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In this paper, a fundamental frequency �F0� tracking algorithm is presented that is extremely robust
for both high quality and telephone speech, at signal to noise ratios ranging from clean speech to
very noisy speech. The algorithm is named “YAAPT,” for “yet another algorithm for pitch tracking.”
The algorithm is based on a combination of time domain processing, using the normalized cross
correlation, and frequency domain processing. Major steps include processing of the original
acoustic signal and a nonlinearly processed version of the signal, the use of a new method for
computing a modified autocorrelation function that incorporates information from multiple spectral
harmonic peaks, peak picking to select multiple F0 candidates and associated figures of merit, and
extensive use of dynamic programming to find the “best” track among the multiple F0 candidates.
The algorithm was evaluated by using three databases and compared to three other published F0

tracking algorithms by using both high quality and telephone speech for various noise conditions.
For clean speech, the error rates obtained are comparable to those obtained with the best results
reported for any other algorithm; for noisy telephone speech, the error rates obtained are lower than
those obtained with other methods.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2916590�
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I. INTRODUCTION

Numerous studies show the importance of prosody for
human speech recognition, but only a few automatic systems
actually combine and use fundamental frequency �F0�,1 with
other acoustic features in the recognition process to signifi-
cantly increase the performance of automatic speech recog-
nition �ASR� systems �Ostendorf and Ross, 1997; Shriberg et
al., 1997; Ramana and Srichland, 1996; Wang and Seneff,
2000; Bagshaw et al., 1993�. F0 tracking is especially impor-
tant for ASR in tonal languages, such as Mandarin speech,
for which pitch patterns are phonemically important �Wang
and Seneff, 1998; Chang et al., 2000�. Other applications for
accurate F0 tracking include devices for speech analysis,
transmission, synthesis, speaker recognition, speech articula-
tion training aids for the deaf �Zahorian et al., 1998�, and
foreign language training. Despite decades of research, auto-
matic F0 tracking is still not adequate for routine applications
in ASR or for scientific speech measurements.

An important consideration for any speech processing
algorithm is performance using telephone speech, due to the
many applications of ASR in this domain. However, since
the fundamental frequency is often weak or missing for tele-
phone speech and the signal is distorted, noisy, and degraded
in quality overall, pitch detection for telephone speech is
especially difficult �Wang and Seneff, 2000�.

A number of pitch detection algorithms have been re-
ported by using time domain and frequency domain methods
with varying degrees of accuracy �Talkin, 1995; Liu and Lin,
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2001; Boersma and Weenink, 2005; de Cheveigne and
Kawahara, 2002; Nakatani and Irino, 2004�. Many studies
have compared the robustness of pitch tracking for a variety
of speech conditions �Rabiner et al., 1976; Mousset et al.,
1996; Parsa and Jamieson, 1999�. However, robust pitch
tracking methods, which can easily be integrated with other
speech processing steps in ASR, are not widely available. To
make available a public domain algorithm for accurate and
robust pitch tracking, the methods presented in this in this
paper were developed.

A key component in “yet another algorithm for pitch
tracking” �YAAPT� is the normalized cross correlation func-
tion �NCCF� as used in the “robust algorithm for pitch track-
ing” �RAPT� �Talkin, 1995�. However, in early pilot testing,
the NCCF alone did not reliably give good F0 tracks, espe-
cially for noisy and/or telephone speech. Frequently, the
NCCF method alone resulted in gross F0 errors �especially
F0 doubling for telephone speech� that could easily be spot-
ted by overlaying obtained F0 tracks with the low frequency
part of a spectrogram. YAAPT is the result of efforts to in-
corporate this observation in a formal algorithm.

In this paper, we describe methods for enhancing and
extracting spectrographic information and combining it with
F0 estimates from correlation methods to create a more ro-
bust overall F0 track. Another innovation is to separately
compute F0 candidates from both the original speech signal
and a nonlinearly processed version of the signal and then to
find the “lowest cost” track among the candidates by using
dynamic programming. The basic elements of YAAPT were
first given in the work of Kasi and Zahorian �2002� and
modifications were described in the work of Zahorian et al.

�2006�. In this paper, we give a comprehensive description of

© 2008 Acoustical Society of America 4559�/4559/13/$23.00



the complete algorithm and extensive formal evaluation re-
sults.

II. THE ALGORITHM

A. Algorithm overview

The F0 tracking algorithm presented in this paper per-
forms F0 tracking in both the time domain and frequency
domain. As summarized in the flow chart in Fig. 1, the algo-
rithm can be loosely divided into four main steps:

�1� Preprocessing: Multiple versions of the signal are cre-
ated via nonlinear processing �Sec. II B�.

�2� F0 track calculation from the spectrogram of the nonlin-
early processed signal: An approximate F0 track is esti-
mated by using a spectral harmonics correlation �SHC�
technique and dynamic programming. The normalized
low frequency energy ratio �NLFER� is also computed
from the spectrogram as an aid for F0 tracking �Sec.
II C�.

�3� F0 candidate estimation based on the NCCF: Candidates
are extracted from both the original and nonlinearly pro-
cessed signals with further candidate refinement based
on the spectral F0 track estimated in step 2 �Sec. II D�.

�4� Final F0 determination: Dynamic programming is ap-
plied to the information from steps 2 and 3 to arrive at a
final F0 track, including voiced/unvoiced decisions �Sec.
II E�.

The algorithm incorporates several experimentally deter-
mined parameters, such as F0 search ranges, thresholds for
peak picking, filter bandwidths, and dynamic programming
weights. These parameters are listed in Table I along with
values used for experimental results reported in this paper.
Similarly, to aid in the explanation of the algorithm and the

FIG. 1. �Color online� Flow chart of YAAPT. Numbers in parentheses cor-
respond to the steps listed in Sec. II A.
error measures used for evaluation, primary variables used in
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this paper are given in Table II. The algorithm is frame based
by using overlapping frames with frame lengths and frame
spacings as given in Table I.

B. Preprocessing

Preprocessing consists of creating multiple versions of
the signal, as shown in the block diagram of Fig. 1. The key
idea is to create two versions of the signal: bandpass filtered
versions of both the original and nonlinearly processed sig-
nals. The bandwidths �50–1500 Hz� and orders �150 points�
of the bandpass finite impulse response �FIR� filters were
empirically determined by inspection of many signals in time
and frequency and also by overall F0 tracking accuracy.
These two signals are then independently processed to obtain
F0 candidates by using the time domain NCCF algorithm, as
discussed in Sec. II D.

1. Nonlinear processing

Nonlinear processing of a signal creates sum and differ-
ence frequencies, which can be used to partially restore a
missing fundamental. Two types of nonlinear processing, the
absolute value of the signal and squared value of the signal,
were considered. Since experimental evaluations indicated
slightly better F0 tracking accuracy by using the squared
value, the squared value was used for the primary experi-
mental results reported in this paper. The general idea of
using nonlinearities such as center clipping to emphasize F0

has long been known �see the work of Hess, 1983 for an
extensive discussion� but appears not to be used in most of
the pitch detectors developed since about 1990. For example,
the pitch detectors YIN �de Cheveigne and Kawahara, 2002�
and DASH �Nakatani and Irino, 2004� do not make use of
nonlinearities. Of the seven pitch detectors evaluated by
Parsa and Jamieson �1999�, only one used a nonlinearity
�center clipping�. Most previous use of nonlinearities in F0

detection algorithms was aimed at spectral flattening or re-
ducing formant strength, rather than restoring a missing fun-
damental �for example, the work of Rabiner and Schafer,
1978�.

As shown in the work of Zahorian et al. �2006�, the
fundamental frequency �F0� reappears by squaring the signal
in which the fundamental is either very weak or absent, such
as telephone speech. The restoration of the fundamental by
using the squaring operation is also illustrated by using spec-
trograms in Fig. 2. The top panel depicts the spectrogram of
a studio quality version of a speech signal, for which the
fundamental frequency is clearly apparent. The middle panel
shows the spectrogram of the telephone version of the same
speech sample, for which the fundamental frequency below
200 Hz is largely missing. In contrast, the fundamental fre-
quency is more clearly apparent in the spectrogram of the
nonlinearly processed telephone signal shown in the bottom
panel. A bandpass filter �50–1500 Hz� was used after the
nonlinearity to reduce the magnitude of the dc component.

This same effect was observed for many other examples.
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TABLE I. Primary parameters used to configure YAAPT. Value 1 numbers are used to minimize gross errors;
value 2 numbers are used to minimize big errors.

Parameter Meaning Value 1 Value 2

F0 �min Minimum F0 searched �Hz� 60 60
F0 �max Maximum F0 searched �Hz� 400 400
Frame�length Length of each analysis frame �ms� 35 25
Frame�space Spacing between analysis frames �ms� 10 10
FFT�length FFT length 8192 8192
BP�low Low frequency of bandpass filter passband �Hz� 50 50
BP�high High frequency of bandpass filter passband �Hz� 1500 1500
BP�order Order of bandpass filter 150 150
Max�cand Maximum number of F0 candidates per frame 6 6
NLFER�Thresh1 NLFER boundary for voiced/unvoiced

decisions, used in spectral F0 tracking
0.75 0.75

NLFER�Thresh2 Threshold for definitely unvoiced using NLFER 0.0 0.1
NH Number of harmonics in SHC calculation 3 3
WL SHC window length �Hz� 40 40
SHC�thresh Threshold for SHC peak picking 0.2 0.2
F0 �mid F0 doubling/halving decision threshold �Hz� 150 150
NCCF�Thresh1 Threshold for considering a peak in NCCF 0.25 0.25
NCCF�Thresh2 Threshold for terminating search in NCCF 0.85 0.90
Merit�extra Merit assigned to extra candidates in reducing

F0 doubling and halving logic
0.4 0.4

Merit�pivot Merit assigned to unvoiced candidates in
definitely unvoiced frames

0.99 0.99

W1 DP weight factor for V-V transitions 0.15 0.15
W2 DP weight factor for V-UV or VU-V transitions 0.5 0.5
W3 DP weight factor for UV-UV transitions 100 0.1
W4 Overall weight factor for local costs relative to

transition costs
0.07 0.9
TABLE II. Variable used in YAAPT on for evaluation of F0 tracking.

Variable Meaning

s Speech signal in a frame
S Magnitude spectrum of speech signal
n Time sample index within a frame
t Time in terms of frame index
f Frequency in Hz
k Lag index used in NCCF calculations
i , j Indices uses used for F0 candidates within a frame
T Number of signal frames
SHC Spectral harmonics correlation
F0 �spec Spectarl F0 track, all voiced
F0 �avg Average of spectral F0 track
F0 �std Standard deviation of F0 computed from spectral F0

track
NLFER Normilized low frequency energy ratio
merit Figure of merit for a F0 candidate, on a scale of 0 to 1
NCCF Normilized cross correlation function
K �min Longest lag evaluated for each frame
K �max Shortest lag evaluated for each frame
F0 �mean Arthimetic average over all frames of the highest merit

nonzero F0 candidates for each frame
BP Back pointer array used in dynamic programming
G�err Error rate based on large errors in all frame where

reference indicates voiced speech
B�err All large error, including those in G�err�errors of the

from UV to V
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FIG. 2. �Color online� Illustration of the effects of nonlinear processing of
the speech signal. The spectrogram of a studio quality speech signal is
shown in the top panel, the spectrogram of the telephone version of the
signal is shown in the middle panel, and the spectrogram of the squared

telephone signal is shown in the bottom panel.
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C. Spectrally based F0 track

One of the key features of YAAPT is the use of spectral
information to guide F0 tracking. Spectral F0 tracks can be
derived by using the spectral peaks which occur at the fun-
damental frequency and its harmonics. In this paper, it is
experimentally shown that the F0 track obtained from the
spectrogram is useful for refining the F0 candidates estimated
from the acoustic waveform, especially in the case of noisy
telephone speech. The spectral F0 track is computed by using
the nonlinearly processed speech only.

The initial motivation for exploring the use of spectral
F0 tracks was that the examination of the low frequency parts
of spectrograms revealed clear but smoothed F0 tracks, even
for noisy speech. The resolution of the spectral F0 track de-
pends on the frequency resolution of the spectral analysis,
which, in turn, depends on both the frame length and fast
Fourier transform �FFT� length used for spectral analysis.
For the work reported in this paper, the values of these pa-
rameters are listed in Table I. Note that the frame lengths
used �25 and 35 ms� are typical of those used in many
speech processing applications. The FFT length of 8192 was
chosen so that the spectrum was sampled at 2.44 Hz for a
sampling rate of 20 kHz, the highest rate used for speech
data evaluated in experiments reported in this paper. We hy-
pothesized that this smoothed track could be used to guide
the NCCF processing but that the NCCF processing, with a
high inherent time resolution of one sampling interval, would
give more accurate F0 estimates. Ultimately, experimental
evaluation is needed to check the accuracy of spectral F0

tracking, versus NCCF-based tracking, versus a combined
approach.

1. Spectral harmonics correlation

One way of determining the F0 from the spectrum is to
first locate the spectral peak at the fundamental frequency.
This requires that the peak at the fundamental frequency be
present and identifiable, which is often not the case, espe-
cially for noisy telephone speech. Although the nonlinear
processing described in the previous section partially restores
the fundamental, additional techniques are needed to obtain
an even more noise robust F0 track. Therefore, a frequency
domain autocorrelation type of function, which we call SHC,
is used. This method is conceptually similar to the subhar-
monic summation method �Hermes, 1988� and the discrete
logarithmic Fourier transform �Wang and Seneff, 2000�, but
the details are quite different.

The spectral harmonics correlation is defined to use mul-
tiple harmonics as follows:

SHC�t, f� = �
f�=−WL/2

WL/2

�
r=1

NH+1

S�t,rf + f�� ,

where S�t , f� is the magnitude spectrum for frame t at fre-
quency f , WL is the spectral window length in frequency,
and NH is the number of harmonics. SHC�t , f� is then ampli-
tude normalized so that the maximum value is 1.0 for each
frame. f is a discrete variable with a spacing dependent on

FFT length and sampling rate, as mentioned previously.
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For each frequency f , SHC�t , f�, thus, represents the ex-
tent to which the spectrum has high amplitude at integer
multiples of that f . The use of a window in frequency, em-
pirically determined to be approximately 40 Hz, makes the
calculation less sensitive to noise, while still resulting in
prominent peaks for SHC�t , f� at the fundamental frequency.
The calculation is performed only for a limited search range
�F0 �min� f �F0 �max, with F0 �min and F0 �max values as
given in Table I�. Experiments were conducted to determine
the best value for the number of harmonics. Empirically, it
appeared that NH=3 resulted in the most prominent peaks in
SHC�t , f� for voiced speech and, thus, was used for the re-
sults given in this paper.

Figure 3 shows the spectrum �top panel� and the spectral
harmonics correlation function �bottom panel�. Compared to
the small peak at the fundamental frequency of around
220 Hz in the spectrum, a very prominent peak is observed
in the spectral harmonics correlation function.

2. Normalized low frequency energy ratio

Another primary use of spectral information in YAAPT
is as an aid for making voicing decisions. The parameter
used is referred to as the NLFER. The sum of spectral
samples �the average energy per frame� over the low fre-
quency regions is computed and then divided by the average
low frequency energy per frame over the entire signal. In
equation form, NLFER is given by

NLFER�t� =

�
f=2�F0�min

F0�max

S�t, f�

1

T
�
t=1

T

�
f=2�F0�min

F0�max

S�t, f�

,

where T is the total number of frames, and the frequency
range, based on F0 �min and F0 �max, was empirically cho-
sen to correspond to the expected range of F0. S�t , f� is the
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FIG. 3. �Color online� The peaks in the spectral harmonics correlation func-
tion. Compared to the small peak at the fundamental frequency of around
220 Hz in the spectrum �top�, a very prominent peak is observed in the
spectral harmonics correlation function �bottom�.
spectrum of the signal for frame t and frequency f . Note that,
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with this definition, the average NLFER over all frames of an
utterance is 1.0. In general, NLFER is high for voiced frames
and low for unvoiced frames and, thus, NLFER is used as
information for voiced/unvoiced decision making. In addi-
tion, NLFER is used to guide NCCF candidate selection
�Sec. II D�.

3. Selection of F0 spectral candidates and spectral F0
tracking

Beginning with the SHC as described above, F0 candi-
dates were selected, concatenated, and smoothed by using
the following empirically determined method and param-
eters. Values of the parameters used in experiments through-
out this paper are listed in Table I.

�1� The frequency and amplitude of each SHC peak in each
frame above threshold SHC�Thresh were selected as
spectral F0 candidates and merits, respectively. For the
example shown in Fig. 3, two F0 candidates were se-
lected. If the merit of the highest merit F0 candidate is
less than SHC�Thresh or if the NLFER is less than
NLFER�Thresh1, the frame is considered unvoiced and
not considered in the following steps.

�2� To reduce F0 doubling or halving for voiced frames �a
persistent problem with pitch trackers, e.g., the work of
Nakatani and Irino, 2004�, an additional candidate is in-
serted at half the frequency of the highest merit candi-
date if all the candidates are above the F0 doubling/
having decision threshold F0 �mid. Similarly, if all
candidates are below F0 �mid, an additional F0 candidate
is inserted at twice the frequency of the highest ranking
candidate. The merit of these inserted candidates is set at
the midrange value Merit�extra.

�3� All estimated voiced segments are concatenated and
viewed as one continuous voiced segment. For each
frame in this concatenated segment, one additional F0

candidate is inserted as the median smoothed �seven
point smoothing window� value of the highest merit can-
didate for each frame. This additional candidate is as-
signed a merit as Merit�extra.

�4� Dynamic programming, as described in Sec. II E, is used
to select the lowest cost path among the candidates. This
use of dynamic programming is the same as that used for
final F0 tracking, with the constants as listed in Table I.
However, the transition costs involving unvoiced speech
segments were relevant, since no unvoiced segments
were considered.

�5� The F0 track is then lengthened to its original length by
using linear interpolation to span the sections estimated
to be unvoiced from step 1 above.

�6� The result of this whole process is a smoothed F0 track
�F0 �spec� with every frame considered to be voiced. Ex-
periments, reported in a later section, indicate that the
spectral F0 track is quite good but not quite as good as
the one obtained by combining the spectral and NCCF

tracks introduced in the next section.
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D. F0 candidate estimation from NCCF

F0 candidates are computed from both the original and
the nonlinearly processed signals by using a modified auto-
correlation processing in the time domain. The basic idea of
correlation based F0 estimation is that the correlation signal
has a peak of large magnitude at a lag corresponding to the
period of F0. This section explains the modified version used
for YAAPT: the NCCF �Talkin, 1995�, as well as the selec-
tion of NCCF F0 candidates.

1. Normalized cross correlation function

The NCCF is defined as follows:2 Given a frame of
sampled speech s�n�, 0�n�N−1,

NCCF�k� =
1

�e0ek
�
n=0

N−K�max

s�n�s�n + k� ,

where

e0 = �
n=0

n=N−K�max

s2�n�, ek = �
n=k

n=k+N−K�max

s2�n� ,

K � min � k � K � max.

In the equation, N is the frame length in samples and
K �min and K �max are the lag values needed to accommo-
date the F0 search range as described below. As with an
autocorrelation, the NCCF is self-normalized for a range of
�−1,1� and periodic signals result in NCCF values of 1 at lag
values equal to integer multiples of the period. As previously
reported by Talkin �1995�, the NCCF is better suited for F0

detection than the “standard” autocorrelation function, as the
peaks are better defined and less affected by rapid variations
in signal amplitude. The only apparent disadvantage is the
increase in computational complexity. Nevertheless, it is still
possible for the largest peak to occur at double or half the
correct lag value or simply at an “incorrect” value. Thus, the
additional processing described below is used.

2. Selection of F0 candidates and merits from NCCF

The following empirically determined procedure was
used to create a collection of F0 candidates and merits from
the NCCF peaks:

�1� The spectral F0 track �F0 �spec� was used to refine the
search F0 range for frame t as follows:

F0 � search � min�t� = max�F0 � spec�t� − 2

� std,F0 � min� ,

F0 � search � max�t� = min�F0 � spec�t� + 2

� F0 � std,F0,max� ,

where F0 �std is the standard deviation of F0 values appear-
ing in the estimated spectral F0 track.
�2� For each frame, all peaks found over the search range of

F0 �search�min�t� to F0 �search�max�t� are located. To

be a peak, a NCCF value must be at least NCCF�Thresh1
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in amplitude and larger than the two values on either side
of the point under consideration. If more than
Max�cand/2 peaks are found, only the Max�cand/2 peaks
with the highest values of NCCF are retained. Addition-
ally, with searching beginning at a lag value correspond-
ing to F0 �search�max�t� �shortest lag�, if a peak is found
with NCCF value greater than NCCF�Thresh2, peak
searching is terminated. This step was empirically found
to reduce F0 halving instances. This process is repeated
for all frames and for both the original and nonlinearly
processed versions of the signal and the results com-
bined for each frame. At the end of this step, up to
Max�cand, F0 candidates are found for each frame of the
signal.

�3� All peaks found in step 2 are assigned a preliminary
merit value equal to the amplitude of the peak. If fewer
than Max�cand F0 candidates are found in step 2, un-
voiced candidates �F0=0� are inserted, each with merit
=�1− �merit of the nonzero F0 candidate with the
highest merit for that frame��. For those frames where
no peaks are found in step 2, the frame is preliminarily
considered to be unvoiced; all F0 candidates are set to 0
with merit=Merit�pivot.

�4� The initial merit values from step 3 are modified by us-
ing the spectral F0 track, so as to increase the merits of
NCCF F0 candidates close to the spectral track. First,
F0 �avg and F0 �std are computed as the average and
standard deviation of F0 from the spectral F0 track
�F0 �spec�. Then, for candidates whose values are less
than 5�F0 �std from the spectral F0 value of that frame,
the merit is changed as follows:

merit��t, j� = merit�t, j� + 0.2 � �1 − �F0�t, j�

− F0 � spec�t��/F0 � avg� ,

where merit� is the updated merit. For all other candidates,
the merit is unchanged �merit�=merit�. Note that j is the
candidate index and t the frame index.
�5� For all frames with NLFER�NLFER�Thresh2, the

frame is considered to be definitely unvoiced and all F0

candidates are adjusted to 0 �unvoiced� and have merits
set to Merit�pivot. For all frames with NLFER
�NLFER�Thresh2, the candidates are inspected to en-
sure that there is at least one nonzero F0 estimate as well
as an unvoiced candidate �F0=0�. If there initially was
no nonzero F0 candidate, the spectral F0 is used as a
candidate with a merit equal to half of the NLFER am-
plitude, if NLFER�2 or 1 if NLFER�2. If there was
initially no unvoiced �F0�0� candidate, the lowest merit
F0 candidate is replaced by the F0=0 candidate, with
merit= �1− �merit of the F0 candidate with the highest
meritfor that frame��, as in step 3.

E. Final F0 determination with dynamic programming

After the processing steps mentioned above, a F0 candi-
date matrix and associated merit matrix are created over the
interval of a speech utterance. The F0 candidates and the
merits are used to compute transition costs, associated with

every pair of F0 candidates in successive frames, and local

4564 J. Acoust. Soc. Am., Vol. 123, No. 6, June 2008
costs, for each candidate for each frame. In the remainder of
this section, the calculation of these costs is described and
the dynamic programming algorithm is summarized.

Three cases are considered for transition costs of succes-
sive F0 candidates as follows:

�1� For each pair of successive voiced candidates �i.e., non-
zero F0 candidates�,

Costtransition�t − 1, j:t,i�

= W1 � �F0�t,i� − F0�t − 1, j��/F0 � mean.

F0 �mean is the arithmetic average over all frames of the
highest merit nonzero F0 candidates for each frame. Note
that the cost is for transitioning from candidate j in frame t
−1 to candidate i in frame t.
�2� For each pair of successive candidates, only one of

which is voiced,

Costtransition�t − 1, j:t,i� = W2 � �1 − VCost�t�� ,

where

VCost�t� = min�1, �NLFER�t� − NLFER�t − 1��� .

�3� For each pair of successive candidates, both of which are
unvoiced,

Costtransition�t − 1, j:t,i� = W3.

Values of W1, W2, and W3 used in the experiments are
given in Table I. The value of W3 can be increased to a large
value �e.g., 100� to force the dynamic programming routine
to select all voiced candidates except for frames considered
definitely unvoiced.

The local cost for each F0 candidate is computed in the
straightforward way,

Costlocal�t,i� = W4 � �1 − merit��t,i�� .

Thus, F0 candidates with high merit have low local cost.
W4 is used to control the relative contribution of local costs
to transition costs in the overall cost. The dynamic program-
ming is a standard Viterbi decoding method, as described in
the works of Rabiner and Juang �1993� and Duda et al.,
�2000�. The program is summarized here for completeness.
Initialize:

Cost�1,i� = Costlocal�1,i�, 1 � i � Max � cand.

Iterate: for 2� t�T,

for 1 � i � Max � cand,

Cost�t,i� = MIN � j 	Cost�t − 1, j�

�Costtransition�t − 1, j:t,i� + Costlocal�t,i�
 ,

BP�t,i� = ARGMIN � j 	Cost�t − 1, j�

�Costtransition�t − 1, j:t,i� + Costlocal�t,i�
 .

Max�cand and T are as, respectively, defined in Tables I
and II. At the completion of the iterations over t, beginning

with ARGMIN�i �Cost�T , i��, the BP array is traced back to
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yield the overall lowest cost F0 track. An illustration of the
overall F0 tracking algorithm is shown by the four panels in
Fig. 4.

III. EXPERIMENTAL EVALUATION

A. Database description

In the F0 estimation evaluation, performance compari-
son of different algorithms based on the same database are of
great importance to allow better comparisons among the al-
gorithms. Fortunately, common databases are freely provided
for comparative pitch study by different research laborato-
ries. For these databases, the laryngograph signal and/or a
reference pitch are usually provided.

In our evaluation, we used the following three databases
to evaluate various aspects of the YAAPT algorithm and to
compare it with other algorithms:

�1� The Keele pitch database �DB1�: This database consists
of ten phonetically balanced sentences spoken by five
male and five female English speakers �Plante et al.,
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FIG. 4. �Color online� The first panel shows the time domain acoustic sig-
nal, the second panel shows the spectrogram of the signal with the low
frequency energy ratio and spectral F0 track overlaid on it, and the third
panel shows multiple candidates chosen from the NCCF. The fourth panel
shows the final F0 track.
1995�. Speech signals are studio quality speech sampled
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at 20 kHz. The total duration of the database is approxi-
mately 6 min. The laryngograph and the manually
checked reference pitch are also provided in the data-
base. The telephone version of the Keele database,
formed by transmitting the studio quality speech signals
through telephone lines and resampling at 8 kHz, was
also used in experiments reported in this paper.

�2� The fundamental frequency determination algorithm
evaluation database �DB2�: This database is provided by
the University of Edinburgh, UK �Bagshaw et al., 1993�.
Fifty sentences are spoken by one male and one female
English speaker. The total duration of the 100 sentences
is about 7 min. The signal was sampled at a 20 kHz rate
by using 16-bit quantization. The laryngograph and the
manually checked reference pitch are also included.

�3� The Japanese database �DB3�: This database consists of
30 utterances by 14 male and 14 female speakers �total
of 840 utterances, total durations of 40 min, 16 kHz
sampling, and 16-bit quantization�. For experiments re-
ported in this paper, 100 utterances were used, with ap-
proximately half of male speakers and half of female
speakers. For this database, the reference used is the
same one used in the works of de Cheveigne and Kawa-
hara �2002� and Nakatani and Irino �2004�.

B. Evaluation method

As the ground truth for pitch evaluation, the supplied
reference pitches were used. These reference pitches were
computed from the laryngograph signal and manually cor-
rected. Although these references should be very accurate, by
visual inspection of pitch tracks, they still appeared to have
some problems with F0 halving. Consequently, in previous
studies, these references were not always used, but instead an
algorithm-specific reference was computed from the laryngo-
graph signal �for example, the work of Nakatani and Irino,
2004�. Nevertheless, for experiments reported in this paper,
supplied references were used for all results.3

To test the robustness of the algorithm, additive back-
ground noise was also used in the evaluation. The back-
ground noise consisted of two kinds of noise: white noise
and babble noise. The signal-to-noise ratio �SNR� in terms of
the average power ranges from infinity �that is no additional
added noise or “clean”� to 0 dB. The average power was
calculated only from the frames whose power was more than
1 /30 of the entire signal’s average power �as per the work of
Nakatani and Irino, 2004�. Evaluations were made with two
kinds of telephone speech: the actual telephone speech avail-
able in DB1 and simulated telephone speech for all three
databases by using a SRAEN �300–3400 Hz 150th order
FIR bandpass� filter.

C. Error measures

Errors for F0 tracking include major errors �unvoiced
�UV� frames incorrectly labeled as voiced �V�, V frames in-
correctly labeled as UV, and large errors in F0 accuracy for
voiced frames such as F0 doubling or halving� and smaller

errors in F0 tracking accuracy. Of the many error measures
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that can be used to quantify F0 tracking accuracy, we used
the following measures to evaluate the tracking method re-
ported in this paper:

�1� Gross error �G�err�: This is computed as the percentage
of voiced frames, such that the pitch estimate of the
tracker significantly deviates �20% is generally used�
from the pitch estimate of the reference. The measure is
based on all frames for which the reference pitch is
voiced, regardless of whether the estimate is voiced or
unvoiced. Thus, G�err includes V to UV errors as well as
large errors in F0 values,

G � err =
1

NVF �
t=1

NVF

��F0
ref�t�,F0

est�t��, ��F0
ref,F0

est�

= �1 ��F0
ref − F0

est�/F0
ref� � 0.2

0 otherwise,
�

where F0
ref is reference F0, F0

est is estimated F0, and NVF is
the number of voiced reference frames.
�2� Big error �B�err�: This error is equal to the number of

voiced frames with a large error in F0, plus the number
of unvoiced frames erroneously labeled as voiced frames
�UV�V�N�, divided by the total number of frames T. In
equation form,

B � err = �NVF � G � err + UV � V � N�/T .

Both G�err and B�err are expressed as percentages in
experiments.

In the following sections of this paper, experimental re-
sults are first given to illustrate the effects of nonlinear pro-
cessing and the performance of various components of
YAAPT. These results are followed by a section with experi-
ments and results based on the complete algorithm, including
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a comparison with three other algorithms �PRAAT, RAPT,
and YIN� and a comparison with results reported in the lit-
erature using the same databases and the same error mea-
sures.

D. The effect of nonlinear processing

As described in Sec. II B, nonlinear processing could be
either the absolute value or squared value, or a variety of
other nonlinearities �Hess, 1983�, to help restore the missing
fundamental in the telephone speech. To evaluate the benefits
of using this nonlinear processing, we computed the gross
errors for three conditions: using the original signal only �no
nonlinear processing�, using absolute values as the nonlinear
processing, and using the squared value as the nonlinear pro-
cessing.

Figures 5 and 6, respectively, show the gross errors for
studio quality speech and for telephone speech for various
noise conditions using DB1. Error performance is very simi-
lar using either the absolute value or squaring operation. The
nonlinear processing is quite beneficial for nearly all condi-
tions tested, except for very high levels of additive babble
noise. The most surprising result is that the nonlinear pro-
cessing improves error performance even for noise-free stu-
dio quality speech.4

E. Evaluation of individual components of the
algorithm

YAAPT computes the F0 track by using a combination
of both spectral and temporal �NCCF� information. The
spectral F0 track is used to determine the F0 search range for
the NCCF calculations and to modify the merits of the tem-
poral F0 candidates. It could be questioned whether or not
both the temporal and spectral tracks are needed and the

5 3 0

FIG. 5. �Color online� The effect of nonlinear process-
ing for DB1 studio quality speech at various SNR white
noises �left� and babble noises �right�.

5 3 0

FIG. 6. �Color online� The effect of nonlinear process-
ing for simulated DB1 telephone speech at various SNR
white noises �left� and babble noises �right�.
10
[dB]
10
[dB]
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extent to which each of these sources of information contrib-
utes to the accuracy of the F0 tracking. Additionally, it might
also be questioned whether or not the nonlinear processing is
needed for the time domain F0 candidates, especially for the
case of studio quality speech. Therefore, F0 tracking was
computed by using four different approaches:

�1� using the NCCF candidates from the original signal only,
with the final track determined by dynamic program-
ming,

�2� using the NCCF candidates from the squared signal only,
with the final track determined by dynamic program-
ming,

�3� using the spectral F0 track only, and
�4� using the entire YAAPT algorithm, combining both the

temporal and spectral information.

Evaluations were conducted for each of these four meth-
ods by using both studio quality and telephone speech, and
both added white and babble noises. Results are shown in
Figs. 7 and 8. The combination of the temporal and spectral
tracks results in better performance than using any individual
component, illustrating the benefits of using both temporal
and spectral information. As shown in Figs. 7 and 8, the
gross error results based on the NCCF of the original signal
is better than those obtained from the squared signal. For
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both the studio quality and telephone speech cases, the spec-
tral F0 tracking obtained by using the squared signal gives a
very low gross error. These results, thus, show that the
squared signal plays an important role in improving the per-
formance of the entire algorithm for telephone speech.

F. Overall results

The overall evaluation of YAAPT is reported in this sec-
tion, as well as a comparison with the PRAAT �Boersma and
Weenink, 2005�, RAPT �Talkin, 1995�, and YIN �de Chev-
eigne and Kawahara, 2002� pitch tracking methods. The au-
tocorrelation method described in the work of Boersma
�1993� was used in PRAAT, as opposed to the cross-
correlation method, as the autocorrelation option gave better
results in pilot experiments. The RAPT tracker used is the
MATLAB version of the Talkin algorithm. The RAPT pitch
tracker was previously implemented commercially in
XWAVES software and is considered to be a robust pitch
tracker. More recently, the YIN tracker, which uses a modi-
fied version of the autocorrelation method, has been shown
to give very high accuracy for pitch tracking for clean speech
and music. The DASH and REPS trackers �Nakatani and
Irino, 2004� are reported to be the most noise robust trackers
developed for telephone speech.5

3 0

FIG. 7. �Color online� Performance based on individual
components of YAAPT for DB1 studio quality speech
at various SNR white noises �left� and babble noises
�right�.

3 0

FIG. 8. �Color online� Performance based on individual
components of YAAPT for DB1 telephone speech at
various SNR white noises �left� and babble noises
�right�.

3 0

FIG. 9. �Color online� Gross errors for DB1 studio
quality speech at various SNR white noises �left� and
babble noises �right�.
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1. Gross error results

Figure 9 depicts the gross F0 errors of the studio quality
speech for DB1 in the presence of additive white noise and
babble noise, for the YAAPT, PRAAT, RAPT, and YIN pitch
trackers. To obtain these results, the parameter values �e.g.,
Table I, column 1, for YAAPT� were adjusted so that nearly
all frames were estimated to be voiced. Similarly, for the
three control trackers, parameters were adjusted to minimize
gross errors. Note that the gross F0 errors are based on all
large errors �including voiced to unvoiced errors� that a
tracker makes for frames that are voiced in the reference.
Figure 10 gives results of the telephone speech for the same
conditions.

These results show that YAAPT has better gross error
performance than the other methods, for all conditions at
nearly all SNRs. The performance difference is greatest for
telephone speech. The error performance of YAAPT is poor
only for telephone speech with very high levels of additive
babble noise �SNR�3 dB�. It should be noted that this is
very noisy speech; in informal listening tests, this speech
was nearly unintelligible, with intermittent sections so noisy
that the pitch was difficult to discern. Based on an inspection
of F0 candidates and the final F0 track for YAAPT, it ap-
peared that the final dynamic programming was unable to
reliably choose the “correct” candidate for this very noisy
condition.

In Table III, gross voicing error values for all three da-
tabases are listed for studio quality speech and simulated
telephone speech. In this table, as well as other tables, results

TABLE III. Gross errors �%� for studio and simulate

Database Method

Stud

Clean W-5

DB1 YAAPT 3.08 3.7
PRAAT 3.35 6.9
RAPT 8.24 21.3
YIN 3.23 4.8

DB2 YAAPT 3.78 3.8
PRAAT 5.96 10.5
RAPT 14.08 30.6
YIN 3.79 5.3

DB3 YAAPT 1.16 1.6
PRAAT 2.02 3.9
RAPT 5.36 12.8
YIN 1.38 2.2
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are given for clean speech, white noise at a 5 dB SNR �W-5�,
and babble noise at a 5 dB SNR �B-5�. For both studio qual-
ity and telephone speech, with either no added noise or the
W-5 condition, YAAPT has the best performance, sometimes
dramatically better. However, for the B-5 telephone condi-
tion, YAAPT performance is sometimes worse �depending
on database� than that of the other trackers. All four trackers
are subject to large increases in error rates as signal degra-
dation increases beyond a certain point.

2. Big error results

For some applications of F0 tracking, both errors in
voicing decisions and large errors in F0 during voiced sec-
tions should be minimized. Thus, big error �B�err�, as defined
in Sec. III C and which includes both of these types of errors,
is the most relevant measure of performance. The big error
performance of YAAPT is compared only to that of the
RAPT and PRAAT trackers, since the YIN tracker assumes
that all frames are voiced. For all trackers, parameter settings
were used that are intended to give the best accuracy with
respect to big error �e.g., column 2 in Table I parameter
values for YAAPT�. Big error results, for studio and tele-
phone speech, are shown in Fig. 11 as a function of SNR for
added white noise. YAAPT performs better than PRAAT and
RAPT for all conditions shown. The minimum big error per-
formance of about 6% for studio quality speech is given by
YAAPT. However, since most of the low frequency compo-
nents are missing, higher big errors are obtained with tele-

ephone speech for various noise conditions.

Simulated telephone

B-5 Clean W-5 B-5

8.48 4.23 6.21 28.66
15.98 9.91 15.72 32.56
18.04 9.5 18.21 29.09
14.74 20.9 25.96 37.4

9.6 4.93 7.8 37.24
19.61 7.81 19.03 32.53
23.76 14.63 30.68 30.43
15.12 13.42 20.13 31.12

4.3 3.63 5.55 21.76
14.75 5.35 11.93 29.7
13.78 3.84 13.97 24.88
12.03 13.83 19.38 32.64

3 0

FIG. 10. �Color online� Gross errors for DB1 telephone
speech at various SNR white noises �left� and babble
noises �right�.
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phone speech. In addition, high noise levels greatly affect the
performance of the voiced/unvoiced determination, which, in
turn, increase the big error.

A tabular presentation of big error performance is given
for YAAPT, PRAAT, and RAPT in Table IV, for studio and
simulated telephone speech, for the same noise conditions as
used for the gross error results given in Table III. For all
cases and all trackers, errors in voicing decisions �UV to V
and V to UV� formed the largest portion of the big errors.
For these results, YAAPT has the lowest error among the
trackers for studio speech but not for the simulated telephone
speech. However, as indicated by the results shown in Fig.
11, YAAPT does have the best big error performance for
actual telephone speech.

3. Results with telephone speech

To examine results in more detail for real telephone
speech, both gross error results and big error results are
given in Table V, for the same noise conditions as used in
Tables III and IV. YAAPT is compared to PRAAT, RAPT,
and YIN for gross errors but to only PRAAT and RAPT for
big errors. YAAPT has lower gross and big errors than

TABLE IV. Big errors �%� for studio and simulated

Database Method

Stud

Clean W-5

DB1 YAAPT 6.09 7.9
PRAAT 8.64 19.8
RAPT 10.99 25.3

DB2 YAAPT 7.66 8.4
PRAAT 10.43 16.2
RAPT 13.54 21.4

DB3 YAAPT 4.98 7.4
PRAAT 8.42 18.9
RAPT 11.72 25.2

TABLE V. Gross and big errors for telephone speech

Database Method

Gross erro

Clean W-5

DB1 YAAPT 5.3 8.8
PRAAT 9.33 21.5
RAPT 8.8 34.2
YIN 14.85 25.6
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PRAAT, RAPT, and YIN for the no added noise and W-5
conditions; for big errors in the B-5 condition, YAAPT has
similar �poor� performance to PRAAT and RAPT.

G. Comparison of results with other published results

Selected results for gross errors obtained with YAAPT
and YIN in this study are tabulated in Table VI along with
previously reported results for YIN, DASH, and REPS and
for all three databases used in this study. Although test con-
ditions and parameter settings are intended to be identical,
clearly, there are differences since the results obtained with
YIN in this study and those obtained with YIN in these pre-
vious studies are significantly different. There may have been
some differences in the reference pitch used, method for
simulating telephone speech, methods for adding noise, pa-
rameter settings, or even versions of the code used. Never-
theless, the conditions are reasonably close and general com-
parisons can be made. Overall, the previously reported gross
error results for DASH are the lowest. The previously re-
ported gross error rates for YIN are very low for clean studio
speech and very high for noisy telephone speech, as com-
pared to the two other trackers.

hone speech for various noise conditions.

Simulated telephone

B-5 Clean W-5 B-5

22.44 14.07 16.89 44.39
34.9 12.83 20.12 46.9
34.28 11.69 21.81 45.6

26.75 8.39 12.72 47.96
37.96 9.98 16.01 45.21
35.81 14.44 19.05 39.75

15.05 12.23 16.59 35.54
31.55 9.5 21.99 43.92
32.09 11.44 25.04 40.3

g DB1 for various noise conditions.

� Big errors �%�

B-5 Clean W-5 B-5

20.93 9.93 19.83 46.22
28.96 15.78 30.38 44.97
26.53 25.09 34.3 38.07
34.95 ¯ ¯ ¯

3 0

FIG. 11. �Color online� Big error for DB1 studio qual-
ity �left� and telephone �right� speech at various SNR
white noises.
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No similar comparisons can be given for big errors,
since big error results are not reported for these databases.
The focus for the YIN, DASH, and REPS trackers was track-
ing for the purpose of prosodic modeling, thus eliminating
the need for voiced/unvoiced decision making. Conse-
quently, results were only reported for gross errors, the large
errors which occur in the clearly voiced �as per the reference�
sections of speech.

IV. CONCLUSION

In this paper, a new F0 tracking algorithm has been de-
veloped which combines multiple information sources to en-
able accurate robust F0 tracking. The multiple information
sources include F0 candidates selected from the normalized
cross correlation of both the original and squared signals and
smoothed F0 tracks obtained from spectral information. Al-
though methods similar to all the individual components of
YAAPT have been used to some extent in previous F0 track-
ers, these components have been implemented and integrated
in a unique fashion in the current algorithm. The resulting
information sources are combined by using experimentally
determined heuristics and dynamic programming to create a
noise robust F0 tracker. An analysis of errors indicates that
YAAPT compares favorably with other reported pitch track-
ing methods, especially for moderately noisy telephone
speech. The entire YAAPT algorithm is available from Zaho-
rian as MATLAB functions.

Except for different settings used to evaluate gross error
and big error, all parameter values used in the results re-
ported in this paper were the same for all conditions tested.
These conditions span three databases for two languages
�English and Japanese�, both studio quality and telephone
speech, and noise conditions ranging from no added noise to

TABLE VI. Comparison of gross errors for YAAPT
reported by Nakatani and Irino �2004�.

Database Method

Stud

Clean W-5

DB1 YAAPT 3.08 3.77
YIN 3.23 4.85

DASH* 2.81 3.32
REPS* 2.68 2.98
YIN* 2.57 7.22

DB2 YAAPT 3.78 3.81
YIN 3.79 5.36

DASH* 0.42 1.34
REPS* 0.68 1.05
YIN* 1.3 4.38

DB3 YAAPT 1.16 1.69
YIN 1.38 2.24

DASH* 0.3 0.43
REPS* 0.26 0.29
YIN* 0.44 2.1
0 dB SNR with added white and babble noises. Over this
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wide range of conditions, F0 tracking accuracy with YAAPT
is better, or at least comparable, to the best accuracy achiev-
able with other reported trackers.

From a computational perspective, YAAPT is quite de-
manding due to the variety of signal processing approaches
used and then combined in the complete algorithm. For ap-
plications such as prosodic modeling where the voicing de-
cision may not be needed, a very good voiced-only pitch
track can be obtained by using the spectral pitch track
method described in this paper, with greatly reduced compu-
tational overhead and only slight degradation in perfor-
mance.
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1In this paper, we use the terms F0 and pitch interchangeably, although
technically, pitch is a perceptual attribute, whereas F0 is an acoustic prop-
erty, generally considered to be the primary cue for pitch.

2This implementation of NCCF is slightly different from the one used in
the second pass of RAPT, in that RAPT includes a small positive constant
inside the radical, to reduce the magnitude of peaks in low amplitude
regions of speech. Based on pilot testing, this constant did not improve F0

tracking accuracy for YAAPT, so it was not used.
3Based on experimental testing, the patterns of error results obtained with
supplied references and algorithm generated ones are very similar, except
that the errors obtained with algorithm generated references are usually
1%–2% lower than those obtained with supplied references. This differ-
ence in performance is, thus, significant for clean studio speech but not
significant for noisy telephone speech.

4It is quite likely that some modifications and changing of parameter values
would have resulted in better performance of YAAPT without nonlinear
processing, for studio speech. However, the experimental results shown
were obtained without changing the algorithm or parameter values, except

, DASH, and REPS. The “*” indicates the results

Simulated telephone

B-5 Clean W-5 B-5

8.48 4.23 6.21 28.66
14.74 20.9 25.96 37.4
16.5 3.73 4.15 20.0
12.3 6.91 8.49 26.2
31.0 7.55 14.6 40.0

9.6 4.93 7.8 37.24
15.12 13.42 20.13 31.12
14.6 0.63 0.97 15.1
11.1 2.11 3.25 18.9
33.5 5.53 10.3 35

4.3 3.63 5.55 21.76
12.03 13.83 19.38 32.64
8.82 0.73 1.55 14.1
4.9 2.11 2.67 12.7

28.4 3.27 7.32 34.6
, YIN

io
for changes in the nonlinear signal processing.
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5The DASH and REPS trackers are proprietary code and were not available
for comparison testing.
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