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Minimum Mean-Square Error Transformations of
Categorical Data to Target Positions

Stephen A. Zahorian, Member, 1IEEE, and Amir Jalali Jagharghi, Member, IEEE

Abstract—A new algorithm is described for transforming
multidimensional data such that all the data points in each of
several predefined categories map toward a category target po-
sition in the transformed space. The procedure is based on min-
imizing the mean-square error between specified category tar-
get positions and actual transformed locations of the data. Least
squares estimation techniques are used to derive linear equa-
tions for computing the transformation coefficients and for de-
termining an origin offset in the transformed space. However,
for additional flexibility in the transformation, a method is pre-
sented for combining the linear transformation with a nonlin-
ear connectionist network transformation. This procedure can,
among other things, be used as a tool to evaluate the precision
with which physical measurements of psychophysical stimuli
correlate with the perceptual configuration of those stimuli. Po-
tential speech science applications include antomatic phoneme
recognition, evaluating the power of acoustic features in pre-
dicting phonetic categories, speech processing for sensory sub-
stitution devices, and speaker normalization. Experimental re-
sults illustrate some of these applications with vowel data.

I. INTRODUCTION
COMMON goal'in a wide variety of disciplines, in-
cluding speech science, psychology, anthropology,
economics, and political science, is to correlate continu-
ous-valued measurements of ‘‘objects’’ with perceptual
or interpretable variables which also describe those ob-
jects. For example, in speech science, a fundamental ob-

jective of many research studies is to link the acoustic

measurements of a speech signal to variables which de-
scribe the perception of that signal. In both speech science
and other applications these objects also can often be clas-
sified in terms of -predefined groups or categories, such
that objects within a group are more similar to each other
than to the objects in another group. Fig. 1 depicts this
scenario in stylized form. As a more specific example,
each object could correspond to a spoken vowel. Each
data point in the original space of Fig. 1 would then cor-
respond to a set of acoustic measurements, such as for-
mant values, for one repetition of one vowel. A large
number of data points comprise each group as measure-
ments from many repetitions of a particular vowel from
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Fig. 1. Transformation of categorical data from R to RY.

one or more speakers. Repeating this process for other
phonologically distinct vowels, data points are obtained
for the other groups. The transformation should then map
the measurements of phonologically equivalent vowels to
clustered regions in the transformed space and the mea-
surements of phonologically distinct vowels to separate
regions. Such a transformation is possible only if the
phonologically distinct vowels cluster to some degree in
the measurement space with respect to the specific pho-
netic categories.

In the general case, if data can be assigned to catego-
ries, and if the data within each category in the original
space are more similar in some sense to other data in that
group than to data in other groups, a transformation is to
be derived-such that all the data points from each group
in the original space map to tightly clustered regions in
the transformed space. Ideally, clusters corresponding to
different groups should be widely separated. Typically,
the number of dimensions in the transformed space is
small (for example, two dimensions enable convenient vi-
sual interpretations of the data); conversely, the number
of dimensions in the original space is generally large com-
pared to the number of dimensions in the transformed
space. Although there is no fundamental requirement that
the transformation between the two spaces be linear, the
procedure developed in this paper, which we refer to as
minimum mean-square. error coordinate transformation
(MSECT), is a linear transformation, i.e., matrix multi-
plication, plus a translation of the origin. The restriction
to a linear transformation plus an offset enables a straight-
forward solution for computing the transformation coef-
ficients. However, a method i is also described for combin-
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ing MSECT with a nonlinear connectionist (neural)
network transformation.

The application of the general procedure described re-
quires several user choices: dimensionality and selection
of the original variables; assignment of data to distinct
categories; dimensionality of the transformed space; and,
finally, target positions for cluster centers in the trans-
formed space. This procedure only applies if these choices
can be made, especially the selection of the target space
and the locations of target positions in this space. Poten-

tial solutions to this fundamental source of difficulty, that

is, the specification of the target space, depend on the
particular application. For example, if the procedure were
to be applied to the matching of acoustic measurements
of speech stimuli to a perceptual configuration for those
stimuli, targets could be chosen as the configuration of
stimuli derived from multidimensional scaling [11] of
perceptual data. For this application, the MSECT proce-
“dure described in this paper could be used to assess the
ability of different sets of measurement variables to pre-
dict perceptual variables. That is, better measurement
variables will result in better matches, in the sense of
lower mean-square error, to target points in the perceptual
space.

The organization of the remainder of this paper is as
follows. In the next section we present a mathematical
derivation for computing the transformation coefficients,
based on the minimization of mean-square error. The fol-
lowing section is a brief discussion of existing multidi-

. mensional transformation techniques which relate to the
algorithm presented in this paper. The use of a connec-
tionist network ‘‘preprocessor’’ for the linear transfor-
mation is presented. A section on experimental results
presents several examples of applications of the transfor-
mation in speech processing. These examples also illus-
trate three different methods for selecting target positions
in the transformed space. Finally, a summary of the ad-
vantages, disadvantages, and potential applications of the
procedure is given.

II. MATHEMATICAL DERIVATION

In this paper script letters, such as V, refer to a vector
space; uppercase boldface letters, such as V, refer to a
matrix each of whose columns is a point in “V; and low-
ercase boldface letters, such as v are the vector COOI‘dl-
nates of a point in V.

Let V be a P-dimensional real continuous-valued vec-
tor space. Similarly, let C be an N-dimensional real con-
tinuous-valued vector space. Thus data points in V and ©
are vectors in R” and R", respectively. Further assume
that a collection of data can be classified or categorized
in terms of M predefined groups, with data points within
a group more ‘‘similar’’ to other data points in that group

_than to the data in other groups. Let each data category
have a target position in © about which transformed data
are expected to be well clustered. Denote the number of
data points in each category as NS(j),j = 1 to M. A

linear transformation 7' and an oéset o are desired which
map points in V to points in C as follows:

=T--v+o. (1

The transformation matrix T and the offset vector o are
to be found such that the mean-square error, averaged over
the entire data set, between specified target positions in
C and projections from the measurement space, is mini-
mized. That is, T and o will transform data from V to C
such that the data in each category will cluster about its
specified target position in C as well as possible in the
mean-square error sense. This error can be formulated as
follows. Choose M vectors in C, each of which represents
a distinct target position in the transformed space. From
these vectors, form the N-by-M matrix C, each of whose
columns is one of the target vectors chosen. Thus Cj; is
the ith component of the jth target vector. Similarly, form
a triple-indexed array V, such that Vy is the ith compo-
nent of the kth data point in category j in the original
space. With this notation, the mean-square ‘‘projection’’
error for a particular data point in the jth category is given

by
N P 2
Dy = El <Cij - <1§‘1 TiIVIjk> - 0i> : @)

Summing over all M data categories and the number of
data points in each category NS(j), the total mean-square
projection error is

M NS() N P 2
=2 2 2(C— (2 TVy)—0). 3
j=1 k=1i=1\ " I=1 ¢

We thus need to determine all the elements in T, T,
l=m=N,1 =n < P,andall elements in o0, 0, 1 <
m = N, such that D is minimized. This can be accom-
plished by taking the partial derivatives of D with respect
to each T, and each o,, and setting these derivatives to
zero. Thus the problem is a linear mean-square estimation
problem which consists of computing the minimum of a
function of (P + 1) + N variables. Thus a total of (P +
1) * N independent equations are needed to solve for all
unknowns. With this approach, the following set of equa- -
tions is obtained:

aD M NS(j) P
611’"" JZ Z |: mj - < lgl ]'ml ‘/llk> - om} ank
l=m=<N
for @
l=n=<P
and
M NS(j) P
a—D = Z ' Z[ij <Z T, ‘/J]k> 0mi|
O =1 k=1 . =1
forl <= m < N. ©)
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Letting these derivatives equal zero, results in the re-
quired (P + 1) *+ N equations:

M NS(j) M NS(j) ; P
22 GV = 2 2 <l§1 T Ve + om> Vi (6)
l<m=<NWN
for
l<n=sP
and

M

J

NS(Y M NS(j) , P
§ Cm' =.‘§1 Z;] <l§1 Tml Vljk + 0m>

k=1 U =1k

—

forl = m < N. Q)

Equations (6) and (7) can be combined and rewritten as
N sets of matrix equations, with P + 1 unknowns in each
equation, each of the form

A-x=b 8)
In (8), Aisa (P + 1) by (P + 1) square matrix, x is a (P

+ 1) column vector of unknowns, and bis a (P + 1)
column vector.

The mth matrix equation is used to solve for the mth .

row of T and the mth component of 0. The elements of A
for the mth matrix equation are

M NS(j)

qu =j=l kZ:I. qukijk’ 1 < p < P, 1 =< q =< P (9)
M NSG)
Ay, =j§’k=l Vjao 1=<p=Pg=P+1 (10
M NS(j)
qu=‘ZJlk Voo P=P+1L1sg=<P (D
Jj= =
M NS(j) M
A = > = 1
po = 2 2 1= 2 NS(),
p=P+1,qg=P+ 1. (12)
The unknowns in x are
‘x,=T, 1=<sps=sP (13)
and
x, =0, p=P+1L 14)
Finally, the elements of b are given by
M NS(j)
b, = .Zl kEI CiVir 1=p=P (15
i=1 k=
and
M NS())
b, = .Zl kZI C,, pP=P+1 (16)
=1 k=

The matrix T and the offset vector o are determined by
solving all N sets of matrix equations. A is the same for
each of the N sets of equations and thus must only be
computed- once, rather than N times; A can also be com-

puted more efficiently by taking advantage of its symmet-
ric form. The vector b is a function of m. Thus solving
for each row of T and corresponding element in o is an
independent problem. In effect, each matrix equation rep-
resents a special case of multiple linear regression anal-
ysis of the original variables to a single coordinate in the
transformed space. However, unlike typical applications
of regression analysis, the regression is performed with a
single target -value for each data category. Nevertheless,
since all variables are continuous and the transformation
is linear, the objective is merely to transform data to the
vicinity of these target values. We call this transformation
minimum mean-square error coordinate transformation
(MSECT). A unique solution is guaranteed if the matrix
A is nonsingular and thus invertible. Note that the P-by-
P submatrix consisting of the first P rows and P columns
is a scaled correlation matrix. Thus the rank of A is at
least P, provided no measurement variable is completely
dependent (and thus supplying only redundant informa-
tion) on the other variables. The last row of A consists of
scaled mean values for each of the original variables, aug-
mented by the scale factor (the number of data points) in
the last position. Except for very unusual combinations of
data, this row will be independent of the preceding P
rows. In numerous examples conducted with speech spec-
tral data in our lab, numerical instability problems in the
inversion of A have not been encountered for values of P
up to 16.

Three basic properties of the transformation procedure
can be shown readily from the formulation.

1) The match to the target positions, as measured by
the error D, is independent of the scaling and offsets of
the variables in V. Equations (9)—(16), which are used to
compute the solution for T and o, indicate if the transfor-
mation T and offset o are obtained with a given scaling
and offset for the /th variable in V¥, and if this variable is
then scaled by s and shifted by z, i.e., Vjp = s * Vi + 2,
1 <j=<M, 1=k =<'NS(j), the new solution is given
by '

w= (/) Ty 17
and
b
of =0; - 121 Ty z/s
forl =l =<N. (18)

This transformation and offset, applied to the modified
variables, results in the same D value obtained with the
original transformation and offset and the original vari-
ables (3). ‘

2) The match to the target positions, as measured by a
ratio of between-cluster variance to within-cluster vari-
ance, is independent of a uniform expansion, contraction,
or offset of all target points in C. Equations (9)-(16) show
that if every element in the matrix C is scaled by s, then
every element in the solution T and o will also be scaled
by s. Therefore, every transformed data point in € will
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be similarly scaled, thus preserving the ratio of between-
cluster to within-cluster variance. Similarly, if a constant
z is added to every element in C, z is also added to every
element in 0 and T is unchanged, thus preserving the ratio
of variances.

3) The dimensionality N of the transformed space can
be any desired value. However, since T has P columns,
the rank of T cannot be larger than P. Similarly, since the
target matrix C has M columns, at most M rows of C are
linearly independent, which in turn limits the rank of T to
M. Combining these two restrictions, along with the ob-
servation that the number of linearly independent vari-
ables in C is limited by the rank of T, the maximum num-
ber of linearly independent variables in C is the minimum
of P and M. Therefore, unless linear dependence of the
transformed data is desired, N should not exceed the
smaller of M and P. :

A Fortran program has been written to implement the
MSECT transformation.! The program computes the ele-
ments of A and b (8) using (9)-(12) and (15), (16). A
standard matrix inversion routine [17] is used to solve (8)
for the elements of T and o. The computation times for
the elements of A and b, respectively, are approximately
proportional to P? + Land N + P - L, where L is the total
number of data points. One (P + 1) *+ (P + 1) matrix
must be inverted. All arithmetic operations are performed
with single precision (32-b) real arithmetic except the ma-
tix inversion which is performed with double precision
(64-b) arithmetic. This program has been used to compute
transformations for many examples and has been used to
experimentally verify the three properties listed above.

III. DiscussioN

The algorithm developed in this paper bears resem-
blance to several multidimensional statistical techniques
which can be used to examine groups of objects with re-
spect to several variables simultaneously. In most of these
techniques, a linear transformation projects data to a re-
duced-dimensionality subspace such that certain struc-
tural characteristics of the data are preserved in the trans-
formed space. For example, the transformation might be
based on maximizing the percentage of variance ac-
counted for in the reduced-dimensionality space. The
transformed space may be used to simplify automatic
classification, to help ‘‘discover’’ assumed fundamental
factors which underlie the measured variables, to com-
pare the structure of data from two spaces, or, as an aid
for interpreting the relationships among the groups under
investigation. These techniques include principal-com-
ponents analysis, discriminant analysis, multidimensional
scaling, and generalized Procrustes transformations. Since
these established methods.are discussed in detail in many

'To obtain a copy of this program, and examples for testing, send a self-
addressed and stamped 5-1/4-in floppy disk mailer with a 1.2 megabyte
5-1/4-in DOS formaited floppy diskette to the authors.

references, we merely give a few comments concerning
the relationship of these techniques to the algorithm pre-
sented in this paper. Both principal-components analysis
(PCA) [8], [9] and linear discriminant analysis (LDA) {2],
[51, [12] can be used to derive linear transformations for

- dimensionality reduction. For PCA, the transformation

maximizes the total data variance, or signal energy, ‘‘cap-
tured”’ in the reduced-dimensionality space. For LDA, the
transformation maximizes the ratio of between-group to
within-group data variance, where the groups or catego-
ries are defined by the user of the transformation.

The mathematical derivations of both PCA and LDA
are quite different from the mathematical derivation for
MSECT given in a previous section, since both of these
transformations are orthogonal transformations derived
solely from the data itself, with no provisions for arbi-
trarily specified target positions in the transformed space.
Both of these procedures have been used to transform
acoustic measurements of speech stimuli to low-dimen-
sionality spaces (usually two to five dimensions) [10],
[21], [27] for the purposes of data reduction, automatic
speech recognition, visual speech displays for speech ar-
ticulation training, or to compare the configuration of the
data in a physical measurement space to a perceptual con-
figuration of the data. For the first application mentioned,
PCA is the desired technique. For the second application,
LDA would appear to be best suited. The MSECT method
developed in this paper is, however, best suited for the
third and fourth applications. :

Multidimensional scaling (MDS) can be used to derive
multidimensional spaces such that experimentally deter-
mined perceptual similarities correspond to distances in
the derived space [1], [11]. For typical phonetic applica-
tions in speech science, the inputs to MDS are confusion
matrices obtained from a perceptual experiment. Each
element in the confusion matrix is an estimate of percep-
tual similarity between two phonemes. The confusion ma-
trix is converted to a proximity matrix of similarity
scores—Ilarger confusions imply greater similarity values.
Using a variety of criteria, according to the details of the
particular method chosen, the model forms a multidimen-
sional configuration such that distances between the cat-
egory positions correspond as well as possible to prox-
imity values. As the dimensionality of the derived space
increases, the match between proximities and distances

‘improves. MDS has no direct relationship to MSECT,

PCA, or LDA. However, MDS does provide an analytical
method for deriving a perceptual configuration of speech
stimuli. MSECT can then be used to evaluate the degree
to which acoustic measurements of speech stimuli can be
transformed to this perceptual configuration.

The class of procedures most similar to MSECT are
called “‘Procrustes transformations’’ in the literature [1].
These procedures can be used to compare the structure of
data configurations in two multidimensional vector spaces.
Although there are many variations, in'the basic formu-
lation, an orthogonal rotation is used to best match one
multidimensional ‘‘object’” or configuration to another
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multidimensional ‘‘object’’ or configuration. In contrast
to MSECT, each “‘object’’ consists of the same number
of points. The basic orthogonal rotation has been en-
hanced in ‘‘generalized Procrustes analysis’’ to include
translation and uniform scaling so that the two sets of data
points best match in a mean square error sense [7], [22].
Procrustes analysis has been applied to problems in many
fields, including the comparison of physical and percep-
tual spaces for speech stimuli [10], [20].

Although both Procrustes transformations and the
MSECT algorithm are similar in that each provides a sys-
tematic method for comparing the configurations of data
in two multidimensional vector spaces, the mechanism
and potential applications for the two techniques are quite
different. The intent of a Procrustes transformation is to
compare the structure of two objects, each defined by the
same number of points, without distorting the shape of
the objects. Therefore, for the class of problems alluded
to in this paper, the Procrustes method can only be used
if group centroids in the first space are orthogonally trans-
formed to target positions in the second space. In con-
trast, the MSECT algorithm makes use of an arbitrary
(i.e., no requirement for orthogonality) linear transfor-
mation to best map all data in the first space’to the target
positions in the second space. The flexibility of MSECT
is thus constrained by the requirement that a large number
of data points be transformed by a single transformation,
rather than only group centroids. The Procrustes method
requires an orthogonal transformation since the primary
objective is to compare the structure of two configura-
tions. Property 1, invariance of matching to target posi-
tions with respect to scaling and offsets of the original
variables (Section II), does not apply to Procrustes trans-
formations, since arbitrary independent scalings of the
original variables may distort the structures under inves-
tigation. With MSECT, a less restrictive transformation
is allowable since the structure of the (centroid) configu-
ration is of secondary importance to clustering of data
within each category.

IV. NONLINEAR TRANSFORMATIONS

There are naturally fundamental limitations of any lin-
ear transformation in projecting measurement data to ar-
bitrary points in a reduced-dimensionality target space
such that the data will be well clustered within each cat-
egory and widely separated from other categories. The
success of the transformation depends on how well the
data cluster for each category in the measurement space
and also the configuration of these clusters relative to the
configuration of the specified target points in the trans-
formed space. At least for some conditions, the increased
flexibility of a nonlinear transformation will result in bet-
ter matches to target positions in the transformed space.
One approach would be to augment the measurement vari-
ables with squared values, cross products of variables, and
higher ordered terms, and to perform the linear transfor-
mation on the augmented variable set. This approach has

resemblance to a generalized principal-components anal-
ysis [6]. We have not investigated this method because of
the very high-dimensionality spaces that would be re-
quired. As an alternative, we have investigated a nonlin-
ear transformation based on a connectionist (neural) net-
work to derive an intermediate coordinate system with
highly clustered data within each category such that the
data can be projected with much greater accuracy to the
final space.

The theory and application of multilayer feedforward
connectionist networks to perform recognition are.de-
scribed in many articles (for example, the tutorial [13]).
From the viewpoint of this paper, the network can be
modeled as a series of linear transformations, separated
by nonlinearities. Typically, there is one input to the net-
work for each original dimension in the data space and
one output node for each data category. A sigmoid non-
linearity can be used to bound each output between 0 and
1. The network can be trained as a classifier, i.e., so that
each output node represents a particular category of data.
For the ideal classifier, one output node of the neural net-
work will have value 1.0 for all the data in a given cate-
gory and all other output nodes will have value 0.0. Thus,
for this ideal case, the neural network transforms data for
M categories to an M-dimensional space such that all data
within each category map to a single point; each category
also corresponds to a different point in the M-dimensional
output space. These M points are located at positions of
unity along the M axes in the transformed space.

Using a matrix representation for this ideal case, the
data transformed by the connectionist network maps ex-
actly to an M-by-M identity target matrix. Each column
of the identity matrix is the target position in M-dimen-
sional space for one of the M categories. Since the M-by-
M identity target matrix can be linearly transformed to M
arbitrarily chosen positions in any-dimensionality space,
a combination nonlinear/linear transformation can be ob-
tained such that all data from each category transform to
a single point in the target space, using M arbitrarily cho-
seri target positions for the categories. For real data, of
course, the output of the neural network will deviate from
the ideal case and the data will therefore disperse in the
final space. However, in expetiments conducted to date
with spectral measurements of both vowels and stop con-
sonants, the use of a neural network as a *‘preprocessor”’
for the linear transformation previously described greatly
improved the clustering properties of the speech data in
the final space. Representative results for vowels are given
in a later section of the paper.

V. EXPERIMENTAL DATA

To illustrate potential applications of the transforma-
tion procedure discussed in this paper, we present several
examples of vowel spectral measurements transformed
with the MSECT procedure. For the first two examples,
the vowel measurements are transformed to two-dimen-
sional spaces and cluster plots illustrate the effects of the
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transformation. The examples include different methods
for selecting target spaces and target positions, as well as
a comparison with alternative transformation techniques.
The third example points out a potential application of
MSECT where the dimensionality of the transformed
space equals the dimensionality of the original space.
The stimuli for these examples were the vowel portions
of 99 CVC syllables spoken as isolated words by 30
speakers: 10 men, 10 women, and 10 children between
the ages of 7 and 11. For each syllable, the initial con-
sonant was one of /b, d, g, p, t, k, h, 1, w/, the vowel
was one of /a, i, u, ae, 3, I, €, 0, A, U, o/, and the final
consonant was one of /b, d, g, p, t, k, v, s/. The syllables
were selected so that each of the 6 stop consonants was
paired at least once with each of the 11 vowels in both
initial and final position (66 CV combinations and 66 VC
combinations). Since single-syllable meaningful words

.were used to the extent possible, the syllable list was

longer than the minimum number of 66, and the addi-
tional consonants /h, 1, w, m, s/ were used. About 2/3
of the syllables were meaningful words and the other 1/3
were nonsense syllables. This vowel data presumably has
more variability than the Peterson and Barney vowel data
[19T (hVd only) because of the large number of conson-
antal contexts. The stimuli were low-pass filtered at 7.5
kHz and digitized at 16 kHz for computer analysis. A dig-
ital waveform editor was used to manually label the
‘‘steady state’’ portion of each vowel token for further
analysis. Two types of spectral measurements were then
made on each vowel stimulus. For the first case the mea-
surements consisted of the first three formants and the
fundamental frequency of voicing (F0). For the second
case, the measurements consisted of a form of cepstral
coefficients (CC’s) (2 through 9) and F0.2

The formants were computed automatically after low-
pass filtering the speech signal at 3.8 kHz, decimation to
an 8-kHz sampling rate, arid high-frequency preemphasis
with H(z) = 1 — 0.75 z7". For each 25-ms Hanning win-
dow of the speech signfal, formant candidates were com-
puted from the roots of a 10th-order LP model polyno-
mial: A tracking algorithm, similar to the one described
in [16] was used to select three formants from the candi-
dates in the entire interval of each steady-state vowel sig-
nal. Finally the outputs of the tracker for the center frame
of each stimulus were used as the formants for that stim-
ulus.? FO was computed using a version of the SIFT fun-
damental frequency algorithm [15], for the center 30-ms
Hamming-windowed frame of each vowel segment. Note
that a longer window was used for FO analysis so that the
analysis window typically spans three or more pitch pe-
riods. In order to approximate a perceptual frequency scale
of mels (m), the formants and FO were converted to a mel

*The CC’s were numbered beginning with 1 for the coefficient of the
constant basis vector. Therefore, the lowest ordered CC used, number 2,
the coefficient of a half cycle of a cosine over frequency, is a measure of
spectral tilt.

*The “‘center frame’’ is one frame located at the midpoint of the man-
ually labeled steady-state portion of each vowel.

frequency scale using the following equation [14]:

m = 2595 logyo (1 + £/700). (19)

The cepstral coefficients were computed from the orig-
inal speech signal (i.e., no low-pass filtering at 3.8 kHz
and no decimation) over a frequency range of 150 to 5000
Hz, with a preemphasis of H(z) = 1 — 0.95z7, after first
warping the complete-range log magnitude spectrum with
a bilinear warping factor of 0.6 [18]. The CC’s were com-
puted from the center 25-ms Hamming-windowed frame
of each vowel segment. The examples are given primarily
to illustrate the basic transformation procedure, with
‘‘real’’ data, rather than as an exposition of vowel prop-
erties. A detailed discussion of the many sources of vari-
ability for vowel data, and of the ‘‘best’” measurement
and perceptual spaces for vowels is beyond the scope of
the present paper. There are, of course, many examples
in the literature of studies of both physical and perceptual
measurements of vowel data [10], [19], [20], [24], [25].
The two measurement sets described above were chosen
because they are considerably different in the dimen-
sionality of the physical space (4 versus 9), they represent
somewhat different points of view regarding the physical
measurements that most correlate with the perception of
vowel quality, and they do suffice to illustrate potential
realistic speech science applications of MSECT.

Because of the large amount of test data, an ellipse de-
picts. each vowel in each cluster plot, rather than the ‘in-
dividual data points. For all plots, 15 “‘training’’ speakers
(5 men, 5 women, and 5 children) were used to derive a
particular transformation. All figures depict the data of
the remaining 15 test speakers. Thus the figures represent
speaker-independent test data. Each ellipse is placed at
the centroid of a vowel and oriented so that its major axis
coincides with the direction of maximum data variation
for that vowel. The length of the major axis is equal to
two standard deviations of the data in the direction of the
major axis; the minor axis also equals two standard de-
viations of the data in the direction of the minor axis.
Therefore, assuming Gaussian distributions, each ellipse
encompasses about 50% of the data for each vowel. Thus,
by visually inspecting the figures, the approximate degree
of clustering of the data for each vowel and the separation
of the vowels is readily apparent.

To give objective ratings of clustering of vowel data
with respect to the 11 phonetic categories, three figures
of merit were also computed for each case. First, all the
vowel data for the test speakers were classified according
to minimum Euclidean distance to the 11 target positions
specified for the vowels. The percentage of vowels cor-
rectly identified, PCT, was computed. Recall that the tar-
get positions are not derived from the training data but
rather they are defined a priori before the transformation
is computed. The classification was repeated except that
vowel centroids, computed from the training speakers,
were used as reference points for each vowel rather than
the specified target positions. The percentage of vowels
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correctly identified for the test speakers, PCC, is given
for each figure. Third, the ratio of between-group to
within-group variance, RV, was also computed for each
example. In general, as clustering about category cen-
troids improves, both PCC and RV increase. As the match
of the transformed data to the target position improves,
PCT increases.

The two measurement sets were also compared with a
Bayes maximum likelihood classifier [3] in terms of their
ability to distinguish the 11 vowel categories. The per-
centage of test data (from the 15 test speakers) coirectly
identified. was 75.2% for the formants +F0 and 75.0%
for the cepstral coefficients 4 F0. Thus the two parame-
ters sets are nearly identical insofar as automatic classi-
fication of the vowel data. Since these classification re-
sults were obtained with the full-dimensionality spaces (4
and 9), using a sophisticated classifier, both PCT and PCC
computed as described above for two-dimensional spaces
would be expected to be less than these ‘‘upper bound’’
values. .

Example 1: Comparison of MSECT and LDA.

In the first example, both MSECT and linear discrimi-
nant analysis (LDA) were used to transform vowel data
(formants +F0, P = 4; and CC’s 2 through 9 + FO, P
= 9) to two-dimensional spaces. The LDA transforma-
tions were first computed for 15 training speakers (5 adult
males, 5 adult females, and 5 children) for each of the
feature sets. The centroids for each of the 11 vowel cat-
egories wete computed in the space of the discriminant
scores. These centroids, drawn as the large black dots in
Figs. 2 and 3, were used as the target positions for vowels
for use with MSECT. The two transformations, LDA and
MSECT, were then each used to transform the vowel data
from the other 15 speakers in the data base with results
shown in Figs, 2 and 3. Thus all transformations were
computed with training speakers whereas ellipses were
drawn with results from test speakers. Because of vari-
ability between the two speaker groups, even for Figs.
2(a) and 3(a), the ellipses are not exactly centered at the
target positions. The figures, as well as the computed
PCT, PCC, and RV numbers given in the various panels
of the figures, show that the MSECT method gives similar
results to those obtained with LDA. However, this is to
be expected since the targets for MSECT were obtained

as a by-product of the LDA computations. This example

does indicate that MSECT results.in nearly the same
transformation as LDA, albeit with a completely different
computational procedure, with the appropriate choice of

targets. MSECT is not intended to replace or compete with

LDA. For an application such as automatic pattern rec-
" ognition in a low-dimensionality feature space, MSECT
could be used but suffers from the obvious disadvantage
of requiring the user to determine ‘‘good’’ target posi-
tions. LDA does not suffer from this problem. The next
two examples illustrate applications where the benefits of
MSECT are more apparent. _

Example 2: Transformations from measurement spaces
to perceptual spaces for vowels. ‘
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Fig. 2. Cluster plots for eleven vowels resulting from (a) LDA or (b)
MSECT, using target positions obtained from LDA. The original param-
eters were 3 formants + FO.
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Fig. 3. Cluster plots for eleven vowels resulting from (a) LDA or (b)
MSECT, using target positions obtained from LDA. The original param-
eters were 8 CC’s + FO.

In this example we illustrate the use of MSECT to eval-
uate the two different spectral measurement sets—for-
mants + FO versus cepstral coefficients + FO— in terms
of their ability to predict the perceptual locations of the
11 vowels. For this example spectral measurements of the
vowel data, as described above, and the perceptual con-
figuration of the vowels are required. The perceptual data
were obtained using multidimensional scaling as applied
to a confusion matrix obtained from a listening experi-
ment. To obtain these data, five subjects listened to the
steady-state vowel portions (as defined by the manual la-
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beling mentioned previously) of the vowel stimuli from
nine of the talkers* (three men, three women, and three
children) in the data base. Each talker repeated each of
the 11 vowels listed previously approximately 9 times, in
different consonantal contexts, for an overall total of 8§90
stimuli. The subjects listened to the randomized stimuli
in a computer-controlled experiment as many times as de-
sired but were required to identify each token as one of
the 11 vowels in a forced-choice format. The multiple-

request listening format insured that performance was not

degraded due to demands for an immediate response from
the listeners. :

. An 11-by-11 confusion matrix, Table I, was obtained
-from the pooled responses of the five listeners with col-
umns representing identified vowel and the rows the vowel
intended by the speaker. Averaging over all vowels and
all listeners, 85% of the vowel segments were identified
as the intended vowel.> The confusion matrix was con-
verted to symmetric form by averaging the matrix and its
transpose. This pooled symmetric 11-by-11 matrix was
then used as the input to the SAS ALSCAL multidimen-
sional scaling routine [26] to compute a two-dimensional
perceptual configuration for the vowels. ALSCAL was
used with a Euclidean model, interval measurements, and
a fourth-degree polynomial fit to the data.

The confusion matrix depicted in Table I shows that the

main confusions are between the vowel pairs /a/ and /o/, -
/ae/ and /e/, /U/ and /a/, and /o/ and /U/. Of these con-.

fusions the largest asymmetry is for the /U/ — /a/ pair;
/U/ is recognized as /A/ in 24.4% of cases whereas /A/ is
recognized as /U/ in only 4.6% of cases. A more sophis-
ticated procedure for converting the matrix to symmetric
form would have changed only the details of the MDS
results, since there is little consistent variation from sym-
metry in the original matrix. We also note that the stress
value obtained for the two-dimensional MDS solution was
0.38 versus 0.24 for 3 dimensions, thus indicating that
the two-dimensional solution is not a particularly good fit
to the data. It must be emphasized that MDS transfor-
mations involve several subjective choices, and that real
data seldom match the model assumptions precisely.
Nevertheless, MDS can be used to approximate a percep-
tual space for stimuli such as speech sounds. A two-di-
mensional model was used in results for this paper for
ease of comparison with the other examples.

Fig. 4 depicts the results of transforming the two sets
of vowel measurements, using target positions as ob-
tained from the MDS results, using the MSECT proce-

“These nine talkers were selected on the basis of an automatic recogni-
tion experiment for vowels. For each of the three speaker types, a talker
was selected with a high recognition rate, a low recognition rate, and an
average recognition rate. Thus the talkers represented ‘‘good,”’ ‘‘bad,”’
and ‘‘average’’ speakers from the viewpoint of automatic vowel recogni-
tion.

*In contrast to the segments used for automatic classification, the vowel
segments presented to the listeners did contain some dynamic and coar-
ticulation information. The length of the steady-state vowels identified by
the manual labeling ranged from 46 to 542 ms with an average of 160 ms
and standard deviation of 74 ms.

TABLE 1
CONFUSION MATRIX OBTAINED FROM LISTENING TO STEADY-STATE VOWEL
SEGMENTS. THE ROWS ARE THE VOWELS INTENDED BY THE SPEAKERS. THE
CoLuMNs CORRESPOND TO LISTENER RESPONSES :
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13/ ) ’ 98.6 0.3 1.2 03
it 0.3 1.1 0.6 91.7 5.1 0.6 0.6
/el 03 0.5 76 03 56 838 2.0
/ol 242 736 2.2
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Fig. 4. Projection of vowel data to MDS target positions in a two-
dimensional space using MSECT for (a) 3 formants + FO, and (b)
8 CC’s + FO.

dure. The MDS targets are drawn as the large black dots
in Fig. 4 (and also in Figs. 5 and 6). Again the transfor-
mation coeflicients were computed from 15 training
speakers whereas the ellipses plotted in Fig. 4 represent
the 15 test speakers. As can be seen, for Fig. 4(a) ob-
tained with formants + FO, the vowel clusters overlap by
approximately the same degree as for Fig. 2(b). Although
RV = 3.6, versus 6.4 for Fig. 2(b), the PCC value is
somewhat higher for Fig. 4(a) versus Fig. 2(b). (62.8%
versus 59.9%). However, the low value for PCT (29%)
indicates that the vowel data is generally not closest to the
specified target position for each vowel. Nevertheless, vi-
sual inspection of Fig. 4(a) indicates that the vowel. el-
lipses are in the vicinity of the specified target position.
The data depicted in Fig. 4(b), derived from the cep-
stral coefficients + FO, are somewhat different from that
depicted in Fig. 4(a). By inspection of the two figures,
the clusters overlap much more in Fig. 4(b) than in Fig.
4(a). The RV and PCC values are also much lower for



ZAHORIAN AND JAGHARGHI: MMSE TRANSFORMATIONS OF CATEGORICAL DATA 21

®

Fig. 5. Prolectlon of vowel data to MDS target positions in a two-dimen-
sional space using generalized Procrustes analysis for (a) 3 formants + FO,
and (b) 8 CC’s + FO.

(@

®)

Fig. 6. PrOJectlon of vowel data to MDS target positions in a two-dimen-
sional space using a neural network + MSECT for (a) 3 formants + FO,
and (b) 8 CC’s + FU.

Fig. 4(b) than Fig. 4(a). However, the PCT value of
31.7% for Fig. 4(b) versus 29.0% for Fig. 4(a) indicates
that the vowel data map closer, on the average, to the
MDS target positions, for the cepstral data than the for-
- mant data. Although the cepstral coeflicients have a slight
advantage in terms of PCT, the MSECT conversion of
vowel cepstral coefficients to a two-dimensional percep-
tual space results in much less distinct vowel clusters than
for the transformation of the formant data.

As a control experiment, the vowel data were also
transformed to two-dimensional target positions using

- procedure, for the CC data. Thus,

Procrustes analysis. The results for the formant and cep-
stral data are shown in Fig. 5. The transformations used
for the data in this figure were computed using parameter
centroids for the training speakers. The centroids were
shifted, uniformly scaled, and orthogonally rotated to best
match the MDS target positions [7]. The transformations
computed in this manner were then applied to all the data
of the test speakers to generate the cluster plots and to
compute the various figures of merit. For the case of for-
mants, the clustering of the vowel data is quite degraded
for the Procrustes transformation relative to the MSECT
transform. The RV and PCC numbers are considerably
smaller for Fig. 5(a) than Fig. 4(a). However, the data in
Fig. 5(b) and the figures of merit, are similar to the data
in Fig. 4(b) suggesting that a similar transformation is
obtained with either the Procrustes method or the MSECT
for some cases,
MSECT, which minimizes mean-square error over the en-
tire training data set, gives superior results to a transfor-
mation which minimizes mean-square error between the
centroid and target positions. For other cases, the two
methods yield similar results. Without a proof, it is im-
possible to conclude that the Procrustes method would not
give superior results to MSECT for some data. However,
we have not found such a case in any of the examples
investigated in the preparation of this paper.

A fundamental advantage of MSECT is that perfor-
mance is not affected by linear scalings of the input
variables (property 1) whereas the results obtained with
the Procrustes method are highly dependent on the scaling
of each input variable. To exemplify this point experi-
mentally, the formant data were linearly scaled (arbi-
trarily) such that FO was multiplied by 100, F1 by 10, F2
by 1, and F3 by 0.01. The MSECT and Procrustes trans-
formations, with. MDS targets, were again computed for
these two cases. As expected, the MSECT results were
identical to those obtained with the original formant val-
ues (Fig. 4(a)). However, the Procrustes results were
greatly degraded—the RV, PCC, and PCT values, re-

_spectively, were 0.3, 19.0, and 21.0, as opposed to the

corresponding values of 2.3, 29.2, and 49.3 (Fig. 5(a))
for the original formants. Thus the MSECT approach, as
opposed to the Procrustes method, does not rely on the
experimenter to make a “good” choice of the relative
scaling of the input variables.®

As yet another approach for transforming vowel data to
the MDS target positions, the combined nonlinear/linear
transform, as presented in Section III, was implemented.
To illustrate this method, the data were preprocessed with
a two-layer feedforward perceptron network, with one in-
put node for each speech parameter (i.e., 4 input nodes
for the case of formants + FO and 9 input nodes for the
case of 8 cepstral coefficients + F0), 20 hidden nodes,

SSome formulations of Procrustes transformations first normalize the in-
put variables. Linear scalings of variables would then have no effect on the
results. However, normalization itself is arbitrary and would in general
change the results relative to those obtained with nonnormalized variables.
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and 11 output nodes.” The 15 training speakers were used
to train the network as a classifier for the 11 vowels (thus
11 output nodes) using the backpropagation training
method. Also recall that the neural network can be viewed
as a nonlinear transformation of the original speech fea-
tures to an 11-dimensional space. MSECT was then used
to transform the 11-dimensional neural network outputs to
a 2-dimensional space with the MDS target positions. Fig.
6 depicts the results as applied to the 15 test speakers. As
can be seen by comparing the (a) and (b) in Fig. 6, with
(a) and (b), respectively, in Figs. 4 and 5, much better
data clustering and matches to specified target positions
are achieved for the combination nonlinear/linear trans-
formation than for either of the linear transformations.

The results for the nonlinear/linear transform are easily
explained if the neural network is considered as a classi-
fier that transforms all data in each category to a distinct
binary code which can then be transformed to arbitrary
positions in a multidimensional space. Naturally, no claim
can be made that the combined nonlinear/linear transfor-
mation is optimum, since there are many, many variables
which were not investigated. There are also many other
forms of nonlinear transformations, besides one based on
a neural network, which might be used.

The logical general conclusion from this example is that
the formants are better perceptual indicators of vowels in
a two-dimensional space than are the cepstral coefficients.
However, such an inference must be made with great cau-
tion. In particular, the MDS procedure only gives an es-
timate of the perceptual configuration. This estimated
~ configuration depends very much on the details of the
original experiment, the options used in MDS, and the
dimensionality chosen for the perceptual space. For ex-
ample, the two-dimensional vowel perceptual configura-
tion depicted as the targets in Figs. 4-6 is globally similar
to perceptual configurations for vowels obtained in other
studies [23], [24], but the details are quite different.?
There is no real substitute for a perceptual experiment to
verify the relative significance of acoustic features in
speech perception. However, such experiments are very
time consuming to conduct and often result in ambiguous
conclusions. Thus the MSECT procedure, with or without
the nonlinear preprocessing, can be used as a tool, along
with other established methods, to give insight into the
perceptual significance of a particular feature set.

Example 3: Speaker normalization of vowel data.

Another potential application of linear transformation
procedures is for speaker normalization of vowel data [3].
Target positions for each vowel (the columns of matrix
C) can easily (and seemingly logically) be obtained as the
centroid of all the measurement data for that vowel from

"The number of hidden nodes was determined by a pilot experiment using
a neural network classifier for the vowel data. For both the formant and
cepstral parameters, approximately 1% higher automatic vowel classifica-
tion results (test speakers) were obtained with 20 hidden nodes compared
to the results for 10 or 30 hidden nodes.

8For example, in all cases /a/, /i/, and /u/ are well separated, /i/ is close
to /1/, /a/ is close to /A/, etc.
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Fig. 7. Spectral plots of target talker /i/, nonnormalized /i/, and speaker-
normalized /i/.

all speakers. The vowel data of each speaker can be trans-
formed to best match the speaker-average positions. A
separate transformation must be computed for each
speaker, based on training data for that speaker. The
transformed data for each speaker matches the speaker-
average vowel positions as closely as possible, and thus
can be considered as speaker-normalized data. In contrast
to the previous examples, the dimensionality of the orig-
inal and transformed spaces are the same and also the
choice of the target positions in the transformed space is
much less arbitrary.

As a test of MSECT for speaker normalization using
the general method outlined above, MSECT was used to
normalize data from 30 speakers (10 adult males, 10 adult
females, and 10 children) for 11 vowel categories with
cepstral coefficients 2-9 as parameters. As a control, the
data from each speaker was also normalized using a Pro-
crustes transformation to optimally align the average
vowel configuration for each speaker (averaged over mul-
tiple repetitions of each vowel) to the overall speaker
average configuration. The percentages of test vowels
correctly classified with the previously mentioned Bayes
maximum likelihood classifier are 74.2%, 83.6%, and
80.0% for the nonnormalized data, the MSECT normal-
ization, and the Procrustes normalizatiqn.9 The error rates
for automatic vowel classification of test data (100% —
74.2% = 25.8%) were reduced by 36% for the MSECT
method versus 22 % for the Procrustes method. Thus, for
this example, vowel normalization computed from all the
training data of each speaker outperforms normalization
based on speaker centroids.

The spectral plots depicted in Fig. 7 also show an ex-
ample of the effect of the speaker normalization. For this
figure MSECT was used to compute a normalization
transformation for cepstral coefficients 2 to 9 of one
speaker’s training data. The results of applying this trans-
formation to a stimulus outside the training set (/i/) are
shown' in the figure in terms of the target spectrum for

®Unlike the other examples, for the speaker normalization experiment,
half ‘of the tokens for each vowel for each speaker were used to train the
classifier and the speaker normalization transformations, and the other half
of the tokens from each of the 30 speakers were used for testing. Thus the
test classification rate of 74.2% without speaker normalization is slightly
different than the 75% test rate obtained if half the speakers were used for
training and half for testing.
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/i/, the original spectrum of the /i/ for this speaker, and

the spectrum of this speaker’s /i/ after normalization. Note

that although the transformation was based on the CC’s,
the CC’s were converted to a spectral plot for ease of
interpretation. Clearly, for this example, the normalized
spectrum matches the target spectrum much more closely
than does the original spectrum. The reduction in error
rates for automatic classification due to the speaker nor-
malization also indicates the viability of the approach.

VI. SUMMARY

In conclusion, we have described a multidimensional
transformation technique, which we call minimum mean-
square error coordinate transformation (MSECT), for
projecting data from one multidimensional space to an-
other multidimensional space. The mathematical devia-
tion of MSECT is based on minimum mean-square error
estimation theory. Although statistical in nature, the de-
rivation does not depend on any particular form of mul-
tivariate probability density functions in the original
space. The transformation is very flexible in that there are
no restrictions on the dimensionality of the transformed
space, no requirements that the transformation be orthog-
onal; arbitrary scalings and shifts in the origin are also
allowed. For some uses, MSECT results in a transfor-
mation very similar to that obtained with existing trans-
formation procedures such as discriminant analysis, For
applications where there is no desire nor natural method
. for choosing target positions, the requirement that target
positions must be specified in the transformed space is a
fundamental disadvantage of MSECT. However, for other
applications, the ability to freely specify target positions
for each category in the target space can be used to ad-
vantage. These applications include checking the percep-
tual relevance of various sets of measurable features, sig-

nal processing for speech articulation training aids, and

speaker normalization of vowel data.
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