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ABSTRACT 
 
A speech recognizer trained and tested with speech at the 
same SNR typically performs well. However, situations 
where the recognizer is trained with clean speech and 
used for recognizing noisy speech are commonly 
encountered and generally result in greatly degraded 
performance or lack of robustness. The features used for 
speech recognition setups are typically modeled by a 
multivariate Gaussian mixture pdf. However, additive 
noise and linear channel distortions alter the shape of the 
pdf. Hence, a recognizer trained with speech data having a 
multivariate Gaussian density will not perform well when 
the test data is non-Gaussian. Previous solutions 
addressing this problem restore the first two moments of 
the pdf (Cepstral Mean and Variance Normalization). In 
this paper, we propose a preprocessing step that restores 
the multivariate-Gaussian shape of the features 
representing corrupted speech.  We evaluate the method 
with vowel classification experiments using TIMIT data 
for clean and the NTIMIT data for noisy speech.  

 
1. INTRODUCTION 

 
The effects of noise and linear channel distortions on 
robust speech recognition have been documented in 
various studies in the past [1], [2]. It has been shown that 
the feature space is non-linearly distorted by a simple 
environmental model consisting of additive noise and 
linear distortion. In the mismatched scenario, where the 
classifier is trained with clean speech and tested on noisy 
speech, the parameters of the trained system are not 
representative of the noisy speech. It has been shown that 
compensation for the effects of noise on the first two 
moments of the corrupted speech improves the 
recognizer’s performance [3], [4].   
 In this paper, we propose a processing step that 
transforms the ‘Non-Gaussian’ features of the noisy 
speech to a multivariate Gaussian form using an 
appropriate non-linear transformation. The front-end first 
transforms each feature in the feature space to a 
marginally Gaussian density. This feature vector is further 
transformed using Principal Component Analysis (PCA) 

to de-correlate the features. The transformed feature 
vector comprised of marginally Gaussian, uncorrelated 
features, possesses a multivariate-Gaussian pdf. The non-
linear transformation used for restoring the Gaussian pdf 
is obtained by the process of histogram matching (a 
commonly used technique in image contrast 
enhancement). Previous work in this direction documents 
the improvement in speech recognition performance by a 
marginal Gaussian transformation [3], in an HMM 
framework. Our contribution is an effort to further explore 
this approach and to investigate the utility of this 
approach to other problems using alternative frameworks 
(Maximum likelihood classifiers). Specifically, we 
explore the possibility of improving the performance of 
vowel classifiers using several different methods. We also 
suggest a simple approximation which enables the 
Gaussian transformation without using look-up tables. 
Finally, we also examine the effect of de-correlating the 
feature space in conjunction with the non-linear 
transformation, in an effort to insure that transformed 
feature space is multivariate Gaussian. Our experimental 
results lead to some new insights into the usefulness of 
this approach under various test conditions.  
 We begin by summarizing the effect of additive 
noise and linear channel distortions on the feature space 
comprised of log-energy coefficients. We then propose an 
efficient way to non-linearly transform the feature space 
so that the transformed features are multivariate Gaussian. 
This transformation was evaluated using vowel 
classification experiments and the improvement in the 
recognition performance of the classifier was found to be 
impressive when training and test data are mismatched.  
 

2. EFFECTS OF NOISE AND LINEAR CHANNEL 
DISTORTION ON MFCC’S 

 
The model for the environmental degradation [2] of 
speech is shown in figure 2.1. The effect of this model on 
the power spectral density of speech is given by 
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Figure 2.1: Model of the Environment 
 

Taking the logarithm of both sides and defining the 
representations  representations  
y(k) = 10 log10Y(ωk)  (2) y(k) = 10 log10Y(ωk)  (2) 
x(k) = 10 log10X(ωk)  (3) x(k) = 10 log10X(ωk)  (3) 
n(k) = 10 log10N(ωk)  (4) n(k) = 10 log10N(ωk)  (4) 

The non-linear transformation used to make the pdfs of 
the features Gaussian is based upon the principle of 
histogram matching. This is a popular technique used in 
image contrast enhancement applications, mapping 
probability densities of pixel intensities to a reference 
shape. The underlying theory is based on the 
transformation of random variables – given a random 
variable x with a pdf px(x), we need to find an appropriate 
transformation z = T(x) such that z has a desired pdf pz(z). 
The pdfs of x and z in this case can be related by 

Additive 
Noise 

z x x
dxp (z)= p ( )
dz

                          (10) h(k) = 10 log10(|H(ωk)|2)  (5) h(k) = 10 log10(|H(ωk)|2)  (5) 
we obtain the following expression for the log-energy 
representation of the noisy speech  
we obtain the following expression for the log-energy 
representation of the noisy speech  

                                                                       

 For the case where pz(z) is uniform (Histogram 
Equalization), and assuming the original density px(x) = 0 
for x < 0),  the transformation T(x) is given by  

( ) ( ) ( )
10 1010( ) ( ) ( ) 10 log (10 10 )
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y k x k h k
+

= + + +   (6)         
 Assuming that the features of the clean speech 
are normal Nx(µx,Σx), the above expression can be used to 
obtain the density function of y(k). It has been shown [2] 
that p(y| µx, Σx, n, h) is not Gaussian. In fact, if we 
express the relation between y and x in the vector notation 
as 
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 For the general case, the algorithm for the 
transformation is as follows 

1. ‘Equalize’ the levels of the input feature-
data using the transformation described 
above.  

( , , )= +y x g x h n        (7) 
then, the mean vector and covariance matrix of the 
distorted feature space can be expressed as  x
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     (8) The new random variable ‘u’ is then 
uniformly distributed.  

2. Specify the desired density function pz(z) 
and obtain the transformation function  {( ( , , ))( ( , , )) }T T

y y
y

E µ µ= + + −∑ x g x h n x g x h n
         (9)
 Numerical methods are needed to solve the 
above equations to estimate the new mean vector and 
covariance matrix. Hence, any environmental 
compensation technique using the above equations will 
need to estimate a good model for the noise and channel 
distortion and then use numerical methods. Our 
compensation scheme circumvents this issue by 
conditioning the distorted feature space back to the 
multivariate Gaussian reference pdf by using an 
appropriate non-linearity and Principal Component 
Analysis.  

x

0

( ) ( )zv G z p w dw= = ∫    (13) 

The new random variable, ‘v’ is also 
uniformly distributed.  

3. Apply the inverse transformation function 
 to the values obtained in step 

1. The resulting random variable z will have 
the desired density function p

1( )z G u−=

z(z). 
 It is straightforward to derive an analytic 
expression for the transformation for cases when the 
desired density function is Exponential, Laplacian, 
Uniform etc. However, when the desired density function 
is Gaussian, the transformation in step 2 of the above 
algorithm cannot be analytically expressed. A good 
approximation to the function G-1 was given by Marsaglia 
[5]. Using Polya’s approximation to the normal he 
proposed the following analytic expression for generating 
a standard normal random variable z 

 In the process of deriving MFCCs from the 
above described log-energy coefficients, the features will 
tend to have their Gaussian pdf restored to some extent by 
virtue of the central limit theorem. However, since the log 
energy terms are highly correlated, in practice, the 
MFCCs of “non-clean” speech typically are not normal. 

 



(density ce ) from a uniform random 
variable: 

2 / 2 ,0 1z z− < <

2 1/ 2[1.553ln(1 )]z = − −u     (14) 
where u is uniform between 0 and 1. We use this 
approximation for performing step 3 of our non-linear 
transformation.  

The marginally Gaussian features obtained by the 
above mentioned preprocessing can further be made 
multivariate-Gaussian by de-correlating them. This 
follows from a basic result in probability theory that n 
uncorrelated marginally Gaussian random variables also 
exhibit a multivariate Gaussian pdf. To this effect, we 
used PCA to de-correlate features.  

 
4. EXPERIMENTS AND RESULTS 
 

The non-linear transformation described above was 
evaluated with vowel classification experiments. The 
sampling rate was 16 KHz and a 1024 point FFT was 
used. DCTCs, very similar to MFCCs but computed 
somewhat differently [6] were used as the features. The 
extracted features were passed through the above pre-
processing steps, transforming their pdfs to Gaussian.  

The classifiers we used for the vowel 
classification experiments were three variants of Bayesian 
minimum-error rate classifiers (which we refer to MXL-1, 
MXL-2 and MXL-3). The classifiers [7] assume 
multivariate Gaussian densities of the features. For MXL-
1 the features are assumed to be uncorrelated and to have 
equal variances. Thus the decision rule is based on the 
minimum Euclidean distance to class centroids, plus a 
term to incorporate the apriori probabilities of the classes. 
For the case of MXL-3, a common covariance matrix is 
assumed among all classes. Thus the decision is based on 
the minimum Mahalanobis distance, plus a term to 
incorporate apriori probabilities. For MXL-2, no 
assumptions are made other than multivariate Gaussian, 
and thus covariance matrices are computed separately for 
each class and used in the decision process. 

Figure 4.1b illustrates the typical transformation 
applied to each feature in the feature vectors from both 
TIMIT and NTIMIT. A sample histogram of a feature 
extracted from the NTIMIT corpus (Fig. 4.1a) is seen to 
deviate considerably from Gaussian form. After the 
transformation of section 3 we can condition the distorted 
feature pdfs to a Gaussian shape. Features extracted from 
the TIMIT database are already very close to Gaussian (as 
expected). Hence their transformation is primarily a shift 
and linear scaling.  

The above transformation was incorporated into 
the front-end of the various vowel classifiers. We first 
tested the matched scenario – where the speech data used 
for both training and testing was passed through similar 
noise and channel distortion. This matched case serves as 

a control for the case of interest, the mismatch scenario – 
where, the classifier was trained with clean speech and 
tested on noisy speech. In both cases, the transformation 
was done on the training and the test data separately with 
the reference histogram a Gaussian with a zero mean and 
standard deviation of 0.2. We have also examined the 
effect of feature space dimensionality on classification 
performance. This is particularly relevant for the 
investigation of the effects of the PCA transformation. 
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Fig. 4.1a: Sample histograms of a corrupted feature before and 
after transformation 

 
Fig. 4.1b: The nonlinearity used for the transformation 
 

The effects of the non-linear transformation on 
the recognition results for both scenarios are illustrated by 
the data in tables 4.1 through 4.4. The baseline 
performance corresponds to classification without any 
preprocessing. Cepstral Mean and Variance 
Normalization (CMVN) represent compensation for the 
effects of noise and channel variations on the first and 
second central moments of the corrupted speech features.     
Table 4.1 illustrates the results in the matched case (using 
NTIMIT corpus). Though CMVN improves the 
recognition rate, the proposed nonlinear transformation 



consistently degrades the performance by a small amount. 
Tables 4.2 through 4.4 show the results of the nonlinear 
transformation on the MXL classifier for three different 
distance measures. The mismatch is seen to lead to very 
poor baseline results in all cases. CMVN improves the 
recognition rate somewhat. However the proposed 
histogram matching results in a dramatic improvement in 
performance. The use of PCA together with the nonlinear 
transformation results in further improvements in 
performance only when working in lower dimensional 
feature spaces. 
 

No. 
Feat 

Baseline  CMVN histogram matching 

5 51.8% 52.8% 49.7% 
10 60.7% 63.2% 60.4% 
14 62.3% 63.6% 61.4% 

Table 4.1: Vowel Classification accuracy, illustrating the 
nonlinear transformation on the vowel classifier - Matched case, 
MXL-3 
 

No. 
Feat. 

Baseline 
 

CMVN 
 

Histogram 
matching 
 

Histogram 
matching + 
PCA  

5 25.3% 33.5% 41.9% 48.0% 
10 28.9% 44.2% 52.9% 54.5% 
14 29.4% 45.4% 54.1% 54.9% 

Table 4.2: Vowel Classification accuracy, illustrating the 
nonlinear transformation on the vowel classifier - Mismatched 
case, MXL-1 
 

No. 
Feat. 

Baseline 
 

CMVN 
 

Histogram 
matching 
 

Histogram 
matching + 
PCA  

5 23.2% 23.4% 47.0% 49.9% 
10 39.7% 39.7% 53.9% 54.5% 
14 41.7% 41.7% 53.4% 53.8% 

Table 4.3: Vowel Classification accuracy, illustrating the 
nonlinear transformation on the vowel classifier - Mismatched 
case, MXL-2 
 

No. 
Feat 

Baseline 
 

CMVN 
 

Histogram 
matching 
 

Histogram 
matching + 
PCA  

5 22.8% 22.7% 47.6% 51.0% 
10 39.2% 39.4% 56.1% 57.3% 
14 45.1% 45.0% 58.1% 58.2% 

Table 4.4: Vowel Classification accuracy, illustrating the 
nonlinear transformation on the vowel classifier - Mismatched 
case, MXL-3 

 
5. CONCLUSION 

 
For mismatched speech data (clean versus telephone         
quality) the Gaussian histogram equalization significantly 
improves the recognizer’s performance. Here, the non-

linear transformation can be viewed as a conditioning 
process, restoring the discrimination information that was 
lost because of the mismatch. We can further conclude 
from our experiments that use of marginal Gaussian 
transformations results in significantly improving the 
recognition rate. The multivariate Gaussian 
transformation (using PCA after the marginal 
transformations) is only beneficial if lower dimensional 
feature spaces are used. 

      [8] Joseph P. Campbell, JR., “Speaker Recognition: A Tutorial”, 
Proceedings of the IEEE, vol. 85, NO. 9, pp. 1437-1462, 
September 1997. 

The proposed transformation scheme does not 
improve the recognition performance in the situation 
when the training and testing is done by speech at the 
same SNR. In fact, the transformation in this case actually 
degrades the recognition of the test-data by a small 
amount. Such a behavior can be attributed to a 
fundamental issue in pattern classification [8], that any 
transformation of a feature space can not improve 
discrimination. Improvements that were obtained in this 
work were possible only because separate nonlinear 
transformations were applied to the training and test data. 

In additional work, we plan to approximate the 
nonlinear transformation using a polynomial curve fitting 
to the histogram derived transformation nonlinearity.   In 
the current implementation, there is a slightly quantization 
effect in the transformed features, which might have a 
small adverse effect on performance.  More 
fundamentally, a separate nonlinear transformation should 
be   computed for each channel (.i.e., for each   sentence 
in the case of NTIMIT), rather than single nonlinear 
transformation for all of the testing data.    
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