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ABSTRACT 
 
A visual speech training aid for persons with hearing 
impairments has been developed using a Windows-based 
multimedia computer. The training aid provides real time 
visual feedback as to the quality of pronunciation for 10 
steady-state American English monopthong vowels (/aa/, /iy/, 
/uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/, and /uh/). This training aid 
is thus referred to as a Vowel Articulation Training Aid 
(VATA). Neural network (NN) classifiers are used to classify 
vowels and then provide real time feedback for several 
displays: a 10-category “vowel bargraph” which provides 
“discrete” feedback, an “ellipse display” which provides 
continuous feedback over a 2-D space similar to a formant1-
formant2 space, and three game displays (a form of "tetrus," 
controlled by one vowel, a "chicken crossing the road," 
controlled by two vowels, and pacman, controlled by four 
vowels.) Continuous feedback such as this is desirable for 
speech training to help improve articulation.  In this paper we 
describe the overall speech training system, discuss some 
algorithmic refinements to the vowel classifier, and report 
some experiments related to the development of a database 
used for "training" the display.   
 

1. BACKGROUND 
Displays Available 
The system has two main displays. One is a bargraph display, 
which gives feedback about how well speech utterances match 
discrete vowel categories. The other is an “ellipse” display, 
which provides a more continuous feedback about vowel 
pronunciation. The system is designed to provide feedback for  
/ah/, /ee/, /ue/, /ae/, /ur/, /ih/, /eh/, /aw/, /uh/, and /oo/, which 
correspond to the vowel sounds found in the words “cot,” 
“beet,” “boot,” “bag,” “bird,” “pig,” “bed,” “dog,” “cup,” and 
“book” respectively. The labels for this system (/ah/, etc.) 
were assigned by the ODU speech lab, and correspond to the 
ARPABET labels /aa/, /iy/, /uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/, 
and /uh/ commonly used in speech processing literature. 
 
The bargraph display (Figure 1) resembles a histogram, with 
one bar for each vowel sound of interest. The height of the 
vowel's bar varies in proportion to the accuracy of the 
speaker's pronunciation of that vowel. Correct pronunciation 
yields one steady, clearly defined bar, while the rest assume 
zero or small values. Incorrectly pronounced sounds may 
produce displays showing two or more partially activated 

category bars, no activated bars, or rapid fluctuations between 
bars. 
 
 

 
 

Figure 1. Bargraph display showing response for correct 
pronunciation of /ae/ 

 

 
 

Figure 2. Ellipse Display showing response for correct 
pronunciation of /uh/ 

 
The ellipse display (Figure 2) divides the screen into several 
elliptical regions, similar to a F1/F2 type display. Unlike the 
F1/F2 display, this 'ellipse' display bases its output on a neural 
network, which has been trained to transform Discrete Cosine 
Transform Coefficients (DCTCs) of the log magnitude 



spectrum to specified target positions in two-dimensional 
space.  Correct pronunciation of a particular sound places a 
basketball icon within the corresponding ellipse and causes the 
icon's color to match that of the ellipse. Incorrect or unclear 
pronunciation results in the ball icon 'wandering' about the 
screen or coming to rest in an area not enclosed by an ellipse. 
By observing the continuous motion of the ball, a speaker 
hopefully can learn to adjust his or her pronunciation in order 
to produce the desired vowel sound. 
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In addition to the bargraph and ellipse display, three game 
displays have been developed.   One game is a simplified 
version of  "tetrus," for which one vowel sound is used to 
control the orientation of the colors in a falling bar in order to 
score.    In another game, a chicken, controlled by two vowel 
sounds, attempts to navigate a busy highway without being hit 
by a vehicle. The third game is pacman, which uses four 
vowel sounds to control the four directions of movement of 
the game icon.    Figure 3 depicts the pacman game. 

Figure 4. VATA Block Diagram 
 
Following division of the signal into frames, signal processing 
is performed as shown in figure 4. Each frame is first passed 
through a high-frequency pre-emphasis filter, typically 
centered at 3.2kHz. Next a Fast-Fourier Transform (typically 
512 points) is performed on each frame and the logarithm of 
the magnitude of the resulting coefficients is taken. This “log-
magnitude spectrum” is then averaged over several (usually 
about 5 to 10) frames, and a Discrete Cosine Transform (DCT) 
expansion using is performed to yield the Discrete Cosine 
Transform (“Cepstral”) coefficients, which are considered as 
the “features” of the signal.   These DCTC terms, similar to 
cepstral coefficients, also make use of frequency warping to 
substantially increase vowel classification rates [2].   

 
 

 

 
The first several (typically 12) cepstral coefficients (DCTCs) 
are then normalized (zero mean and standard deviation of ± .2, 
or typically a range of ±1) and passed to a neural network 
(NN) classifier.   The neural networks used in VATA have one 
input node per feature, 15 to 25 nodes in the hidden layer, and 
ten output nodes (one per vowel class). The NN's are trained 
using error backpropagation for (typically) 250,000 iterations. 

 
Figure 3   Pacman game for vowel training 

 
 A speaker group selection option with "CHILD," "FEMALE" 

and "MALE" settings allows all displays to be fine-tuned for 
better classification of sounds produced by child, adult female, 
or adult male speakers respectively. A fourth speaker group 
option, "GENERAL" uses a classifier based on all speakers.   

3. THE GAUSSIAN BAYESIAN 
CLASSIFIER 

 
One of the major problems with a neural network approach for 
any type of pattern classification is that “out-of-category” 
exemplars are also classified, according to whichever trained 
class is “closest” to the exemplar. During testing of the VATA 
system, it became apparent that sounds which were not 
"correct" examples of any of the 10 steady-state vowels for 
which the system was designed caused "false" correct 
indications. This has the unfortunate consequence of 
producing feedback corresponding to a "correct" 
pronunciation when in fact no valid vowel sound has been 
uttered.  For example, ambient room noise could often trigger 
the display for  /ee/. This unintended behavior could, for a 
user relying solely on VATA for pronunciation feedback, 
cause confusion and frustration. 

 
2. PROCESSING STEPS 

 
A block diagram for the VATA system is shown in Figure 4.  
The operating system interacts with the sound card to acquire 
a section of data (a “segment”) from the from the continuous 
audio data stream.  Since driver software communicates with 
the operating system services and not directly the hardware, 
the VATA system is able to work with most commonly 
available Windows-compatible sound cards. 

 
To reduce the number of "false correct" displays, a modified 



Euclidean-Distance measure, has been incorporated with the 
neural network classifier as a secondary verification. The 
general Gaussian distance equation requires the use of the 
mean vector and covariance matrix for each class (computed 
from a database of training data) and is given by:  
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This general equation has many parameters (and thus requires 
lots of training data) and is also computationally complex. For 
the case of the speech display, the features are approximately 
uncorrelated, and hence its inverse is approximately diagonal. 
Also the (apriori probability) term remains constant and can be 
ignored. Taking advantage of these two considerations, 
Equation 1 reduces to the much simpler form shown in 
Equation 2, which we refer to as the weighted modified 
Euclidean distance: 
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These weights, w, are important to use if the “information” 
contained in the underlying features is not proportional to the 
feature variances. For the case of the DCTC features for vowel 
recognition, our previous work has shown that the DCTCs do 
not uniformly contribute to vowel recognition [2]. Based on 
this earlier work, relative weights of (.82, 1.65, 2.47, 2.47, 
2.06, 1.65, 1.24, .83, .41, .41, .41, .21, .21, .08, .08) were used. 
The actual weights were the relative weights given, but 
normalized such that the sum of the weights was 1.0.   We 
refer to classification based on this distance as Maximum 
Likelihood Classification (MLC), since maximum likelihood 
methods based on Gaussian assumptions are used to obtain the 
parameters in the classifier. 
 
To provide verification that the vowels display is producing 
accurate feedback, the MLC calculates the distance of the 
average features for the NN's choice from the features of the 
token under evaluation by the NN. If the feature distance is 
within the threshold criterion, 
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Where m is the number of features (typically 10 to 15 for 
VATA), and α is an arbitrary scale factor used for 
performance tuning, the neural network's decision is accepted, 
otherwise it is discarded. If is too small, the MLC will reject 
many correct tokens; if is too large, the out-of-category tokens 
will still not be rejected. Tests (described below) have shown 
that with the properly determined threshold (α =1.2), the MLC 
does reject unwanted sounds, and makes very few false 
rejections. 
 
To experimentally verify the operation of the MLC method 
described above, experiments were done as follows: Features 
were computed using a database of 10 vowel sounds obtained 
from three speaker panels, with each speaker producing each 

vowel sound three times. Vowels were pronounced as 
“isolated” words, in response to a computer prompt. The 
central 200 ms interval section of each vowel was used for 
processing. A two- layer (one hidden layer) neural network 
was trained as a classifier, using nine vowels (those listed 
above except for /ur/). The means and standard deviations for 
the features for these nine vowels were also computed, on a 
vowel by vowel basis, since these are the features needed for 
the MLC. The neural network/MLC classifier system was then 
evaluated using test data from 24 different speakers, and using 
data for 9 vowels, consisting of all the training vowels, except 
with /ur/ substituted for /oo/. Thus, ideally the classifier 
should have correctly recognized 8 vowels, but rejected /ur/ as 
being out of category.   
 
The experiment was repeated separately for male speakers, 
female speakers, and male/female speakers combined. 50 
training speakers were used for the male speaker case, 50 for 
the female speaker case, and 80 speakers (40 male, 40 female) 
for the combined case. There were 24 test speakers for the 
male case, 24 for the female case, and 48 test speakers for the 
combined case. In each experiment the false acceptance rate, 
and false rejection rates were obtained as a function of the 
parameter α above. False acceptances were considered as 
instances of the /ur/ being accepted as any one of the vowels. 
False rejections were considered as instances of any vowels 
classified correctly by the neural network, but incorrectly 
rejected by the MLC.   
 
Typical results  (for the female speaker case) are shown in 
figure 5, as false acceptance and false rejections as a function 
of α. As expected for low values of α, the false rejection rate 
is very high. For high values of α, the false acceptance is high.  
Similar results were obtained for the male speakers and 
combined speaker case.   Values of approximately 1.5 insure 
that most out of category tokens are rejected, but that very few 
in category tokens are rejected.   
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Figure 5. False acceptance/rejection rates as a function of 
decision threshold value α, female speaker case. 



4.  DATABASE SIZE AND VOWEL 
CLASSIFICATION ACCURACY 

 
The figure above indicates the minimum amount of data 
that should be used to train a vowel classifer under the 
conditions used in VATA.   In practice, the classifier 
should be trained using as much data as is available.   
Table 1 presents vowel classfication results for training 
data, using all available data for adult male, adult 
female, child, and general (data from the three other 
groups combined) speakers. The numbers given  
indicate an upper limit of expected accuracy of the 
VATA system used  in  real time. 

 
One of the major issues which has a big effect on the accuracy 
of a neural network classifier, such as the one used for the 
basic vowel classifier used in VATA, is the amount of training 
data available to train the classifier.    In general, although the 
accuracy on training data decreases as more training data is 
used, classifier accuracy on testing data improves as the size 
of the training database increases.     The size of the database 
needed to achieve "best"performance generally depends on the 
number of features used, the classifier complexity (or number 
of weights in a neural network classifier), and the general 
properties of the features.    

 
Table 1: Training recognition rates for vowels 
  

Speaker Group (speakers 
in group) 

Recognition Rate (%) 

Males  (114) 89.99 
Females (138) 87.33 
Children  (62) 83.93 
General (314) 84.56 

In order to experimentally investigate database size issues in 
the context of the VATA system, we have recorded vowel 
sounds from over 400 speakers---approximately evenly 
divided between adult men, adult women, and children.    We 
then conducted a series of classification tests with the number 
of training speakers varied from 2 to 100, the number of 
hidden nodes in an NN varied from 5 to 100, and the number 
of test speakers fixed at 25. Results of one such experiment 
are shown in Figure 6, for the case of female speakers. As 
expected, training results decrease as more training speakers 
are added, and classification accuracy improves for the test 
speakers.   Similar results were obtained for the adult male 
speakers and female/male speakers combined.     We generally 
found that test performance changed very little if at least 60 
training speakers were used.    Additionally, it was observed 
that performance changes very little as the number of hidden 
nodes changes from 25 to 100. Since the required 
computations are much less with 25 hidden nodes versus 100 
hidden nodes, 25 hidden nodes were selected for use with 
VATA. 

 
5. CONCLUSIONS 

 
Some refinements to the Vowel Articulation Training Aid 
(VATA), under development at Old Dominion University, 
have been described. An additional classifier block provides 
better rejection of out of category sounds than a neural 
network alone. Experimental data gives an indication of 
expected accuracy of VATA for real time operation.    
Interested readers may obtain a copy of the VATA run time 
program by emailing the first author of this paper 
(szahoria@odu.edu) 
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Figure 6.  Recognition rate vs. training set size for neural 
networks with 5, 25 and 100 nodes in hidden the layer (female 
speakers 
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