% 74.9%
9 78.0% 79.2%
11 78.6% 79.0%
114+ FO 80.5% 80.4%

“See footnéte 2.

computed per speaker for the PX case versus 12 for the FX
case. Normalization based on O vowels, which is case B from
Table I11, i.e., no normalization at all, is listed in Table I'V for
comparison. On the average the PX results are slightly better
than the FX results.* The PX results improve even if only
the three vowels /a,i,u/ determine the normalization coeffi-
cients for each speaker. Note that a small additional im-
provement results if FO is included as an extra parameter
along with the normalized formants. Since normalization
based on speaker-dependent formant scaling (PX) gives
comparable results to the full matrix case (FX), and since
the small number of PX coefficients can be computed with
less data than for the FX case, the PX normalization appears
to be preferable to the FX normalization.

The F1/F2 plane cluster plots depicted in Fig. 1 also

3.00 | T i T T T T T
B Non-iNormalized (a)
2.58 - -
N 216 -
T
5 | —
& 174k .
1.32 |- —
0.90
3.00 T T T T T T T T T
B Speaker Normalized (b)
2.58 |- —
g 216 @ i
= . ]
& 174l —
1.32 @ ‘ -
0.90 I 1 I ] ! I ] ] i
0.2 0.4 0.6 0.8 1.0 1.2
F1 (kHz)

FIG. 1. Cluster plots of ten vowels for (a) unnormalized formant data and
(b) speaker-normalized formant data.
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illustrate the effects of PX speaker normalization for the
vowel formant data. For each vowel, an ellipse was comput-
ed with its major axis oriented in the direction of maximum
data variation and equal to two standard deviations of the
data in this direction. Similarly the minor axis equals two
standard deviations of the data in the direction orthogonal to
the major axis. For Fig. 1(a), the ellipses represent the origi-
nal formant values. For Fig. 1(b), the ellipses depict data for
the speaker-normalized formants. The vowels are clearly
better clustered in panel b than panel a. Note that for both
plots /o/ was not used since its ' 1/F 2 values overlap greatly
with /u/ and /3/ both before and after speaker normaliza-
tion. For Fig. 1(b), 50% of each speaker’s data was used to
compute the speaker normalization. This normalization was
then applied to all the data of each speaker.

Numerical figures of merit were also computed to evalu-
ate the data shown in Fig. 1. First the within-class variance
for Fig. 1(b) is 46% of the within-class variance for Fig.
1(a). Secondly, as per a method given in Syrdal (1985), a
classification experiment was performed to determine the
accuracy with which speaker groups (M/F/C) could be
identified from the formant data before and after normaliza-
tion. For the non-normalized formants (F'1 and F2), the
speaker group was correctly identified for 57.2% of data.
For the normalized data, the speaker group was identified
only for 39.8% of the data. In a similar experiment with all
three formants, speaker groups could be identified with
73.0% and 40.1% accuracies for the non-normalized and
normalized formants respectively. Thus speaker types can
be identified from the vowel data at substantially above
chance (33.3%) only with the original formants.

B. Normalization for DCTC’s computed from the
steady-state vowel

1. Conirol

Table V lists control results for the same conditions as
used for Table III, except eight DCT coefficients (2 to 9)
encoded each vowel stimulus. Once again the test results
depend on speaker type, on whether FO is included as a pa-
rameter, and on whether testing data are from the same or
different speakers as were used for the training data. For the
all-speaker case, classification rates range from 69.6% to
80.2%. All the rates, except for female speakers in case C,
are somewhat higher than corresponding rates given in Ta-
ble III for the formants,

2. Normalization results

Table VI lists test classification results for speaker-nor-
malized data as a function of the number of vowels used to
obtain the normalization coefficients for each speaker, Re-
sults are given for three normalization conditions: PN, poly-
nomial normalization; PX, a linear transformation consist-
ing of a matrix with diagonal elements and elements on
either side of the diagonal, plus an offset; and FX, a linear
transformation consisting of an 8 X 8 matrix plus an offset.
The number of coefficients required to normalize the data of
each speaker is 3 for PN, 30 for PX, and 72 for FX. The
recognition rates are somewhat higher for PX and FX versus
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TABLE V. Automatic vowel classification rates for 11 vowels based on 8
DCTCs without explicit speaker normalization.

Speakers’

separate
Case (Trn vs Tst) FQO? Males Females Children All
A Yes No 68.6% 71.2% 69.0% 69.6%
B No No -+ 74.8%
C  Yes Yes. 74.5% 72.2% 71.1% 72.6%
D No Yes - 80.2%

PN. However, more vowel data is required to maximize per-
formance for the PX and FX cases versus the PN normaliza-
tion. In fact, if seven or fewer vowels are used to compute the
normalization, the best performance is obtained with PN.
The addition of £ 0 improves performance somewhat for PN
and PX, but very little for the FX case. For the best case
(PX), approximately 84% of test vowels were correctly
classified without the use of F'0 versus 85% with F0 includ-
ed.

Toillustrate the effects of the linear-transformation nor-
malization on speech spectra, several spectral plots were
made of vowel spectra before and after speaker normaliza-
tion. These plots depict vowel data outside the set used to
compute the speaker normalization. Figure 2 depicts the
spectrum for the vowel /a/ before and after FX normaliza-
tion as well as the target spectrum used for this vowel. Simi-
larly, Fig. 3 depicts the result of the PN normalization. The
figures show that the speaker-normalized spectra is much
more similar to the target spectrum than are the original
spectra. The effect is more pronounced for the FX normali-
zation than for the PN normalization. Other examples yield
similar results—thus illustrating the effectiveness and gener-
ality of the transformations.

Figure 4 depicts the average frequency warping curves
obtained for adult males, adult females, and children. For
the adult male speakers, the frequency range of 844115 Hz
is mapped to the target frequency range of 150-5000 Hz.
Since the “typical” speaker for computing target vowel posi-
tions was a female, on the average, normalization for the
female speakers has very little effect. For the children, the
frequency range of 165- to 6735-Hz maps to the 150- to 5000-
Hz range. These values are consistent with expected fre-
quency differences for these speaker types.

TABLE VI. Automatic classification rates for 11 vowels based on 8
speaker-normalized DCTCs.

No. of
normalizing :
vowels PN PX FX
0 74.8% 74.8% 74.8%
3 77.1% i ¢
5 78.9% 76.2% #
7 79.6% 78.4% #
9 78.8% 82.8% 81.1%
11 78.7% 84.2% 83.8%
I1+F0 82.2% 85.2% 84.1%
#See footnote 2,
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FIG. 2. Spectral plots for the vowel /a/ fora “typical” speaker, the original
spectrum of a child’s /a/, and the speaker-normalized spectrum. The
speaker normalization was computed as a linear transform of eight DCT
coefficients.

C. Speaker normalization of dynamic spectra

With both formants and DCTCs as original parameters,
speaker normalization of several frames of spectral param-
eters was investigated in an attempt to obtain yet additional
improvements in automatic vowel recognition. In all cases,
the normalization coefficients were computed from a single
static frame, located in the steady-state portion of the vowel.
All static training data for all 11 vowels were used to com-
pute the normalization. The normalization transformation
was applied to all 25 frames of parameters, computed as
mentioned previously. Each normalized parameter was then
encoded as the coefficients in a 3-term cosine basis vector
expansion over the 25 frames for that parameter,

Typical automatic classification results for formants
and DCTCs are given in bargraph form in Fig. 5 and 6,
respectively. For comparison, representative results for stat-
ic spectra are also given in Figs. 5 and 6, again with normal-
izations based on ail 11 vowels. The NN (no normalization)
results for the static and dynamic cases show that dynamic
information increases the test recognition rates for both for-
mants and DCTCs even without speaker normalization.’
Speaker normalization of the dynamic features (conditions
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FIG. 3. Spectral plots for the vowel /a/ for a “typical” speaker, the original

spectrum of a child’s /a/, and the speaker-normalized spectrum. The
speaker normalization was computed using polynomial frequency warping.
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FIG. 4. The speaker-dependent frequency-warping functions obtained for
speaker normalization, as averages over speaker categories. The original
frequencies were computed with respect to a bilinear frequency-warping
function. Results are shown in terms of deviations from the original fre-
quencies. The frequency scale for each speaker was warped to best match
the “typical” speaker over a range of 150-5000 Hz.

PN, PX, FX), or the addition of FO (NN + F0), improves
the recognition rate even more. Note that only the average
(over time) of # 0 was used for classification, since pilot tests
indicated that the trajectory of F 0 did not improve classifica-
tion. The effect of ' 0is comparable to PN normalization, but
less effective than the linear transformation normalizations
(PX and FX). However, the addition of fundamental fre-
quency to speaker-normalized parameters improves recog-
nition for the polynomial frequency warping (PN - F0) but
improves recognition only slightly for the linear transforma-
tion normalization based on a partial matrix (PX + F0) and
even degrades recognition slightly for the full matrix linear
transformation (FX + F0). The best test rate for DCTC pa-
rameters is 90.8% (PX + F0) whereas the best test rate
based on formants is 84.2% (FX + F0).

V. DISCUSSION AND CONCLUSIONS

Speaker-normalization techniques have been described
to reduce systematic speaker differences in acoustic features
for vowels. The primary objective of this paper was to pres-
ent a mathematically based class of normalization tech-
niques and experimentally demonstrate these algorithms
with two feature sets, rather than to compare the two feature
sets. These normalization techniques were: FX, a linear
transformation consisting of a full transformation matrix;
PX, alinear transformation consisting of a diagonal “strip”
in the transformation matrix; and, PN, a polynomial warp-
ing of the frequency axis. Note that PX is in effect a special
case of FX. These normalization techniques could also be
applied to other feature sets for vowels. In this sense, the
algorithms presented in this paper are more general than
most speaker-normalization techniques previously reported
in the literature.

The normalization algorithms were experimentally
evaluated under a large number of conditions for two param-
eter sets—modified cepstral coefficients (DCTCs), which
encode overall spectral shape, and formants, which encode
the spectral peaks.® In all cases slightly higher automatic
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FIG. 5. Automatic recognition rates for 11 vowels based on formants for
different processing methods as noted.

classification rates were obtained with the DCTCs than with
formants. However, the DCTCs spanned a greater frequen-
cy range than did the three formants, 150-5000 Hz versus
150-3800 Hz and comprise a much higher dimensionality
feature space than do the formants (eight coefficients versus
three formants). There is also, of course, the possibility and
likelihood of at least some errors in automatic formant
tracking. However, under the assumption that the formants
were tracked correctly for adult males (generally the easiest
case), and since the magnitude of the differences in formant
vowel classification rates for children versus adult males was
generally less than the magnitude of differences between for-
mant and DCTC results, it seems unlikely that all differ-
ences in DCTC versus formant results can be attributed to
tracking errors.”

For formant vowel normalization, the PX and FX linear
transforms generally resulted in very similar classification
rates. However, the PX transform required fewer param-
eters per speaker than the FX transform (3 vs 12). Although
the addition of #0 to unnormalized formants resulted in im-
proved classification results, the addition of F'0 to normal-
ized formants resulted in only very small improvements,
thusindicating that the /0 information is correlated with the
speaker-normalization coefficients.

Of the speaker-normalization techniques investigated
for use with the DCTC parameters, the PX linear transform
method was generally superior to both the FX linear trans-
form and the PN polynomial frequency warping. Apparent-
ly the PN method, with only three coefficients per speaker,
was not adequate to fully eliminate speaker differences. The
FX transform apparently had too many coeflicients (72 vs
30 for PX) for adequate trainability.® The PN + F0Onorma-
lization was almost as effective in increasing automatic vow-
el recognition rates as were the linear transform methods.
However, as for the formants, the addition of F 0 to features
normalized with the linear transform methods did not sub-
stantially improve automatic recognition rates. Automatic
classification rates obtained with speaker-normalized vowel
data as represented by dynamic spectral shape are very simi-
lar to identification rates obtained by human listeners.

Because of differences in data bases and methodology,
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FIG. 6. Automatic recognition rates for 11 vowels based on DCTCs for

different processing methods as noted.
1

only general comparisons can be made between the normali-
zation algorithms presented in this paper and those pre-

viously reported in the literature. The variance reduction for

the PX formant normalization exceeds all those listed in
Disner (1980) for English vowels, except for the log-mean
(Nearey, 1978) normalization. The normalization algor-
ithms presented in this paper are more successful in improv-
ing automatic vowel classification than are previously re-
ported normalization techniques. Using the experimental
data that is most directly comparable to our tests, Wakita
(1977) improved vowel recognition from 78.9% to 84.4%
for unnormalized versus normalized formants, a smaller
percentage improvement than obtained with our PX norma-
lization of formants (69.3% to 78.6%). The frequency
warping speaker-normalization method reported by Paliwal
and Ainsworth (1985) degraded automatic vowel and word
classification. However, unlike the intrinsic normalization
method in both the Wakita and the Paliwal and Ainsworth
study, our extrinsic method requires not only that speaker
identity be known, but that known vowel samples be avail-
able from each speaker in order to compute the normaliza-
tion transformation for that speaker. We did show, however,
that knowledge of only three to five of each speaker’s vowels
is sufficient to compensate for the primary speaker-depen-
dent effects.

Clearly more sophisticated techniques could be devised
to account for systematic speaker variations in dynamic
vowel spectral features. The normalizations given in this pa-
per for the dynamic spectra are based solely on the static
spectrum and do not consider the possibility of systematic
timing differences between speakers. Nevertheless,. classifi-
cation results derived from normalized dynamic spectra are
very similar to human perception of the vowel stimuli (Jagh-
arghi, 1990), thus indicating the procedures given appear to
account for the primary speaker differences in dynamic vow-
el spectra.
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APPENDIX A

List of 99 CVC syllables recorded for vowel database.
The DARPABET phonetic spelling for each syllable is also

given.

pot/paat/ bah/baa/ tog/taag/ dot/daat/
got/gaat/ top/taap/ cob/kaab/ pod/paat/
pock/paak/ hod/hhaad/ peep/piyp/ beet/biyt/
teak/tiyk/ deep/diyp/ keep/kiyp/ geese/giys/
peeb/piyb/ keyed/kiyd/ league/liyg/ heed/hhiyd/
boot/buwt/ poop/puwp/ toot/tuwt/ dupe/duwp/
coop/kuwp/ gook/guwk/ tube/tuwb/ sued/suwd/
moog/muwg/  who’d/hhuwd/ pat/paet/ bat/baet/
tack/taek/ dad/daed/ cap/kaep/ gap/gaep/
tab/taeb/ tag/taeg/ had/haed/ bird/berd/
dirt/dert/ curb/kerb/ perk/perk/ turk/terk/
gerp/gerp/ durg/derg/ heard/hherd/  dip/dihp/
tick/tihk/ kit/kiht/ give/gihv/ bib/bihb/
bid/bihb/ pig/pihg/ hid/hihd/ pep/pehp/
bet/beht/ ted/tehd/ debt/deht/ keg/kehg/
get/geht/ web/wehb/\ peck/pehk/ head/hhehd/
bought/baot/ caught/kaot/ daub/daob/ gawk/gaok/
talk/taok/ paup/paop/ baud/baod/ cawg/kaog/
gawp/gaop/ hawd/hhaod/  but/baht/ tuck/taht/
putt/paht/ dug/dahg/ cup/kahp/ gut/gaht/
cub/kahb/ bud/bahd/ hud/hhahd/ book/buhk/
took/tuhk/ put/puht/ could/kuhd/ good/guhd/
hood/hhuhd/  boat/bowt/ dope/dowp/ goad/gowd/
code/kowd/ pope/powp/ toad/towd/ coke/kowk/,
goag/gowg/ coab/kowb/ hoed/hhowd/

! The experimenters were the authors of this paper. One is a native US citi-
zen (S. A. Zahorian) and the other has been in the US over 12 years (A. J.
Jagharghi). Both have several years of previous experience with vowel ex-
periments.

2 However, the number of vowels used to compute the normalization coeffi-
cients must be at least one more than the number of coefficients in each row
of the normalization matrix to insure that the speaker-normalized features
are linearly independent, a requirement for computation of the matrices
for the MXL classifier [ Zahorian and Jagharghi (1990)].

3This order was chosen so that the more widely separated vowels, e.g.,
/a,i,u/ would appear first in the list. We assumed that knowledge of the
range of a speaker’s vowel space would enable a better estimate of normali-
zation parameters than would knowledge of a small portion of that speak-
er’s vowel space. However, we did not test this assumption using other
vowel orders.

“Tests of statistical significance were not performed to compare every set of
results obtained in this study. However, an estimate of the statistical sig-
nificance of the results was obtained as follows. For the static NN condi-
tions for formants and DCTCs, a one-tailed ¢ test implied that differences
in classification results of 2.1% are statistically significant at the 95% level
of confidence. Assuming that normalization reduces speaker-related vari-
ance by approximately 50% (as for the data in Fig. 1), differences in clas-
sification results of 1.5% are statistically significant at the 95% level of
confidence for the normalization conditions (or 2.1% at the 99% confi-
dence level).

*Inspection of Figs. 5 and 6 shows that the difference between static and
dynamic vowel classification rates, with all other conditions constant, is
generally between 5% and 10%. In pilot experiments (condition NN for
formants and DCTCs), we found that if the diphthong /o/ is removed
from the vowel data, the differences between the static and dynamic fea-
tures were only 1.2% and 4.3% for formants and DCTCs, respectively
(versus 6.1% and 9.3% for these two cases with /o/ included). Thus pre-
sumably most, but not all, of the difference between static and dynamic
feature performance is related to /o/.

1
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8 The PN method was not used for formants since it would have been essen-
tially the same as the PX method for these features.

7In contrast, however, there may have been significant F0 errors for the
children. Inspection of Tables Il and V shows that the addition of FO
improves control vowel recognition much less for children than for adult
males for both formants and DCTC features.

8 For both formants and DCTCs, the FX transform with maximum flexibil-
ity gave the highest recognition results for training data. However test rec-
ognition results degrade somewhat compared with the PX results, suggest-
ing that the FX transformations were overly tuned to the training data.
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