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Abstract 
Recently, the modulation spectrum has been proposed and 
found to be a useful source of speech information. The 
modulation spectrum represents longer term variations in the 
spectrum and thus implicitly requires features extracted from 
much longer speech segments compared to MFCCs and their 
delta terms.  In this paper, a Discrete Cosine Transform (DCT) 
analysis of the log magnitude spectrum combined with a 
Discrete Cosine Series (DCS) expansion of DCT coefficients 
over time is proposed as a method for capturing both the 
spectral and modulation information. These DCT/DCS 
features can be computed so as to emphasize frequency 
resolution or time resolution or a combination of the two 
factors. Several variations of the DCT/DCS features were 
evaluated with phonetic recognition experiments using TIMIT 
and its telephone version (NTIMIT). Best results obtained with 
a combined feature set are 73.85% for TIMIT and 62.5% for 
NTIMIT.  The modulation features are shown to be far more 
important than the spectral features for automatic speech 
recognition and far more noise robust. 

 
Index Terms: modulation spectrum, spectral-temporal feature, 
discrete cosine transformation, phonetic recognition 

1. Introduction 
The techniques for extracting useful information from short-
time speech spectral analysis have been developed from 
research in speech signal processing and Automatic Speech 
Recognition (ASR) over the past several decades. The 
prevailing view for many years was that “static” spectral 
information, obtained from frame-based features such as Mel 
Frequency Cepstral Coefficients (MFCCs) or formants, are the 
most critical features for ASR.  In contrast, “dynamic” features, 
such as the delta coefficients for MFCC, representing spectral 
trajectory information over short time intervals of 
approximately 50 ms, were considered to be of secondary 
importance. More recently, dynamic features extracted from 
temporal trajectories of spectral information over longer time 
intervals have been shown to be very effective features for 
noise robust ASR.     

Beginning in the mid-1990s, Hermansky and Morgan [1] 
pointed out the importance of temporal trajectory information 
by introducing RelAtive SpecTrA (RASTA) features. In the 
works of [2, 3], the modulation spectrum has been 
demonstrated to be a very useful speech representation for 
ASR. For instance, Kanedera et al. [3] combined bandpass 
filtering with RASTA processing and extracted different 
modulation spectrum components from different frequency 
bands. Kingsbury et al. [4] used a modulation spectrum as a 
front end in speech recognition and obtained significant 
improvement by combining it with log-RASTA-Perceptual 
Linear Predictive coding.  In more recent research, in order to 
achieve consistently low word error rates, Valente and 
Hermansky [5] proposed hierarchical and parallel processing 

techniques combining outputs of independent classifiers and 
modulation frequency channels. In addition, the use of the 
auditory modulation spectrum was also investigated in greater 
depth in their work.  

From a conceptual point of view, modulation features are 
most typically computed by dividing the log spectrogram into 
frequency bands or “slits “ and then computing  features which 
reflect the temporal evolution of the spectra in each band, with 
each  frequency band analyzed separately. These modulation 
features are then usually combined with spectral features such 
as MFCCs or Perceptual Linear Prediction (PLP) coefficients.   
Since the combination of modulation features and spectral 
features results in very large feature vectors (on the order of 
150 terms), researchers have studied the best methods for 
combining and using all these features, such as the work 
reported in [5].     

In this paper, we propose a quite different approach, 
whereby modulation features are considered as a Discrete 
Cosine Series (DCS) analysis over time of the Discrete Cosine 
Transform (DCT) coefficients of the log magnitude spectrum. 
Thus, rather than each modulation spectral term being 
associated with a separate spectrogram band, each modulation 
term is computed from an integrated feature of the entire 
frequency spectrum. The DCT/DCS feature set combines the 
spectral and temporal modulation features. However, the 
feature set can be tuned to emphasize spectral information, or 
modulation information, or a combination of the two types of 
information.  

2. Approach 
More details of the DCT Coefficients (DCTCs) and DCS 
Coefficients (DCSCs) features are given in the works of 
Zahorian et al. [6], and Kajanadecha and Zahorian [7]. 
Summarizing briefly, the basic idea is to compute frame-based 
spectral features as a modified cosine transform of the 
spectrum and then to compute feature trajectories with another 
cosine transform over time.  

The first step of this feature calculation is to compute 
DCTC terms from the spectrum X, with the frequency f 
normalized to a [0, 1] range, as follows 
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In this equation, i is the DCTC index, a(X) is a nonlinear 
amplitude scaling and g(f) a nonlinear frequency warping. 
�i(f) is the ith basis vector over frequency computed as 
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The crucial elements of this approach are the selection of 
the nonlinear amplitude scaling a(X) and the nonlinear 
frequency scaling g(f), so that the cosine transform is with 
respect to a "perceptual" scale.  In practice, the scaling a(X) is 
typical a log, and the scaling g(f) is a Mel-like function.     
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The spectrum is computed with an FFT computed from 
overlapping windowed speech frames and the integral is 
computed using a sum over a selected frequency range. The 
frequency warping function is implemented both through the 
modified cosine basis vectors and through the use of 
interpolated spectral magnitude values obtained from the FFT.  

To illustrate the process, the first 3 DCTC basis vectors, 
using an approximation to Mel warping, are shown in Figure 
1. For the results reported in this paper, the warping function is 
given by  
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In this equation, f’ is considered perceptual frequency and f is 
frequency in Hz, except that both f and f’ are normalized over 
[0, 1].   

 
Figure 1: First 3 DCTC basis vectors. 

In order to create the DCSC features that represent the 
spectral evolution of DCTCs over time, thus encoding the 
modulation spectrum, a cosine basis vector expansion over 
time is performed using overlapping blocks of DCTCs so that 
the temporal resolution is higher in the central region than for 
the end regions. That is, the DCSCs are computed as 
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where �j(t) is the jth basis vector over time computed as 
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In this equation, h(t) is a time warping function and t is  
normalized to [0,1] over a selected segment (a "block"). In 
practice, t is discrete, corresponding to a frame index, and the 
integral is computed using a sum of all frames in the block. 
The calculation is repeated for each overlapping block, with 
the block spacing some integer multiple of the frame spacing.  

A set of 3 typical DCSC basis vectors is shown in Figure 2. 
Using these modified basis vectors, feature trajectories are 
represented using the static feature values for each frame, but 
with varying resolution over a block consisting of several 
frames. DCSC(i,j) are the set of spectral-temporal features that 
represent speech for a block of frames. 

Several parameters in the DCTC/DCSC analysis can easily 
be varied to examine tradeoffs between static spectral 
information and trajectory spectral information in terms of 
effects on robustness of ASR systems. For instance, for 
increased emphasis of spectral information, the frame length 
used to compute the spectra can be relatively long (on the 
order of 25 ms), and the number of DCTCs can be large (on 
the order of 15 to 20 coefficients). To evaluate the 
effectiveness of purely static spectral information, the DCSC 

step can be eliminated and the ASR system tested with DCTCs 
directly. For increased emphasis on trajectory information, a 
short frame length and frame spacing (on the order of 5ms and 
1ms respectively) can be used along with a large number of 
DCSC terms (on the order of 5 to 10).   

 
Figure 2: First 3 DCSC basis vectors. 

In the following experimental section, features that 
emphasize frequency resolution are referred to as spectral 
features and features that emphasize the temporal trajectory of 
the highly smoothed spectrum are referred to as modulation 
spectrum features.    

3. Experimental Evaluation 
Experiments were conducted to evaluate the proposed method 
using the TIMIT database. The SA sentences were removed 
from the database, resulting in 3696 sentences from 462 
speakers for training and 1344 sentences from 168 speakers 
for test. Experiments were also conducted with the telephone 
version of TIMIT, i.e. NTIMIT. All analysis parameters were 
identical for the TIMIT and NTIMIT evaluations, except for 
frequency range. For TIMIT, the frequency range was selected 
to be 50 to 7000 Hz, whereas for NTIMIT the frequency range 
for analysis was set at 300 to 3400 Hz. 

The signal to noise ratio (SNR) was varied from no added 
noise (clean) to 0 dB, in steps of 10 dB (totally 5 noise 
conditions). A reduced 39 phone set as used in [8] was 
mapped down from the original TIMIT 62 phone set and used 
in the experiments.   

Left-to-right 3-state Hidden Markov models with no skip 
were used and a total of 48 (eventually reduced to 39 phones) 
context independent monophone HMMs were created from the 
training data using the HTK toolbox (Ver3.4). The bigram 
phone information extracted from the training data was used as 
the language model. For all experiments with DCTC/DCSC 
features, a frame spacing of 8 ms (125 frames per second) was 
used. In an attempt to extract the most possible information 
from the speech features tested, a large number of mixtures 
were used to model each state with a diagonal covariance 
matrix. The actual number of mixtures was varied from 25 to 
75, as mentioned for each evaluation. The number of mixtures 
was increased for the higher dimensionality feature sets and 
lowered for the lower dimensionality feature sets, since this 
approach yielded highest accuracies with stable HMM models.  

The objective of the experiments was to compare phoneme 
recognition accuracy of control features (13 MFCCs with delta 
and acceleration terms, or 39 total terms) with static spectral 
features, with primarily modulation spectrum features, and 
with a combination of spectral and modulation features. More 
details are given for each experimental condition.  
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3.1. Experiment 1: Control 
The intent of this experiment was to establish a baseline for 
ASR phoneme accuracy using “conventional” features, and the 
identical HTK recognizer and database configuration as was 
used for the proposed features.  

The MFCC features were computed directly with the HTK 
supplied front end, using the typical parameter settings for 
MFCCs as well as delta and acceleration terms. That is, 12 
MFCCs plus energy with delta and acceleration terms, or 39 
total terms were obtained every 10 ms at a frame length of 25 
ms, with pre-emphasis coefficient of 0.97. For each phoneme, 
3-state HMMs with 75 mixtures were used.  

Recognition accuracies obtained with the TIMIT and 
NTIMIT databases at various SNRs were depicted in Figure 3. 
The accuracy ranges from 67.9% (clean TIMIT) to 34.1% 
(NTIMIT at 0 dB SNR). 

 
Figure 3: Accuracies with control MFCC features. 

3.2. Experiment 2: High resolution spectral features 
The recognition using high resolution DCTC features only was 
evaluated in this experiment. 20 DCTCs were computed using 
25 ms frames and the Mel-like warping given in Equation (3). 
This is considered the spectral only case as no DCSC terms 
were used.   

The same configuration of HTK as for Experiment 1 was 
used, except 25 mixtures were used to model each Gaussian, 
as errors were obtained using 32 or more mixtures.  

Figure 4 shows that phoneme recognition accuracy for the 
TIMIT and NTIMIT databases at various SNRs, ranging from 
55.5% (clean TIMIT) to 20.8% (NTIMIT at 0dB SNR). 

These results are considerably lower than the ones 
obtained in the control experiment, but still about 3% to 6% 
higher than results obtained with static only MFCC features 
obtained in another (not reported) experiment. 

 
Figure 4: Accuracies with spectral features only. 

3.3. Experiment 3: Modulation spectrum features 
The intent of this experiment was to determine accuracy 
possible using DCSC features computed to emphasize the 
modulation spectrum. The DCSC features were computed for 
6 DCSCs with 10 DCTC terms for each (60 total features) 
using Equation (4). Based on several pilot tests, and also with 
the idea of using low frequency resolution for this evaluation, 
the spectra were computed with 6 ms frames, spaced 2 ms 
apart, and the DCTCs were computed using the same 
frequency warping as used for the spectral only features.      

In order for DCSCs to represent modulation frequencies as 
low as approximately 2 Hz, a 500 ms block length was used 
for the DCSC calculations (250 frames). The DCSC 
calculations were performed using basis vectors as shown in 
Figure 2. These DCSC calculations were repeated with a block 
spacing of 4 frames (8 ms). For these experiments, the HMMs 
were configured with 32 mixtures per state.  

As shown in Figure 5, phoneme recognition accuracies for 
the TIMIT and NTIMIT databases at various SNRs range from 
72.1% (clean TIMIT) to 37.7% (NTIMIT at 0dB SNR). 
Compared to spectral features only, the accuracies of the 
modulation spectrum features increased about 17% for all the 
cases.   

 
Figure 5: Accuracies with modulation features. 

3.4. Experiment 4: Combined spectral and 
modulation features 
This experiment was conducted in order to determine if there 
was an advantage to combine the high resolution spectral 
features with the modulation spectrum features. Therefore, the 
20 high resolution spectral features as used for Experiment 2 
were combined with the 60 modulation spectrum features used 
for Experiment 3, resulting in a total of 80 features. 75 
mixtures were used for each state of the HMM models.  

 
Figure 6: Accuracies with combined spectral and 

modulation feature. 
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Phoneme recognition accuracies, depicted in Figure 6 for 
TIMIT and NTIMIT at various SNRs, ranges from 73.3% 
(clean TIMIT) to 38.2% (NTIMIT at 0dB SNR). The 
combination of spectral and modulation features leads to only 
a small improvement in the accuracy compared with that 
obtained using only the modulation spectrum features. 

3.5. Experiment 5: Integrated spectral and 
modulation features 
The intent of this experiment was to examine ASR accuracy 
using DCTC/DCSC features designed to capture both spectral 
and modulation information. For this case 13 DCTCs were 
computed using 8 ms frames spaced 2 ms apart. 6 DCSC terms 
were computed for each DCTC, using the basis vectors as 
illustrated in Figure 2, and again using 250 frames per block 
(500 ms). Thus 78 features were computed per block, with the 
block spacing 4 frames or 8 ms. 

Phoneme recognition accuracies for the TIMIT and 
NTIMIT database are depicted in Figure 7. The highest 
accuracy of 73.85% was obtained for the case of clean TIMIT.  

 
Figure 7: Accuracies with integrated features. 

4. Literature based Comparison 
Table 1 summarizes the best results (clean speech) obtained in 
this paper with some other recently reported results. 

Table 1: Results reported in literature. 

Feature Recognizer Accuracy Study 
TIMIT Results 

PLP ANN/HMM 71.50% Ketabdar et al. (2008) [9] 
MFCC GMM 70% Sha and Saul (2006) [10] 
DCT/DCS HMM 73.85% this study 

NTIMIT Results 
MFCC HMM 58.79% * Morales et al. (2007) [11] 
DCT/DCS HMM 62.50% this study 
* A 51-phoneme set and full NTIMIT were used.  

5. Discussion 
In terms of noise robustness, the modulation features are far 
more noise robust than spectral features. For example, the 
spectral only features result in 20.8% accuracy for 0 dB SNR 
telephone speech versus 38% for the same speech using 
modulation features. For clean speech, the spectral only 
features result in reasonable ASR phonetic accuracy (55.5%), 
but not nearly as high accuracy as that obtained with 
modulation only features (72.1%).  For clean speech and for 
all noise levels examined, the combination of spectral features 
and modulation features is marginally better than using 
modulation features alone. The integrated approach of 

representing spectral information with medium spectral 
resolution and detailed temporal information was the best 
overall, and (slightly) preferred over a combination of high 
resolution spectral information with modulation features.   

6. Conclusions 
Most typically, the modulation spectrum information is 
computed by first dividing the spectrum into individual 
frequency bands, and then extracting temporal information 
with a second bandpass filter bank operating over each band. 
In the approach presented in this paper, the modulation 
information is obtained by extracting the temporal trajectories 
of integrated frequency domain features. That is, we represent 
the temporal trajectories of DCTCs, each of which is obtained 
from a linear combination of the entire log magnitude 
spectrum of a frame of speech data. The resultant 
spectral/temporal features result in higher ASR accuracy than 
that possible with even very high dimensional more 
conventional features.     

Phonetic recognition results using both the TIMIT and 
NTIMIT databases compare favorably with any results 
reported in the literature using these databases. Another 
contrast between the methods reported here is the relatively 
poor frequency resolution (8 ms frame length) used for the 
highest ASR accuracy.   
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