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ABSTRACT 

VARIABILITY ANALYSIS OF DISCRETE COSINE TRANSFORM 
COEFFICIENT (DCTC) FEATURES FOR SPEECH PROCESSING 

 
Bingjun Dai 

Old Dominion University, 1998 
Director: Dr. Stephen A. Zahorian 

In this research, the variability of Discrete Cosine 

Transform Coefficient (DCTC) features was investigated. 

Additionally, a new pitch-synchronous processing method was 

explored to increase the stability of features and to reduce 

window effects when compared to the regular method. The noise 

sources that lead to feature variability were analyzed, and 

different smoothing methods were tested. It was found that 

longer frames, frequency warping, time smoothing of the log 

spectrum, and DCS level time smoothing, all help reduce DCTC 

variability and increase classification performance. The pitch-

synchronous method was implemented with Matlab. Important 

processing methods, including pitch period estimation, time-

domain resampling, and pitch-dependent scaled frequency range, 

were investigated. Twenty-four training speakers and eight test 

speakers were used for the classification tests. The final 

results showed similar performance as compared to the 

conventional method, which implies that window effects are a 

minor factor in speech recognition. However, processing using a 

pitch-dependent spectrum led to better performance than the 

conventional pitch-independent method. In addition, the new 



method appears to reduce DCTC feature variability by a small 

amount. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 

In the field of speech recognition and classification, 

the proper definition and extraction of acoustically invariant 

characteristics (features) is an objective that has been sought 

for decades. Among the various types of features investigated 

over the past 40 years are two popular ones: spectral formants 

and features that reflect global spectral shape, such as 

cepstral coefficients. 

Spectral formants represent the natural resonance of 

humans’ vocal tracts in the frequency domain (Kelkar, 1992). On 

a spectrum plot, formants are the peaks of the spectral 

envelope, which are named as F1, F2, F3, etc., in the order of 

increasing frequency. In a classic paper, Peterson and Barney 

(1952) claimed that the first three formants(F1, F2 and F3) 

could be regarded as the primary source of spectral 

information. Ever since this paper, scientists and researchers 

have studied formant-based vowel perception extensively. Many 

successful models were developed to implement vowel perception 

using spectral formants as the fundamental feature set. For 

example, Miller (1989) developed the auditory-perceptual 

theory, which was based on formant-ratio theory, and 

__________________________________________________________________________________
The reference model followed is The Journal of the Acoustical 
Society of America. 
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demonstrated that the preliminary target zones in formant space 

could be used to classify a proprietary database of American 

English vowels with up to 93% accuracy. Although the formant 

representation of speech spectra enjoys widespread use, 

particularly for the perception of vowels, some challenging 

problems remain. Bladon (1982) made arguments against the 

formant representation of speech primarily with regard to three 

aspects: first, formant representation is an incomplete 

spectral description; second, there is great difficulty in 

locating the formants in many cases; third, a formant 

representation does not provide a good prediction when the 

spectral peaks are widely spaced (Zahorian and Jagharghi, 

1993). Furthermore, as stated in Kelkar’s thesis (1992), 

formants may be located in overlapped frequency regions; 

spurious peaks due to a single formant’s split make it 

difficult to identify the actual formant; the frequencies of 

adjacent formants may be too close to resolve. All these issues 

associated with spectral formants have caused interest in 

finding better feature representation methods. Global spectral 

shape factors have proved to be a good alternative. 

As early as the late 60’s, a group of researchers had 

completed a series of experiments using spectral-shape 

representation of vowel spectra (Plomp et al., 1967; Pols et 

al., 1969; Klein et al., 1970). They defined a principal-

components spectral-shape representation of vowel spectra and 

demonstrated that vowels could be classified automatically as 

accurately from a principal-components representation as from a 
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formant representation (Zahorian and Jagharghi, 1993). The 

Discrete Cosine Transform Coefficients (DCTCs) of the log 

magnitude spectrum are one type of global spectral shape 

features. Zahorian and Gordy (1983) showed that a series cosine 

basis vector representation is very similar to a principal-

components representation. Zahorian and Jagharghi (1993) also 

experimentally compared vowel classification test results 

between formants and DCTCs and found that the DCTC results were 

significantly higher (3.5%) than for the formant case, provided 

enough DCTCs (ten or more) were used. 

The Visual Speech Display (VSD) system developed in Old 

Dominion University’s Speech Lab uses DCT basis vectors as the 

feature set to implement vowel classification. In the process 

of improving system performance, we have found instability of 

DCTC features in the real-time display. The major interest of 

this research is to explore the instability issue and develop 

approaches to address it. 

 

1.2 Objective 

The Visual Speech Display (VSD) system was originally 

developed on a DOS based personal computer. All signal 

processing work was implemented on a dedicated DSP board, with 

TMS320C25 being the core DSP chip. Although this hardware based 

system worked well in terms of recognition performance, it was 

expensive (due to dedicated hardware), and difficult to 

maintain and update (since the DSP chip requires assembly 

language programming). Because of all these drawbacks and 
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thanks to the dramatic increase in CPU speed, a Windows NT/95 

based system has been implemented. A standard multimedia sound 

card fulfills I/O operation. All signal processing and neural 

network classification work is done by software. This offers 

greater cost-effectiveness and flexibility than the old system. 

However, an unexplained and unwanted phenomenon was 

observed in the process of system testing and refinement. Both 

the Bargraph Display and the Ellipse Display (these two display 

types are explained in Chapter II) showed “jitter” on the 

amplitude of the “bar” or the screen position of the “ball” 

even when the speaker pronounced and steadily held a vowel 

sound. In the meantime, a real-time plot of DCTC features 

showed similar variations. Intuitively, for steady-state 

vowels, the display should be steady, too. An “unstable” 

display is an indication of “unstable” neural network output, 

which determines the recognition performance. We suspect that 

this variability, to some extent, limits the classification 

performance of the new system. As a matter of fact, the 

previous hardware based system did give a more stable display 

when a vowel was steadily uttered. It was obvious that the 

migration from the previous system to the new system introduced 

some problems. These problems could have been the result of 

coding errors, background noise and noise of PC components 

(including the sound card), or due to changes in the methods 

used to compute the DCTCs. 

The main objective of this research was to track the 

reasons of the DCTC feature variability and to investigate 
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various approaches to eliminate this unwanted effect. First, 

the DCTC variability was recorded and the reasons for it were 

analyzed. Then, different approaches were compared and adopted 

to reduce the DCTC variability. Finally, a new pitch based DCTC 

feature computation approach was explored with the expectation 

of reducing variability from a different perspective. This last 

point is the most significant contribution of this thesis. 

 

 

1.3 Overview Of Following Chapters 

In chapter II, a brief description of the Visual Speech 

Display (VSD) software is given. The observed DCTC feature 

variability is described and analyzed. The efforts to eliminate 

or reduce the variability are also discussed. 

Chapter III explores, theoretically, a pitch-synchronous 

approach in an attempt to enhance the front-end DCTC feature 

analysis. Important processing steps, such as pitch estimation, 

time-domain resampling, non-linear frequency scaling and pitch-

dependent spectra, are explained in detail. 

Chapter IV presents the experimental verification of the 

approach described in Chapter II using Matlab programs. System 

modules and routines implementing the pitch-synchronous front-

end processing are listed and explained. The classification 

results of an Artificial Neural Network (ANN) are shown to test 

the performance of the pitch-synchronous front-end processor. 

Chapter V summarizes the achievements attained in this 

research and discusses future work and possible improvements. 
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CHAPTER II 

DCTC FEATURE VARIABILITY 

 

2.1 Overview 

The focus of this chapter is the DCTC feature variability 

observed on the Windows NT/95 based Visual Speech Display (VSD) 

system. In 2.2, a brief description is given on the structure 

and functionality of the VSD system. We describe the DCTC 

feature variability in 2.3. The possible reasons that cause 

this variability are explored and analyzed in the same section. 

Based on the analysis made in 2.3, three possible “noise” 

sources causing the variability are further verified, 

theoretically and experimentally, in 2.4 through 2.6. 

Conclusions are summarized in 2.7. 

 

 

2.2 Visual Speech Display (VSD) Software 

The Windows NT/95 based Visual Speech Display software is 

the result of the combined efforts of a group of people who 

worked or are currently working in the Speech Communications 

Lab. It is designed to generate visual feedback for vowel 

sounds uttered by speakers. An A/D converter, a front-end 

processor, an artificial neural network classifier and a 

Windows Graphical Interface are the main functional blocks in 

the system. Figure 1 shows the overall framework. 
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Vowel Sound

A/D Converter Speech Signal Acquisition from Sound Card

Signal Segmentation, FFT Analysis, 
DCTC Computation, Final Feature Generation

Neural Network Classification

Display Classification Results

Front-End Processor

Neural Network Classifier

Windows Graphical Interface

Waveform, FFT, Features, Bargraph or Ellipse Display
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Figure 1.    Framework of the Visual Speech Display software 
Converter: the A/D converter utilizes the Windows 

n Programming Interface (API) to work with a 

 sound card to transform the analog acoustic signal 

al form. 

-End Processor: this part can be divided into two 

ame Level Processing and Block Level Processing. In 

Level Processing, each signal segment output by the 

ter is divided into one or more frames. A series of 

 processing is based on these frames. The individual 

irst windowed (using a Hamming or Kaiser window) to 

time-domain discontinuities at the edges of frames. 
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FFT analysis is then done to generate the log magnitude 

spectrum. Appropriate frequency smoothing and time smoothing 

are also implemented in this step. Frequency smoothing is done 

with morphological filtering which emphasizes the envelope of 

the spectral peaks rather than the spectral details. Time 

smoothing is used to reduce the temporal variability between 

consecutive frames.  DCTC features are computed based on the 

smoothed spectrum of an individual frame and a series of pre-

defined basis vectors over frequency (as further explained in 

2.3). 

In the Block Level Processing, several consecutive frames 

are combined as a block, and the final features, named Discrete 

Cosine Series (DCS), are calculated based on DCTC features of 

all frames in the block. This processing is explained in 2.3. 

Neural Network Classifier: The features at the output of 

Front-End Processor are used as inputs to an artificial neural 

network for pattern classification. The neural network uses the 

back-propagation learning algorithm as described in Lippmann 

(1987). A typical structure of the neural network classifier 

used in the VSD system includes one hidden layer with 25 nodes, 

and 10 output nodes. For experiments reported in this thesis, 

the learning rate generally ranged from 0.30 to 0.35. Two 

hundred thousand learning iterations were generally used. 

Windows Graphical Interface: In this final step, the 

classification output is displayed on the screen to give visual 

feedback to speakers. There are two primary displays: the 

Bargraph Display and the Ellipse Display. 
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The Bargraph Display shows only one significantly high 

bar when the corresponding vowel sound is correctly uttered; 

otherwise this bar is not high and/or the bars associated with 

some other vowels may appear. Figure 2 illustrates a correct 

utterance case, while Figure 3 shows an incorrect one. 

 

 

 
 

Figure 2.    Bargraph Display when the vowel sound “ur” is correctly uttered  

 

The Ellipse Display defines 10 elliptic areas on the 

screen corresponding to the 10 vowel sounds. When a vowel is 

properly uttered, a small basketball slides into the oval 

associated with that vowel sound, and the color of the 

basketball is changed to match that of the oval. The size of 

the ball is designed to vary with the strength of the sound as 

an indicator of loudness. Figure 4 gives an example of the 

Ellipse Display. 
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2.3
     Figure 3.    Bargraph Display when a vowel sound “ah” is incorrectly uttered 
 
         Figure 4.    Ellipse Display when the vowel “ur” is correctly uttered 

 DCTC Feature Variability Analysis 
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When we evaluated the overall performance of the Visual 

Speech Display system as described above, we observed “jitter” 

in both the Bargraph Display and the Ellipse Display even if 

the speaker held his utterance as stable as possible. This 

variability could also be shown by displaying the FFT spectrum 

and the DCTC feature values. In contrast, the previously 

developed DSP-board-based system appeared to have had a more 

stable display. Intuitively, the more stable the display, the 

higher the performance. We suspected that some type of “noise” 

had been introduced into the system in the process of the 

migration work. We focused on the analysis of three major 

possible noise sources: coding errors, noise from background 

and PC components, or some inherently unstable nature of DCTC 

features. 

 

2.3.1 DCTC Features 

Before we go into the analysis, it is necessary to 

describe the DCTC features mathematically. As described in 

Nossair (1989), the DCTCs encode the smoothed global shape of 

the spectrum, which provides the primary information about the 

spectral pattern of the speech. The DCTCs are computed using a 

simple dot product equation involving the spectrum and cosine 

basis vectors, as given by 

∑
−

=

=
1

0
),()()(

N

k

kikXiDCTC φ     (2.1) 

where X(k) is the scaled log magnitude frequency sample with the 

sample index k ranging from 0 to (N-1), corresponding to an 
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absolute frequency range of [0, Fs/2](Fs is the sampling rate). 

φ( , )i k  is a pre-defined set of samples of a cosine series 

expansion over the same frequency range. If there is no 

frequency “warping,” the basis vectors are obtained as sampled 

values of cosines, as given in Equation 2.2.  







 +

=
N

kiki )5.0(cos),( πφ     (2.2) 

where i is the index of DCTC, k is the index of frequency 

sample, N is the total number of frequency samples. Note that 

if frequency “warping” is used, which leads to non-uniform 

frequency resolution, the equations for these basis vectors 

will change; otherwise, the computations are the same. 

DCTCs are the features for Frame Level Processing in the 

system framework described in 2.2. In order to take advantage 

of the close correlation of neighboring frames, Discrete Cosine 

Series (DCS) can be calculated, based on a group of consecutive 

frames. DCSs are the final features to be used by the neural 

network for pattern classification. 

∑
−

=

Φ=
1

0
),(),(),(

M

l
illjDCTCijDCS    (2.3) 

In Equation 2.3, the i th DCS of DCTC j is computed as the 

sum of the DCTC j multiplied by appropriate basis vectors, over 

all M frames of the block. The basis vectors used here are 

defined in a similar way as those for DCTC computation. The 

only difference is that the basis vectors in DCS calculation 

are computed over time rather than over frequency, as is done 

in DCTC feature computation. That is, 
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 +

=Φ
M
ilil )5.(cos),( π

    (2.4) 

where l is the index of frame, i is the index of DCS, and M is 

the total number of frames. 

Figure 5 shows a snapshot, for a single time instant, of 

the first 12 DCTC features in the VSD real-time display. When a 

vowel is uttered and held, the slight variability of the 

amplitude of each feature (over time) can be easily seen in the 

real-time display. 

 

 
Figure 5.    DCTC features displayed for vowel sound “ee” 

 
 
 

More figures are given in 2.3.5 to better illustrate the 

DCTC feature variability. In the meantime, approaches to reduce 

this variability are explored and verified in the same section. 

 

2.3.2 Possible Coding Errors 
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Although the early versions of the Visual Speech Display 

Software worked well, we did find some hidden flaws that could 

be one possible noise source causing the DCTC feature 

variability. The faults primarily came from modularity issues. 

Modularity is the key point to a large software system, 

since it provides a clear structure that makes it possible for 

different people to add in new features or make changes. The 

original version of software defined global variables that were 

used virtually everywhere in the entire code. This made the 

code intertwined and greatly reduced the independence of 

functions, which could easily cause problems when one tried to 

add in, remove, or modify parts of the code. Aimed at tackling 

all these negative effects, a combined effort to rewrite the 

code of the early version was done by A.M.Zimmer, 

M.Karnjanadecha and myself. A new and flexible A/D and D/A 

converter was implemented by Karnjanadecha, which could provide 

full-duplex operation of the sound card. A standard fundamental 

Windows function template and a naming convention were defined 

by Zimmer. This helped standardize the programming procedure 

and increased the readability of the code. Zimmer and I also 

rewrote much of the graphical interface part, using a set of 

graphical APIs which we defined. 

In the experimental observation and performance 

comparison after the careful code rewriting, we found that 

there was no measurable difference between the new system and 

the old one. This, combined with careful checking of 

intermediate signal calculations for known deterministic 
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signals, implied that the DCTC feature variability was not due 

to coding errors. 

 

2.3.3 Background And Component Noise 

To seek the cost-effectiveness and compatibility of the 

entire system while maintaining good performance, a standard 

commercial sound card was used for I/O operation. We found that 

noise might come from the background and the PC components, 

including the sound card. 

Figure 6 shows an FFT spectrum plot when there was no 

signal input (the sound card microphone was turned off). This 

power spectrum indicates the existence of noise from the sound 

card and other PC components. 

Figure 8 is the FFT plot with the same sound card used 

for Figure 6, but when the microphone was turned on. It can be 

observed that the overall amplitude of noise power spectrum has 

increased, particularly in low frequency bands (< 2kHz). This 

indicates the existence of background noise. 

 

 

 

 

Figure 7.    FFT plot on PC #2 when the sound card microphone was turned off Figure 6.    FFT plot on PC #1 when the sound card microphone was turned off 
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Figure 8.   FFT plot on PC #1 when the microphone was turned on, but no signal input 

 

 

Another noticeable point is that the noise from the sound 

card and other PC components varies from machine to machine. 

Figure 6 and Figure 7 are FFT plots on PC #1 and PC #2, 

respectively. The microphones on both sound cards were turned 

off. Both sound cards had the same volume settings. It is 

easily seen that the noise produced on PC #2 is significantly 

lower than on PC #1. Note that PC #2 was a newer machine with 

higher quality sound card. This indicates that the noise 

strength depends upon the quality of PC and sound card. 

The most important issue we are concerned with is the 

extent to which the background and component noise affects 
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system performance. The comparison of Figure 8 and Figure 9 

serves as an example for evaluating this extent. Figure 8 is 

the FFT plot on PC #1 with the sound card microphone turned on, 

but without speech signal input. Figure 9 is the FFT plot on PC 

#1 when a vowel sound “ee” was uttered. Hence, Figure 8 shows 

the noise power spectrum, while Figure 9 gives a description of 

power spectrum of mixed signal and noise. The quantity of 

Signal to Noise Ratio (SNR) can be roughly estimated by 

comparing Figure 8 and Figure 9. It can be seen that the noise 

may not affect spectral formants since the SNR around formants 

is generally greater than 15dB. 

However, in the spectral valleys where SNR is close to 

0dB or even lower, noise does play a significant role. 

 

Figure 9.    FFT plot on PC #1 when the vowel sound “ee” was uttered 
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In summary, the background noise strength may vary from 

place to place and from instant to instant; the noise from 

components depends on the quality of PC and sound card, and is 

different from machine to machine. Using high quality PCs and 

sound cards reduces the component noise. As observed in this 

research, noise affects spectral details in certain frequency 

bands, especially in spectral valleys. For speech recognition, 

since general spectral shape is more important than spectral 

details, we may use smoothing in the frequency domain to smooth 

out spectral details and thus reduce the negative effects of 

noise. Different smoothing methods are further discussed in 

2.3.5. 

 

2.3.4 Possible Inherently Unstable Nature of DCTC Features 

As claimed in Zahorian and Jagharghi (1993), the DCTCs, 

as spectral trajectory features, are computed the same way as 

cepstral coefficients commonly used in speech processing except 

for small differences. The exploration of the oscillations of 

cepstral coefficient-based trajectory models may reflect some 

similar characteristics of DCTC features. 

A recent paper by Hu and Barnard (1997) described a 

measurement method developed to evaluate the smoothness of 

cepstral coefficient-based trajectories. They found that the 

trajectories contain spurious oscillations over time, which 

suggests that the trajectory features might have a high within-

class variance. This happens even when the speech signal is 

changing slowly and smoothly. This issue could be due to the 
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mapping between cepstral coefficients and frequency components. 

The researchers set up a model and a series of relevant 

simulation experiments using both rising tones (generated by 

adding two sinusoidal signals) and real TIMIT speech data. They 

observed significant oscillations of the mel scale cepstral 

coefficient (MFCC) based trajectory features. 

The analysis mentioned above closely corresponds to the 

instability that we observed on the display of DCTC features 

through the Visual Speech Display system. 

Hu and Barnard (1997) also showed that formant 

trajectories are significantly smoother than trajectories of 

mel scale cepstral coefficients (MFCC). However, the 

classification experiments that they performed did not result 

in better performance using formant trajectory features versus 

cepstral coefficient features despite the smoothness and 

smaller variances of formant features. They finally claimed 

that adding additional information, such as the average 

bandwidth and contextual features (i.e. the average formant 

location of the three frames to the left of the left boundary 

and three frames to the right of the right boundary of the 

segment), could improve the overall classification performance 

based on formant features. The performance could not be 

improved by adding this information with cepstral coefficient 

based features. It seems that the additional spectral 

information contained in MFCCs accounts for at least some 

performance differences observed in experiments. 
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In summary, DCTC features, as a type of cepstral 

coefficient features, could have inherently unstable 

characteristics over time, which may cause the observed 

fluctuations over time. Therefore, this is also a possible 

“noise” source besides the noise from PC components, as 

discussed in the previous section. 

 

2.3.5 Experimental Efforts To Mitigate Feature Variability 

A group of experiments were done in an attempt to reduce 

the DCTC feature variability. Before these procedures are 

described, a definition of parameters is given below. In 

describing the experiments, symbols in the parentheses are used 

to represent their corresponding parameters. 

Segment_Time(St): Time duration of a speech signal segment. 

Frame_Time(Ft): Time duration of a frame extracted from a 

speech segment. 

Frame_Space(Sf): Time interval between adjacent frames. Equation 

2.5 shows the relationship between the starting time of 

adjacent frames and Sf.  

Ti+1 = Ti + Sf     (2.5) 

where T is the starting time of a specific frame. For example, 

if frame #i starts at 50ms and Sf is 15ms, frame #(i+1) starts at 

(50+15)ms. 

The relationship between Ft  and Sf is: if Ft=Sf, there is no 

overlap between adjacent frames; if Ft >Sf, there is overlap 
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between adjacent frames, and the length of overlapped part 

equals (Ft -Sf). 

FFT_Length(Nfft): Length of FFT in number of samples. 

Block_Length(BL): The length of a block in number of frames. 

Block_Space(Sb): The number of frames between adjacent blocks. 

The following equation indicates the relationship between the 

starting frame number of adjacent blocks and Sb. 

Bj+1 = Bj + Sb     (2.6) 

where B is the starting frame number in a specific block. For 

example, if block #j starts at frame #k and Sb=3, block #(j+1) 

starts at frame #(k+3). 

The relationship between BL and Sb  is: if BL=Sb, there is 

no overlap between adjacent blocks; if BL>Sb, there is overlap 

between adjacent blocks, and the length of overlapped part 

equals (BL-Sb). 

Warp_Factor(W): Warping factor when frequency warping is used 

to give non-uniform frequency resolution. 

Window_Length(Lw): Length of smoothing window in number of 

frames. 

With all these parameters defined above, several 

experiments were done in order to test if the adjustment of 

front-end processing parameters would help reduce DCTC 

variability. The results of these experiments are illustrated 

and analyzed through a group of figures as shown below. 
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Note that the following five DCTC feature plots, from 

Figure 10 through Figure 14, were all generated with Matlab 

programs. All features were computed through the revised real-

time VSD system and based on the same vowel token from the 

database of ODU Speech Communications Lab. 

Figure 10 shows a plot of the first 4 DCTC features of 

the vowel “ah” uttered by a male speaker. A total of sixteen 

15-ms frames were extracted from the center of the token, with 

no overlap between frames. Note that for this figure, no 

frequency warping, time smoothing on the spectrum or time 

smoothing in block level was used. Expressed with the 

parameters defined above, St=240ms, Ft=15ms, Sf=15ms, BL=Sb=1, 

Nfft=512, W=0, and Lw=0. 
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Figure 10.    The first 4 DCTC features of token “ah” over 240 milliseconds (16 frames) 

 

The first experiment tested the contribution of frequency 

“warping” to reducing the DCTC variability. Frequency warping 

used here actually produces non-uniform frequency resolution 

and increases the resolution in low frequencies, since we 

believe that important spectral information is concentrated in 

low frequencies rather than high frequencies. Figure 11 shows a 

plot with appropriate frequency warping. The warping factor was 

set to W=0.45, with all the other parameters being the same as 

in Figure 10. Compared to Figure 10, it is apparent that 

frequency warping reduces the variability of DCTC features. 

However, the improvements are not very distinct. 
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Figure 11.    Effects of frequency warping in reducing DCTC variability 

 

The second experiment was designed to test the effects of 

overlap between adjacent frames. In Figure 12, St=255ms Ft=30ms, 

Sf=15ms, BL=Sb=1, Nfft=512, W=0.45, Lww=0. Therefore, all parameter 

settings were set the same as in Figure 11, except that there 

was a 15-ms overlap between adjacent frames, and the segment 

length became 255ms due to the overlapping. If we compare 

Figure 12 and Figure 11, it can be observed that, by using 

longer frames, the variability of DCTC features is greatly 

reduced. 
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    Figure 12.    Effects of overlapping between frames in reducing DCTC variability 
 

The third experiment was done to evaluate if time 

smoothing on the spectrum would help stabilize the DCTC 

features. Compared to the parameter settings in Figure 12, the 

only difference in the third experiment is that we set a 5-

frame time smoothing window to smooth out the spectrum before 

the DCTC features were computed, i.e. Lw=5. In our experiments, 

maximum smoothing, which is explained in detail in the next 

section, was used. It is shown, in Figure 13, that the DCTC 

variability was further reduced when proper time smoothing on 

the spectrum was performed.  
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Figure 13.    Effects of time smoothing on spectrum in reducing the DCTC variability 
 

Finally, we tested the advantages of using smoothing for 

the DCS computations, which is in Block Level Processing as 

described in 2.3.1. Figure 14 illustrates a similar case as in 

Figure 13, expect for the use of DCS type smoothing. For this 

figure, BL=5 and Sb=1. Hence, the smoothing was based on a 

block of 5 frames, with a block spacing of 1 frame. Note that 

only one DCS was computed from block to block, which was 

equivalent to the smoothed DCTC over time. However, the 

benefits of the block level smoothing are not readily seen in 

Figure 14, since frequency warping and time smoothing over the 
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spectrum already contribute much to reducing the DCTC 

variability. 

 

Figure 14.    Effects of block level smoothing in reducing DCTC variability 

 

 

2.3.6 Classification Tests With Time Smoothing On Spectrum 

To further explore the approaches to be taken to reduce 

the DCTC feature variability and improve system performance, 

some classification tests were done with the real-time version 

of Visual Speech Display software. The main objective was to 

compare different time smoothing methods used before the DCTC 

computations. 

Maximum smoothing and average smoothing are both common 

time smoothing methods for digital signals. Simply put, maximum 
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smoothing finds the maximum value within a smoothing window 

about a specific sample index and uses it as the smoothed value 

for that sample. The following formula describes maximum 

smoothing. 

 22 ),(),(' liXMAXLiX
NLlML +≤≤−

= (2.7)
 

In Equation 2.7, the left-hand side represents the ith 

smoothed squared spectral component of Frame #L, and the right-

hand side stands for the maximum value of the ith squared 

spectral component of continuous frames around Frame #L, with a 

window length of (M+N) frames. For real-time processing, N is 

set to be zero, since smoothing is always based on the current 

and past frames. 

Similarly, average smoothing computes the average value 

within the smoothing window of (M+N) frames, which is depicted 

in Equation 2.8. 

∑
+≤≤−+

=
NLlML
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NM

LiY 22 ),(1),(' (2.8) 

 
Time smoothing can be performed before or after log 

scaling of the spectrum. Maximum smoothing before log scaling 

is shown in Equation 2.9: 

 

( )22 ),(log),(' liXMAXLiX
NLlML +≤≤−

= (2.9) 
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As a comparison, maximum smoothing after log scaling is 

shown in Equation 2.10. 

( )22 ),(log),(' liXMAXLiX
NLlML +≤≤−

= (2.10) 

 

Similarly, average smoothing before or after log scaling 

is described in the following two equations: 
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In summary, four different time smoothing methods can be 

performed, i.e. maximum smoothing after log scaling, maximum 

smoothing before log scaling, average smoothing after log 

scaling, and average smoothing before log scaling. We wanted to 

determine how the different smoothing methods affect 

classification results and which method is the best. 

Table 1 shows the classification results from a sample 

experiment with maximum smoothing and average smoothing, which 

were both implemented after the log spectrum was computed. 

These results were obtained under the condition that St=2000ms, 

Ft=30ms, Lw=10 frames. There were 24 speakers in the training 

set of a specific gender/age group (i.e. Male, Female, Child), 

and 8 speakers in the test set. The “general” test set included 

24 speakers from all three gender/age groups. Three iterations 

of each vowel by each speaker were used. As shown in Table 1, 
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there is not much difference between the two smoothing methods. 

In general, we used maximum smoothing since it emphasizes 

spectral peaks, which are believed to carry most of the speech 

information. 

 

Gender Group 
Test Recognition Rate 

 (Maximum Smoothing after Log 
Spectrum is computed) 

Test Recognition Rate 
(Average Smoothing after Log 

Spectrum is computed) 
Male 89.5% 89.2% 

Female 92.1% 92.2% 
Child 86.2% 85.9% 

General Speakers 
(Male, Female, Child) 81.2% 80.5% 

Table 1.    Classification performance of different smoothing methods after log scaling 

 
For maximum smoothing, the index of the maximum value 

before or after log scaling should be the same due to the 

monotonicity of the log operation. Hence, it should make no 

difference whether maximum smoothing is done before or after 

log scaling. In other words, maximum smoothing before log 

scaling and maximum smoothing after log scaling are the same 

method. As for average smoothing, however, there could be minor 

differences. 

Our experimental observations matched the analysis stated 

above. Table 2 contains the classification results with maximum 

smoothing and average smoothing before log scaling. If we 

compare Table 2 with Table 1, we can see that there was no 

difference in the results between maximum smoothing before log 

scaling and maximum smoothing after log scaling. For average 

smoothing, only a slight difference was seen between smoothing 

before log scaling and smoothing after log scaling. Note that 
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the training set and test set in this experiment were the same 

as in Table 1. 

 

Gender Group 
Test Recognition Rate  

(Maximum Smoothing before 
Log Spectrum is computed) 

Test Recognition Rate 
(Average Smoothing before 
Log Spectrum is computed) 

Male 89.5% 89.2% 
Female 92.1% 92.0% 
Child 86.2% 85.9% 

General Speakers 
(Male, Female, Child) 81.2% 80.8% 
 
 Table 2.    Classification performance of different smoothing methods before log scaling 
 

A group of tests were also done in order to determine if 

longer windows would help improve classification performance. 

Figure 15 shows the training classification results (for the 

Bargraph Display) based on a proprietary speech database 

defined and established in Old Dominion University’s Speech 

Lab. This figure clearly shows that the classification rate 

increases as the smoothing window length increases. However, if 

the window is too long, the system response is very slow, which 

is undesirable for the real-time display. Therefore, an 

appropriate smoothing window length needs to be used for 

acceptable system response time. 
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       Figure 15.    Classification results based on ODU Speech Lab vowel database 

 

 

2.4 Conclusions 

The variability of DCTC features observed in the Visual 

Speech Display system may be a combination of two sources: 

noise of the PC components and the inherently unstable nature 

of cepstral coefficient based (i.e., DCTC) trajectories. It 

seems that the combined effects are rather complex, and both 

noise sources cannot be easily and directly eliminated. 

Although the variability of DCTC features may not 

contribute much to performance degradation, we still would like 

to have a stable display that gives better visual effects. The 

experiments of this section showed that the DCTC variability 
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could be reduced through proper adjustment of some processing 

parameters. 

Three types of time smoothing methods were tested in our 

experiments: overlap of signal frames, time smoothing of log 

spectra before DCTC computations, and time smoothing of DCTC 

features in the block level. All of these methods showed 

positive effects in reducing the DCTC instability. 

To be more exact, the following approaches were found to be 

effective: 

1. It is always helpful if we use appropriate overlapping 

between adjacent frames when they are extracted from the 

speech segment. This method reduces the temporal variations 

from frame to frame, which contributes to the stability of 

DCTC features. Overlap is typically set to be half of the 

frame length. For example, if the frame length (Ft) is 30ms, 

the frame space (Sf) should be set to 15ms, which generates a 

frame overlap of 15ms. 

2. Utilizing proper frequency warping, typically with a warping 

factor (W) of 0.45, also helps reduce the DCTC feature 

variability. 

3. When DCSs are computed from DCTC features in the block level 

processing, the overlap between adjacent blocks helps 

increase the DCTC stability. Typically, if we use a block 

length (BL) of 5 frames, it is desirable that the block 

space(Sb) is set to be 1 frame, thus generating a block 

overlap of 4 frames. 
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4. Time smoothing of the log magnitude spectrum is very helpful 

for improving both DCTC stability and classification 

results. Since maximum smoothing before log scaling is the 

same method as maximum smoothing after log scaling, we 

actually tested three time smoothing methods in our 

experiments. Maximum time smoothing after log scaling of the 

spectrum appears to be the best method, as compared to 

average smoothing before or after log scaling. Note that the 

smoothing window cannot be too long, since longer windows 

may greatly slow down the response of display and impair the 

real-time characteristics of the system. A smoothing window 

length of 10 to 20 frames is appropriate. 
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CHAPTER III 
 

PITCH-SYNCHRONOUS DCTC FEATURE COMPUTATIONS 

 
3.1 Overview 

Most conventional spectral analysis methods, including 

those used for the experiments reported in the last chapter, 

use a window to extract a segment for processing. However, 

windowing results in spectral smearing, which impairs spectral 

resolution. In this research, we are interested in exploring a 

processing method that eliminates or at least reduces window 

effects. This chapter describes a new DCTC feature computation 

algorithm based on pitch-synchronous analysis. No windowing is 

needed in this new method, since processing is based on one or 

more pitch periods extracted from the speech signal. 

In 3.3, we analyze the negative effects of conventional 

windowing method for steady-state vowel processing; we also 

explore the advantages and feasibility of utilizing pitch 

periodicity for spectral analysis. 

With a system framework introduced in 3.4, 3.5 explains 

major functional blocks in the framework, among which three 

important modules are emphasized. The pitch period estimation 

method, which is the fundamental for the entire system, is 

explained in 3.5.2. In 3.5.3, a non-linear frequency scaling 

method is given in search of a general spectral pattern across 

different gender/age groups, which makes possible a general 

classifier for these groups (Male, Female and Child). Since the 

information contained in a single period may not be sufficient 



 36

for spectral analysis, multiple periods of speech are extracted 

and used, as is described in 3.5.4. Time-domain resampling is 

described in 3.5.5 as a method of reducing spectral smearing 

when multiple periods are extracted. 

 

 

3.2 Pitch Periodicity In Voiced Speech 

Generally, speech signals are generated by the vibration 

of the human’s vocal cords, which are stretched by muscles in 

the larynx. Vocal cords vibrate when air is forced through 

them. The resultant sounds are in the form of a pulse train, 

which is rich in harmonics. The repetition rate of these pulses 

determines the pitch, or the fundamental frequency, of the 

voice (Haddad and Parsons, 1991). 

As stated in Haddad and Parsons (1991), the vibration of 

the vocal cords is termed phonation. Voiced speech is generated 

by phonation. The speech becomes unvoiced when phonation does 

not occur. It has been observed that the voiced speech shows 

quasi-periodicity, but not strict periodicity, over time, since 

its contents tend to vary continually. Pitch and its harmonics, 

which are commonly used to characterize periodic signals, can 

also be utilized to distinguish between quasi-periodic voiced 

speech. 

Steady-state vowels are a type of voiced speech. Figure 

16 shows a steady state vowel sound of “ah” uttered by a male 

speaker. The quasi-periodicity is obvious. If we carefully 

inspect the signal, we also find that the details in the 
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waveform, such as peak amplitude, peak shape and period length, 

show slight variability of over time. 
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The second problem lies in the fact that windowing 

inevitably results in spectral smearing, which reduces spectral 

resolution. Hence, even if the frequency components could be 

accurately measured, their values might not be correct due to 

spectral smearing. 

The basic idea, used throughout this section, is that the 

harmonics of periodic signals line up precisely with FFT 

samples, provided that the FFT length contains an integer 

number of cycles of the fundamental. This can easily be shown 

as follows. 

Assume that a steady-state vowel segment has M periods, 

and the FFT length for this segment is N, where N is chosen to 

be equal to the length of M periods. Let the period be T, the 

fundamental frequency be f0 and the sampling rate be Fs, it must 

be that 

 (3.1)

M
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TF
f

s
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From Equation 3.1 and 3.2, the following equation holds: 
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From Equation 3.3, we also have: 

F
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⋅ 0         (3.4) 
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Since the spacing between FFT samples is 

∆f
F
N

s=       (3.5) 

we finally have 

∆f
f
M

= 0      (3.6) 

In particular, as shown in Equation 3.7, if there is only 

one period for processing, the frequency spacing between 

adjacent FFT samples is equal to the fundamental frequency. In 

other words, the FFT samples are exactly coincident with the 

fundamental and its harmonics. 

0ff =∆       (3.7) 

If M is greater than 1, then every Mth FFT sample is 

exactly coincident with a spectral harmonic. 

Figure 17 clearly illustrates the windowing effects and 

the benefits of pitch-synchronous frequency range in reducing 

windowing effects. The top plot is the time-domain signal used 

for spectral analysis. The middle plot shows the superimposed 

spectra of 4 overlapped 30-ms frames (15-ms overlap), which 

were Hamming windowed before the spectral processing. It can be 

seen from this plot that the harmonics, especially in the 

middle to high frequency bands, are not distinct and vary from 

frame to frame. This implies spectral smearing due to the 

windowing effects. In contrast, the bottom plot, which was 

generated with pitch dependent frequency range, shows very 

sharp and clear harmonics over the whole frequency band. The 

pitch period for the bottom plot was 98.04Hz, and 30 harmonics 
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were plotted in the range of [100Hz, 3000Hz]. This further 

illustrates that for pitch-synchronous analysis, FFT samples 

precisely coincide with harmonics. 

Figure 17.    Comparison of window based method and pitch-synchronous method 

 

The objective of this pitch-synchronous method is to 

eliminate the two negative effects caused by windowing and take 

advantage of sampling the spectrum at exactly the “right” 

places without spectral smearing. It was hoped that this type 

of spectral analysis would lead to more stable DCTC features, 

and also to higher automatic vowel classification performance. 

The difficulties with pitch-synchronous analysis are that 

fundamental frequency must be determined very accurately, and 

the speech signal must then be resampled so that each frame of 
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speech data contains an integer number of periods, and the 

total length equals a power of 2 (256, 512, etc.). Furthermore, 

this must be done using an interval that typically contains 

several pitch cycles, for which the pitch period is typically 

slowly changing. 

The important part of this chapter was to investigate 

techniques for pitch-synchronous vowel analysis, and determine 

whether any of these are superior to conventional window based 

spectral analysis. As another issue, since pitch was required 

to do this analysis anyway, pitch based speaker normalization 

was also investigated as a method for improving vowel 

classification. 

 

 

3.4 System Framework 

A framework of the pitch-synchronous DCTC feature 

computation system is illustrated in Figure 18. In our 

experiments, two operation modes, Mode 1 and Mode 2, were 

implemented to simulate different processing approaches. 

Processing in Mode 1 was based on a large segment 

consisting of multiple periods. In Mode 2, processing was based 

on the average spectrum of multiple single periods, each of 

which was extracted from a short frame. Pitch period estimation 

methods implemented in the two modes were also different. In 

particular, the pitch period estimation method for Mode 1 was 

more suitable for long intervals, whereas the pitch period 
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detection method used in Mode 2 was more suitable for 

processing based on short frames. 

 

Vowel Token

Segment or short frame extraction from the token

Pitch period estimation,
fundamental frequency detrmination

Definition of fixed frequency range or scaled pitch-
dependent frequency range (scale_factor=1/3)

Extract one or multiple quasi-periods from the
vowel segment

Resampling on multiple periods Resampling on single period

Optional pre-emphasis filtering

Optional windowing

Frequency domain downsampling
(for Mode 1 only)

DCTC feature computation based on fixed or pitch-
dependent frequency range

DCTC features

Mode 1 Mode 2

FFT spectral analysis

 
Figure 18.    Diagram of pitch-synchronous DCTC computation system 



 43

In Mode 1, a large segment is extracted from the central 

portion of a steady-state vowel token. By computing the 

autocorrelation, the pitch period and the fundamental frequency 

are determined based on the whole segment. Multiple periods of 

samples are then extracted from the original segment. Time-

domain resampling is performed on the multiple periods to 

extend them to an appropriate FFT length, which should be a 

power of 2. The significance of resampling is that it extends 

existing periods to some desirable FFT length while maintaining 

the periodicity. The FFT analysis is done with the resampled 

periodic signal. Since the resultant spectrum is based on 

multiple periods, appropriate frequency downsampling must be 

done to select only those frequency components that line up 

with the fundamental and its harmonics. Finally, DCTC features 

are computed based on the spectral components and pre-computed 

cosine basis vectors over a fixed frequency range or pitch 

dependent scaled frequency range. 

Mode 2 is similar to Mode 1 except for the pitch period 

estimation and some details of spectral processing. Since Mode 

2 is designed for pitch period estimation from short frames, 

the algorithm of period detection is different from that used 

in Mode 1. In spectral processing, the spectrum of each 

individual period is computed separately. Multiple spectra are 

then averaged. Note that, as shown in 3.3, no further frequency 

downsampling is required in this mode, since the interval 

between the FFT samples is exactly equal to the fundamental 
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frequency. The final DCTC features are computed from the 

averaged spectra. 

For the purposes of comparison, an extra “Control Mode” 

was also implemented using the conventional window based 

processing. In this mode, pitch period estimation was not 

required; no time-domain resampling and frequency downsampling 

were used. Instead, frames of fixed length were directly zero-

padded to the desired FFT length and then windowed (using a 

Hamming or Kaiser window) before the spectral analysis. 

In addition, a bandpass pre-emphasis filter, with a 

center frequency of 3200Hz given that the sampling rate was 

11025 samples/sec, was generally used for all modes to filter 

out unwanted noise in both low and high frequencies. 

 

 

3.5 Main Functional Blocks 

This part describes the major functional blocks in the 

diagram of the pitch-synchronous DCTC feature computation 

system. A Matlab software implementation of this system is 

explained in the next chapter. 

 

3.5.1 Segment Extraction 

This block is simple and straightforward. When we have a 

vowel token for steady-state analysis, it is desirable that we 

extract a segment from about the center of the token, since 

this part should be the most stable. Vowel token files are 

digitally recorded versions of vowel sounds, which may have 
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different formats according to different standards followed. 

For example, a TIMIT format file is comprised of two parts: a 

file header containing information about the token, and a token 

body that stores the speech samples. If we are dealing with 

token files, we need to separate the header from the token body 

so that the steady-state part of the token is accurately 

extracted. Figure 16 in 3.2 gives an example of a segment 

extracted from a vowel token. 

 

3.5.2 Pitch Period Estimation 

This is the most critical and difficult part of the whole 

system. This step is important because all the subsequent 

processing, especially the FFT analysis, is heavily dependent 

on the accuracy of locating individual pitch periods. However, 

this step is also difficult since the signal’s periodicity is 

slowly varying with time. 

In this research, we implemented two methods to detect 

pitch periods. The first method was designed for processing 

based on a large segment containing multiple periods (Mode 1); 

while the second method was developed especially for processing 

based on a short frame (Mode 2), which generally contains only 

one or two periods. 

The theoretical basis of the first method (Mode 1) is 

autocorrelation theory, which is defined in Equation 3.8. 

Φ xx
n

l x n x n[ ] [ ] [ ]=
=−∞

∞

∑ l+     (3.8) 
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In this equation, Φ xx l[ ]  represents the correlation of 

signal x n[ ] and a shifted copy of itself with a time difference 

of l. It can be shown that when l equals zero, the 

autocorrelation value reaches the local maximum. In particular, 

if x n[ ]  is periodic, Φ xx l[ ]  reaches the local maximum when l=kN, 

k=1,2,3..., where N is the period of the signal. 

In this way, we can compute an autocorrelation sequence 

for a multi-period segment. Peak values are expected to appear 

at indices that are multiples of the quasi-period. Generally, 

the index of the first peak value in the autocorrelation 

sequence can be regarded as the pitch period. Figure 19 shows 

the autocorrelation sequence of a segment extracted from the 

center of vowel token “ah” uttered by a male speaker. The 

vertical line marks the first peak, whose index is considered 

as the pitch period. 

Figure 19 also shows that the periodicity of vowel speech 

varies slightly with time (i.e., the signal is not precisely 

periodic). As we know, peaks in the autocorrelation sequence 

correspond to multiples of period in time. If the signal is 

strictly periodic, the value of autocorrelation peaks should 

remain the same at all integer multiples of the pitch period. 

However, in Figure 19, it can be seen that the peaks become 

smaller at larger lag values, which indicates that the pitch 

period changes over the interval of the segment. 
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quation 3.9, s(k) is the resultant normalized 

 sequence, with 1 ≤ k ≤ N/2, and N is the length of the 

. It is clear that when k equals to the length of a 

is maximized. In other words, the index value that 

 to the maximum of s(k) is regarded as the pitch 

ation 3.9 was motivated by a period estimation 
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method in Talkin (1995), in which local maximum values in the 

correlation sequence were found to detect the pitch period. 

Betancourt and Antrobus (1998) also researched a similar 

method. In Mode 2, however, we computed correlation sequences 

with peak values in order to take advantage of the same pitch 

period detection algorithm as used in Mode 1. 

Both pitch period estimation methods described above were 

found to be effective and robust in our experiments, when vowel 

tokens were produced with acceptable periodicity. However, 

these two methods might not be successful in estimating periods 

for tokens with poor periodicity. In the Matlab implementation 

described in the next chapter, some additional processing is 

described to handle cases when the periodicity was not readily 

apparent. 

 

3.5.3 Scaled Pitch-Dependent Frequency Range 

The idea of using a scaled pitch-dependent frequency 

range originated from the “sensory reference” concepts, which 

were introduced by Peterson and Barney (1952). Miller (1989) 

further developed these concepts in search of an approach to 

eliminate the effects of talker age and gender. Although the 

use of a pitch-dependent range is secondary to the main goal of 

comparing spectral analysis using fixed window lengths versus a 

pitch period dependent length, it does fit the more general 

theme of determining methods to improve the accuracy of vowel 

classification. Since pitch has to be computed anyway for the 

pitch-synchronous analysis, the pitch dependent frequency range 
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is a natural secondary issue to investigate. Finally, however, 

note that this normalization can also be used (as a control), 

for the case of window based spectral analysis, but with 

computation of pitch only for this explicit purpose. 

In Miller (1989), the sensory reference (SR) was defined 

as a function of the geometric mean of the talker’s fundamental 

frequency, such that the average ratio (SF1/SR), where SF1 

refers to the first sensory formant, across all glottal-source 

spectra would be independent of the talker’s age and sex. To 

estimate the form of the desired function, the geometric mean 

of the first formants (GMF1) and fundamental frequencies (GMF0) 

reported in Miller (1989) were separately calculated for men, 

women and children. It was found that the equation 

k GMF
GMF

= 





log /

1
01 3     (3.10) 

results in a value of k that is nearly constant across talkers. 

Note that the exponent 1/3 in the denominator was experimentally 

determined to be optimal. The sensory reference was defined as 

below: 

SR GMF
= 





168 0
168

1 3/

    (3.11) 

where the value 168 is the geometric mean of adult male’s 

average pitch 125Hz and adult female’s average pitch 225Hz. The 

third variable defined in the auditory-perceptual space was  

  y
GMF

SR
GMF

GMF
= =log( ) log[( ) ( )]/

/

1
168

1
0

2 3
1 3    (3.12) 
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Note that Equation 3.12 was acquired simply by 

substituting Equation 3.11 in the denominator of Equation 3.10. 

Through this formulation, the value of SR is shifted from the 

absolute value of 168 to an appropriate value for the current 

talker, such that the average value y is nearly identical 

across talker groups. 

The implication of the equations and experiments 

mentioned in the preceding paragraphs is that, if we compare 

the spectra of the same vowels uttered with different 

fundamental frequencies (such as the difference between an 

adult male and an adult female) on a log frequency scale, there 

is a shift in the spectral patterns proportional to f0
1/3. When 

using a linear frequency scale, the implication is that, if the 

spectra from different speakers are viewed on ranges so that 

the starting and ending frequencies are proportional to f0
1/3, 

the variability among speakers for the same vowel is reduced 

relative to that obtained with a fixed range for all speakers. 

In the Old Dominion University Visual Speech System, we 

have always used a fixed frequency range for spectral 

processing. However, the fundamental frequency f0 is quite 

different for male, female and child speakers. For example, the 

pitch frequency of an adult female speaker is generally twice 

as high as that of an adult male speaker. For the case of 

pitch-synchronous analysis, a fixed frequency range implies 

different number of harmonics. On the other hand, if we use a 

fixed number of harmonics, there is a huge difference in the 

frequency range for speakers from different gender/age group. 
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Motivated by the “sensory reference” theory summarized 

above, we explored the implementation of pitch and harmonics 

related scaled frequency range for the purposes of finding an 

age and sex independent feature set that could contribute to 

better classification. 

As shown in 3.3, for voiced speech, the intervals between 

harmonics almost equal the pitch frequency due to the quasi-

periodicity. If we consider a fixed number of harmonics, the 

overall frequency range over the pitch and harmonics can be 

much different for people from different gender or age group. 

For instance, if the voice of a male speaker has a pitch 

frequency of 110Hz, the frequency range over the pitch and 29 

harmonics is from 110Hz to 3300Hz. Likewise, if the voice of a 

female speaker has a pitch frequency of 220Hz, the 

corresponding frequency range of the pitch and 29 harmonics is 

from 220Hz to 6600Hz. 

We need to do some kind of non-linear frequency scaling 

in order to reduce the difference. The method used is described 

below. 

First, we defined a standard pitch frequency and the 

number of harmonics to be considered. Based on this 

information, we computed two range-limiting coefficients for 

the non-linear scaling. Let a standard pitch frequency be SF0, 

the number of harmonics be N, the lower limit coefficient be K1 

and the upper limit coefficient K2, then 

K
SF

SF
1

0
01 3= /      (3.13) 
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K
N SF

SF
2

1 0
01 3=

+ ⋅( )
/     (3.14) 

where the exponent 1/3 was defined following the “sensory 

reference” concepts stated above, and was tested in our 

experiments to be optimal. 

With a specific speaker, the scaled frequency range over 

the pitch and N harmonics is 

K F F K F1 0 2 01 3 1 3⋅ ≤ ≤ ⋅( ) ( )/ /   (3.15) 

Figure 20.    Spectral plots of “ur” of different speakers on fixed frequency range 
 

Figure 20 and Figure 21 show the spectra of “ur” of a 

male speaker and a female speaker over fixed frequency range 

and f0
1/3 scaled frequency range, respectively. It can be seen 

that the spectral envelopes of different speakers look more 
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similar to each other in Figure 21 than in Figure 20. This 

implies that f0
1/3 scaled frequency range helps reduce the 

spectral variability among speakers. Note that the plots in 

Figure 20 and Figure 21 were generated based on Mode 1, which 

is described in 3.4. 

 

    Figure 21.    Spectral plots of “ur” of different speakers on scaled  frequency range 

 

3.5.4 Multiple Quasi-Periods 

Based on the autocorrelation method described in 3.5.2, a 

single period of speech signal may not carry enough information 

for processing due to the possibly imprecise estimation of 

periods. Multiple periods need to be extracted. 
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Since the “period” of voiced speech is slightly varying 

over time, it may not be appropriate to get multiple periods 

simply by extracting a chunk of signal whose length is a 

multiple number of the estimated period. A method based on 

“zero-crossing detection” was used in this research. 

The procedure of detecting zero-crossings is illustrated 

in Figure 22. 

 

zero-crossing nearest to local peak

local peak in a single period

... ...

 
  

 

Figure 22 s
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Figure 22.    Detection of zero-crossings
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 Hence, we define zero-crossing as being the 

signs from + to –. For the case in Figure 22, 

rossing is marked by a bold arrow pointed up. 

 the first zero-crossing, we add the length of 

 first zero-crossing. The second zero-crossing 
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is found in this vicinity. By using the same method, we are 

able to identify all the subsequent zero-crossings. 

Note that for voiced speech signal, the period itself 

tends to vary slightly over time. Hence, it is extremely 

difficult to ascertain that periods are clearly separated and 

extracted. However, the zero-crossing method appeared to be 

robust when we inspected a large group of speech tokens in our 

experiments. 

 

3.5.5 Time-Domain Resampling 

As we know, a period or multiple periods extracted from a 

signal segment generally do not have an appropriate FFT length 

(power of 2), and need to be extended to an FFT length before 

we do spectral processing. The resampling methods implemented 

in our experiments are illustrated below. 

Method 1: (there was actually no resampling; rather, the 

signal segment was zero-padded to the proper FFT length. This 

method was used in the simulation of regular processing, which 

served as a comparison to the “real” resampling method (Method 

2). Figure 23 illustrates the procedure of Method 1. Note that 

Method 1 was used only in Control Mode, as described in the 

next chapter. 
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 Figure 23.    No resampling, simply zero-padding 

 

Method 2: this method was designed for both Mode 1 and 

Mode 2, which are described in the next chapter. With this 

method, we processed one or more periods extracted from the 

vowel and the resampling was performed on a period-by-period 

basis. Each period was stretched to a desired FFT length 

through resampling. Since the FFT length is generally greater 

than the number of samples in a period, we need to “resample” 

the period with a new sampling rate. In the experiments, we 

used linear interpolation to determine the resampled value 

between the original sample values. 

We first conducted linear interpolation between samples 

of a period to obtain an interpolated signal, which was 

continuous in time and included both sample values and 

interpolated values. This interpolated signal was then 

“resampled” at a proper sampling rate to acquire a new sequence 

of the desired FFT length. This step was repeated on all the 

periods. 

Note that the resampling process may introduce errors. 

The effects of errors depend on the original sampling rate and 
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interpolation method used. Generally, the higher the original 

sampling rate is, the more accurate the interpolation; non-

linear interpolation is better than linear interpolation. In 

this research, since a high sampling rate of 11025 samples/sec 

was used, we decided to perform linear interpolation for 

computational simplicity and efficiency. Figure 24 illustrates 

the processing in Method 2. 

 

Period #1 Period #4Period #2 Period #3

resampling resampling resampling resampling

Resampled
Period #1

Resampled
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Resampled
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Resampled
Period #4
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in the regular window-based processing method. We also found 

that by using (f01/3) scaled frequency range, the formants in 

the spectra of different speakers would line up more closely 

with one another. This would be helpful for the spectral 

analysis for general speakers. 

In the next chapter, a Matlab software implementation of 

this system framework is described. 
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CHAPTER IV 

MATLAB IMPLEMENTATION OF PITCH-SYNCHRONOUS DCTC 

FEATURE COMPUTATIONS 

 

4.1 Overview 

In order to verify and illustrate the pitch-synchronous 

algorithm described in the previous chapter, the algorithms 

mentioned in the last chapter were programmed using Matlab V5.1 

for Windows. This chapter first explains the implementation of 

main functional modules and illustrates the results of 

important processing steps. Then, classification experiments 

with the pitch-synchronous method are described and compared to 

experiments performed using the regular DCTC computation 

method. Finally, conclusions are reached. 

4.1 focuses on the description of major modules in the 

Matlab application. Classification results based on the pitch-

synchronous approach are shown and discussed in 4.2. 

Conclusions regarding the pitch-synchronous method are given in 

4.3. 

 

 

4.2 Implementation Of Pitch-Synchronous DCTC Computations 

The Matlab implementation of the pitch-synchronous DCTC 

feature computations was based on the system framework 

described in 3.4. Two segment extraction and pitch period 
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estimation methods were explored. They were defined as Mode 1 

and Mode 2, respectively. 

In Mode 1, a large segment is first extracted from the 

center of a vowel token, and the pitch period is determined 

based on the whole segment. Then, continuous multiple periods 

are taken out of the segment. Spectral analysis and the 

subsequent DCTC feature computations are both based on these 

multiple periods. 

In Mode 2, we evaluated another approach for pitch-

synchronous analysis. Instead of a single pitch computation for 

the entire large segment, we used a series of short, overlapped 

frames from the token center. The period estimation was 

conducted separately on each individual frame in the series. 

The estimated periods were revised through median smoothing to 

reduce the likelihood of any major errors (such as pitch 

doubling or halving) in the pitch track. Only one period was 

extracted from each frame for spectral analysis. The spectrum 

and DCTC features were computed on each frame separately, and 

the final DCTC feature for a specific token was an average of 

the DCTC features from individual frames. 

What is common to both methods is that we used both 

pitch-dependent and pitch-independent frequency ranges for 

analysis and comparison, as explained in the following 

sections. Note that we use the terms “Mode 1” and “Mode 2” 

repeatedly in following sections while describing the Matlab 

implementation. 
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4.2.1 Generation Of Vowel Token Files 

In the simulation, we first used WINSEL2.EXE, which was 

an application developed in the Old Dominion University Speech 

Lab, to generate two token list files—one for the training set 

and the other for the test set--for the final classification. 

The list files contained paths to all token files in the speech 

database. 

Since the Matlab application was designed to read and 

process tokens of each vowel separately, the training and test 

list files generated by WINSEL2.EXE could not be used directly. 

An extra step was added to create 10 different “sub-list” files 

for the training set and the test set, respectively. 

 

4.2.2 Segment Extraction 

As stated above, two operation modes were implemented 

separately in order to compare different processing and 

classification results. As a matter of fact, the segment 

extraction methods implemented in the two modes were different 

from each other. 

A vowel token file is usually composed of two parts. The 

first part is the header field, and the second is the data 

field. The header field provides information about the token, 

such as token length, header length, sampling rate, and bytes 

per sample, etc. With the information in the header field, we 

were able to identify the center of the data field and extract 

a segment from this portion. 



 62

In Mode 1, multiple periods were extracted for spectral 

analysis and DCTC computations. A long segment, typically 80 

milliseconds, was generally taken from the center of a vowel 

token. This segment would have to be long enough for further 

extraction of multiple periods. Figure 25 shows an 80-ms signal 

segment extracted from the center of vowel token “ah.” 

 

Figure 25.    80-ms segment extracted from the center of token “ah” 
 

For Mode 2, a long segment (typically 300 ms) was first 

extracted from the center of a token. This segment, however, 

was not directly used for pitch period estimation and 

additional processing. Instead, a number of short frames were 

further extracted from this segment. By default, we would 

extract up to 16 frames, with each frame being 26 milliseconds 

long. In an attempt to increase the correlation between 

adjacent frames, frames were overlapped, typically by half of 

the frame length. Figure 26 gives an example of four 

consecutive 26-ms frames, with a 13-ms overlap, extracted from 

the same token “ah” as shown in Figure 25. 
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Frame # 1 Frame # 2 

Frame # 3 Frame # 4 

Figure 26.    4 consecutive frames (26 ms long) with a 13-ms overlap 

 

 

4.2.3 Pitch Period Estimation 

The basic methods for both Mode 1 and Mode 2 were to 

compute the pitch period based on the autocorrelation 

calculations (with some variations between the two modes), as 

was explained in 3.5.2. The actual Matlab implementation was 

also different between Mode 1 and Mode 2. 

The pitch period estimation for Mode 1 was based on the 

theory that the inverse FFT of the power spectrum of a random 

input signal is the autocorrelation of the input sequence 

(Proakis and Manolakis, 1996). The mathematical expression is 

given in Equation 4.1. 
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( ) ( ) dFeF Fj
xxxx

τπτγ 2⋅Γ= ∫
∞

∞−
(4.1)

 

where γxx represents the autocorrelation of the input random 

signal, and ΓXX stands for the power spectral density of the 

input signal. Since the speech signal can be regarded as a 

special type of random signal, this equation also applies to 

our implementation. 

An example of the output autocorrelation sequence of an 

80-ms signal segment for the token “ah” is illustrated in 

Figure 27. Since an 80-ms segment is equivalent to 882 samples 

at a sampling rate of 11025 samples/sec, we chose an FFT length 

of 1024 points, which resulted in an autocorrelation sequence 

of 512 points. 

 
      Figure 27.    Autocorrelation sequence for an 80-ms signal segment of token “ah” 

As we know, the statistical reliability of 

autocorrelation calculations for the speech signal is better in 

large segments than in short frames. Therefore, Equation 4.1 is 

not likely to yield accurate estimates in Mode 2, which is 
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based on short frames. Alternatively, we used Equation 3.9 in 

3.5.2 for Mode 2, which was believed to be more suitable for 

short frames. 

Figure 28 shows the correlation sequence based on 

Equation 3.9. The same vowel token was used as in Figure 27, 

but the input signal was a 26-ms short frame rather than on an 

80-ms segment. Note that this short frame is 286 points long at 

a sampling rate of 11025 samples/sec, and the length of the 

correlation sequence is 143 points. 

    Figure 28.    Autocorrelation sequence for a 26-ms signal frame of token “ah” 

 

Once the autocorrelation sequence is defined, the next 

step is to identify the peak index in the sequence, and use 

this index as the pitch period. One or more periods can be 

identified in the original signal segment. 

The way of finding the autocorrelation peak value in the 

sequence is straightforward and applies to both Mode 1 and Mode 

2. A typical implementation is: starting from the first index, 

go through the whole sequence, and the first index with a value 

above a certain threshold is deemed as the pitch period. In the 
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experiment, 0.8 was chosen as the default threshold, which was 

empirically determined to be appropriate for most cases. 

Since we were dealing with steady-state vowel speech 

signal, which is quasi-periodic, some measures were taken to 

prevent obviously incorrect period estimations. 

The first measure was setting a reasonable range for 

searching for the peak value index in the autocorrelation 

sequence. Observations of the autocorrelation sequences of a 

number of tokens showed that for some tokens, there were 

spurious peaks at very small indices. To eliminate these kinds 

of errors, we defined a revised frequency range between 70 Hz 

and 500 Hz, which corresponds to an index range between 22 

samples and 157 samples at a sampling rate of 11025 

samples/sec. By inspecting hundreds of tokens from all types of 

genders, we made sure that this was an appropriate index range 

that helped avoid incorrect period estimation. 

There are also some cases in which all the peak values in 

the autocorrelation sequence are below the threshold, because 

of overall “poor” periodicity. Hence, it is possible that when 

we go through the entire sequence, we cannot find an index 

corresponding to a peak value above the threshold. To avoid 

this case, we visually inspected a number of tokens from male, 

female and child speakers, and selected three separate 

fundamental frequency ranges as shown below. More than 96% of 

the speakers inspected fell into these fundamental frequency 

ranges. 
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For male speakers: [80Hz, 155Hz]; 

For female speakers: [135Hz, 275Hz]; 

For child speakers: [185Hz, 370Hz] 

For the training set, the speaker gender information was 

obtained from the token list files. This way, whenever we could 

not find an index that corresponded to an autocorrelation peak 

value above the threshold, we would detect the peak value in an 

index range corresponding to one of the fundamental frequency 

ranges defined above. The index that corresponded to this peak 

value was used as the pitch period. 

For the test set, however, speaker gender information was 

not available. Hence, we could not take advantage of the 

frequency ranges above. In this case, we detected the 

autocorrelation peak in the general pitch frequency range for 

all genders, which was defined as [70Hz, 500Hz], and used the 

corresponding index as the pitch period. 

For some 600 tokens that we visually inspected in the 

experiment, we were able to obtain reasonable pitch period 

identification for over 96% of all tokens, with the frequency 

range revision measures being taken as described above. Still, 

there were less than 4% of the tokens whose periodicity was too 

“bad” and could not be determined correctly in any way. In this 

case, we simply used the index, which corresponded to the 

maximum autocorrelation value in the general frequency range of 

[70Hz, 500Hz], as the pitch period. These “poorly periodic” 

tokens, however, were still included in the classification 
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experiments in order that the database be identical for pitch-

synchronous and non pitch-synchronous cases. This presumably 

degraded the classification results for the pitch-synchronous 

cases. 

Once the pitch period was determined, we were able to 

extract one or more periods from the original signal segment, 

as described in the following section. 

 

4.2.4 Single Or Multiple Period Extraction 

In Mode 1, we extracted multiple periods for further 

spectral analysis, since we believed that one quasi-period 

might not provide complete information. 

In our experiments, we used zero-crossing detection to 

help identify the edges of period. This method is illustrated 

in 3.5.4. To implement this method, we found the peak in the 

first pitch period of the signal segment, then detected zero-

crossing points before and after the peak, respectively. The 

index of the zero-crossing point closest to the peak was used 

as the starting index for the extraction of multiple periods. 

We then added the length of one pitch period to the starting 

index. The zero-crossing in the nearest vicinity was the ending 

index for the first period. 

In the meantime, the ending index of the first period was 

deemed as the starting index of the second period. By adding 

the length of one pitch period and finding zero-crossings in 

its vicinity, we were able to determine the ending index of the 

second period. This process was conducted repeatedly until we 
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found the starting and ending indices for all the periods to be 

extracted. In our experiment, 4 periods were generally 

extracted. Figure 29 shows an example of zero-crossing based 

period-edge detection. Vertical lines in this figure mark the 

period edges, which are also zero-crossing points. As can be 

seen in Figure 29, 6 complete periods were identified. 

 

Figure 29.    Multiple period extraction from a 80 ms segment of token “ah” 

 

In Mode 2, we used exactly the same zero-crossing based 

method, as in Mode 1, to detect the period edges. An example is 

shown in Figure 30. The two vertical lines mark the edges of a 

single pitch period. 

Figure 30.    Single period extraction from a 26-ms segment of token “ah” 
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As compared to Mode 1, which extracted multiple periods 

from the same large segment, we extracted only one pitch period 

out of a short signal frame in Mode 2. Subsequent spectral 

processing was based on a single pitch period from each frame, 

instead of on multiple periods. 

Since we used consecutive, overlapping frames, the pitch 

period should not vary much from frame to frame. In order to 

avoid accidental large variations in the pitch period 

estimation and ensure more accurate period extraction, we used 

an extra median smoothing step in Mode 2, which was not 

necessary in Mode 1. 

Except for end points, we used a symmetrical median 

smoothing window, which was generally 3 points or 5 points 

long. Smoothing was performed on a pitch period value only when 

it was M% in deviation from the median value within the 

corresponding smoothing window. 

In the Matlab implementation for Mode 2, we first 

estimated the pitch period for each of the overlapped frames. 

These pitch periods formed a “period vector.” Median smoothing 

was then performed on this vector to acquire a smoothed “period 

vector”. The following Matlab capture shows how median 

smoothing was done on the estimated pitch periods from 16 

overlapped frames. The smoothing window length was 5, and the 

threshold for smoothing was set to 3%(M=3). Note that 

smoothing was actually done only to the underlined values, 

where large variations (greater than 3%) occurred. 
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Original_Period_Vec = 
 

    111   112   112   112   112   112   113   113   112   113   112   104   117   101   108   115 
 
Smoothed_Period_Vec = 
 

    111   112   112   112   112   112   113   113   112   113   112   112   108   108   108   108 

After smoothing, more accurate pitch period values for 

all frames were obtained. We then began to extract a single 

pitch period from each of the frames, and conduct spectral 

processing on this period. The final spectrum for a specific 

token was the average of the spectra of all the individual 

frames extracted from this token. 

 

4.2.5 Resampling 

As discussed in 3.5.5, time-domain resampling is required 

for the proper spectral processing in both Mode 1 and Mode 2. 

In the experiments, we used a resampling method on a period-by-

period basis. This resampling method applied to both Mode 1 and 

Mode 2. The only difference is that there are multiple periods 

to be resampled one by one in Mode 1, while there is only one 

period to be resampled in Mode 2. 

As a comparison, an extra case named the Control Mode was 

also implemented. For the Control Mode, there was actually no 

resampling, but just zero-padding. The algorithms of both 

resampling and zero-padding have been illustrated in 3.5.5. 

Resampling results for different methods are shown in Figure 31 

and Figure 32. 
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In Figure 31, the input signal is a 4-period triangular 

signal, with the period being 9 milliseconds and a sampling 

rate of 11025Hz. The top graph shows Control Mode, in which the 

original signal was zero-padded to an appropriate FFT length of 

512. The bottom plot illustrates the “resampled” signal, which 

was extended to an FFT length of 512 based on period-by-period 

resampling. 

 

    Figure 31.    Time-domain resampling of triangular signal 

 

Figure 32 further illustrates the spectral results of 

resampling. The two figures are the spectra of their 

corresponding time-domain waveforms in Figure 31. 
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    Figure 32.    Spectra of Triangular Waveforms in Figure 31 
 

As we can see from the examples in Figure 31 and Figure 

32, when proper resampling was used, fundamental frequency and 

its harmonics were emphasized and spurious spectral peaks were 

reduced. This implies that resampling is desirable for spectral 

processing based on fundamental frequency and its harmonics. 

 

4.2.6 Spectral Analysis 

As stated above, we explored two methods of pitch-related 

processing: Mode 1 was based on multiple periods extracted from 

a large segment, while Mode 2 was based on single periods taken 

from short frames. Spectral analysis was performed the same way 

for both Mode 1 and Mode 2, except for one extra step 

implemented in Mode 1. That is, frequency downsampling was 
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conducted to acquire the spectrum of a single period from the 

spectrum based on multiple periods. An explanation of frequency 

downsampling was given in 3.3. 

It is obvious that no frequency downsampling is required 

in Mode 2, since it is always based on single periods. 

As a comparison, a regular method that was not based on 

pitch periods was first implemented. Figure 33 shows the 

spectrum of a token processed using the regular method, in 

which multiple periods were zero-padded to a proper FFT length. 

In the regular method, no frequency scaling was implemented, 

and the whole spectral index range corresponded to a fixed 

frequency range of [100Hz, 5000Hz]. 

 

Figure 33.    Power spectrum of token “ee” without time-domain resampling 

A sample spectrum generated in Mode 1 is illustrated in 

Figure 34. Note that time-domain resampling was conducted 

period by period in this mode. 

Non linear frequency scaling, as described in 3.5.3, was 

conducted in Mode 1. Note that this figure is based on the 

(f0
1/3) scaled frequency range of [103Hz, 3603Hz], which includes 

the fundamental frequency 103 Hz and its 35 harmonics. 
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Figure 34.    Power spectrum over scaled frequency range for Mode 1 
 

Figure 34 actually shows the envelope of the fundamental 

frequency and its harmonics. Although Figure 34 cannot be 

directly compared to Figure 33 due to different frequency 

ranges, it is obvious that the overall frequency envelope 

remains consistent in both figures on the same frequency range, 

which implies the validity of Mode 1. 

Since Mode 2 was based on single periods from the 

individual frames, we used the same resampling method as in 

Mode 1 to resample only one period extracted from each 

individual frame. Figure 35 illustrates the spectrum of a 

single period extracted from a 26-ms short frame for the same 

token “ee” as in Figure 34 and Figure 33. It can be observed 

that Figure 35 shows a quite similar spectrum compared to that 

in Figure 34, despite the fact that the processing in Mode 1 

and Mode 2 was quite different. Obviously the processing in 

Mode 2 was consistent with the implementation in Mode 1. 
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Figure 35.    Power spectrum over scaled frequency range for Mode 2 
 

 

4.2.7 Generation Of DCTC Features 

Before the DCTC features were determined, a pre-defined 

cosine basis vector was generated according to the algorithm 

described in 2.3.1. 

When we computed DCTC features, we explored two frequency 

ranges: one was fundamental frequency dependent, or f0 

dependent; the other was fundamental frequency independent, or 

f0 independent. For the f0 dependent range, we simply calculated 

pre-defined basis vectors over the whole frequency range, 

namely, [0, Fs/2]; for the f0 independent range, we computed pre-

defined basis vectors over a user-defined frequency range [Fmin , 

Fmax]. 

The pre-defined basis vectors and spectra were used to 

compute the final DCTC features according to the formula given 

in Equation 2.1 in 2.3.1. 

In generating DCTC features, it was essential that 

frequency components be multiplied by their corresponding basis 

vector components on exactly the same frequency range and with 

the same frequency spacing. The rest of this section explains 
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how the frequency range and its spacing were determined in 

different operation modes. 

When we considered the f0 independent frequency range, the 

pre-defined basis vectors were computed over [Fmin , Fmax], where 

Fmin and Fmax were the lower and upper frequency limits defined in 

the configuration file. As implemented in the simulation, a 

control mode and two new operation modes, Mode 1 and Mode 2, 

are described below: 

1. Control mode: in this mode, the spectrum had the same 

frequency spacing as in pre-defined basis vectors. In 

this case, spectral components over the range of  [Fmin 

, Fmax] were directly multiplied by basis vector 

components over the same range to generate the DCTC 

features. 

2. Mode 1 and Mode 2: for these two modes, the frequency 

samples had a spacing of f0. However, the pre-defined 

basis vector components were computed with a frequency 

spacing of  

fft

s

N
F

   (4.3) 

 

where Fs was the sampling rate, and Nfft  was the FFT 

length per period. Due to the difference in frequency 

spacing, interpolation was used to make the spectrum 

have a frequency spacing as shown in Expression 4.3. 

This extra processing step produced a one-to-one 
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mapping between the frequency components and basis 

vector components over the same scaled frequency 

range. Thus, DCTC features could be properly computed. 

For the f0 dependent frequency range, the (f0
1/3) scaled 

frequency range varies from token to token. Hence, the pre-

defined basis vectors could not be computed over a fixed 

frequency range. Instead, the basis vectors were computed over 

the whole frequency range [0, Fs /2], where Fs was the sampling 

rate. Again, the processing for different modes was also 

different.  

1. Control mode: in this mode, fixed frequency range 

[Fmin, Fmax] was first nonlinearly scaled to the 

frequency range of [Fmin_scaled, Fmax_scaled], with the 

algorithm described in 3.5.3. Then, basis vectors on 

the same scaled frequency range were multiplied by 

the corresponding spectral components to generate 

DCTC features. Note that in this mode, the frequency 

spacing between frequency samples was the same as 

expressed in Equation 4.3. 

2. Mode 1 and Mode 2: for these two modes, the scaled 

frequency range for spectral computations still had 

a spacing of f0. Therefore, we interpolated the f0-

spaced, scaled spectrum to a new spectrum, which had 

the same frequency spacing as basis vectors. The 

DCTC features were computed by multiplying the 

frequency samples with their corresponding basis 
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vector components on the same range and with the 

same frequency spacing. 

 

 

4.3 Experiments 

To verify the effects of the Matlab simulation described 

in 4.2, the generated DCTC features (15 features were used in 

the experiments) were used with an artificial neural network 

classifier for classification. Experiment results are 

summarized and analyzed in this part. 

 

4.3.1 Speech Database 

In this research, we used a speech database recorded by 

the Old Dominion University Speech Lab. The speakers included 

male, female and child. For each of the speakers, up to 3 

iterations were recorded for the same vowel token. 

In the experiments, we chose 24 speakers from male, 

female and child group, respectively, to form the training set. 

For each vowel, 3 iterations of the same speaker were used. 

Similarly, we chose 8 speakers from different gender/age groups 

to generate the training set. There were also 3 iterations for 

each of the 10 vowel tokens. Note that the training set and the 

test set were entirely different from each other to ensure that 

these results correspond to a speaker independent case. 

In summary, the training set contained 72 speakers and a 

total of 2160 vowel tokens; the test set contained 24 speakers 

and a total of 720 vowel tokens. 
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4.3.2 Neural Network Classifier 

Neural networks are widely used in the field of speech 

recognition because they are powerful and flexible tools for 

pattern recognition. In this research, we used a Multiple-Layer 

Perceptron (MLP) neural network for classification. The MLP 

network contains a number of nodes called neurons. A group of 

neurons forms a layer. There may be one or more layers in a MLP 

network. 

x1 

f(neti ) 

θi 

-1 
win 

wi2 

wi1 

neti 

x2 

oi 

xn 

Figure 36.    The structure of a neuron 
 

A neuron is comprised of one or more inputs, associated 

weights, an internal offset and one output. In Figure 36, x1 -xn 

are input values to the ith neuron, wi1-win represent the weights 

associated with their corresponding input values. θk is the 

internal offset, and f(neti) stands for the activation function. oi 

is the output of the neuron. The structure in Figure 36 can be 

expressed in the equation below. 

( ) 
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⋅== ∑

=
i

n

k
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1
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The neural network classifier used in our experiments 

included one input layer, one output layer and one hidden 

layer. The overall structure of the neural network classifier 

is illustrated in Figure 37. 

 

Hidden Layer 
(25 neurons) 

H25

H3

H2

H1

O10 

O2

O1

I15 

I2 

I1 

Output Layer 
(10 neurons) 

Input Layer 
(15 neurons)

x1 o1 

x2 o2 

x15 o10 

Figure 37.    Structure of the neural network classifier in the experiments 

The input layer consisted of 15 neurons corresponding to 

15 DCTC features; and the output layer consisted of 10 neurons 

that output associated normalized weights for classifying the 

input features. The hidden layer with 25 hidden neurons was 

located between the input layer and the output layer. 

 

4.3.3 Experiment Results 

Table 3 shows the classification results with general 

speakers for different operation modes in the experiments. 
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General Speakers ( 24 x3 speakers for training, 8x3 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 91.2% 79.9% 
Control Mode (regular 

processing) 90.4% 82.3% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

89.2% 80.6% 
Mode 1(period-by-

period resampling on 
multiple periods) 

88.9% 81.9% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 89.1% 80.5% 
Mode 2(resampling on 

a single period) 89.8% 81.2% 

Table 3.   Classification results in Control Mode, Mode 1 and Mode 2, for general speakers 

 

In Table 3, the Control Mode was used to simulate the 

regular processing method developed in the Old Dominion 

University Visual Speech Display system, which was not based on 

integer multiples of the pitch period. In the Control Mode, we 

used a 20-ms fixed frame length, with a 15 ms overlap. 

Frequency warping, with a warping factor of 0.45, was also 

used. The sampling rate was 11025 samples/sec, and the FFT 

length used was 256. In the meantime, the results with Mode 1 

and Mode 2 are also shown in the same table. In Mode 1, we 

extracted 4 periods from an 80-ms segment, and used an FFT 

length of 1024 for these 4 periods. For Mode 2, we used sixteen 

26-ms frames, with a 13-ms overlap between frames. 

 

Male Speakers ( 24 speakers for training, 8 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 98.2% 88.7% 
Control Mode (regular 

processing) 98.6% 90.0% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set 



 83

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

98.9% 90.0% 
Mode 1(period-by-

period resampling on 
multiple periods) 

98.2% 87.5% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 99.2% 89.5% 
Mode 2(resampling on 

a single period) 98.6% 87.9% 

Table 4.    Classification results in Control Mode, Mode 1 and Mode 2, for male speakers 

 

Table 4, Table 5 and Table 6 contain the classification 

results of three additional tests for male speakers, female 

speakers and child speakers, respectively. Note that the tokens 

used in these tests come from the same database as in the test 

with general speakers. 

As can be seen in Table 4, the use of f0 dependent 

frequency range did not lead to better classification 

performance in Mode 1 and Mode 2 for the case of male speakers. 

In contrast, for female and child speakers as in Table 5 and 

Table 6, f0 dependent frequency range did result in higher 

performance. We found that the tokens of male speakers 

generally have better periodicity and more distinctive 

harmonics in spectrum than those of female and child speakers. 

This implies that the (f0 
1/3) frequency scaling may not be 

necessary for processing tokens that have good periodicity. 

 

Female Speakers ( 24  speakers for training, 8 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 97.4% 88.1% 
Control Mode (regular 

processing) 97.2% 89.8% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

98.0% 81.8% 
Mode 1(period-by-

period resampling on 
multiple periods) 

96.2% 84.8% 
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Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 96.4% 85.6% 
Mode 2(resampling on 

a single period) 97.3% 89.0% 

Table 5.    Classification results in Control Mode, Mode 1 and Mode 2, for female speakers 

 

The test results in Table 6 shows inferior performance 

with child speakers as compared to male and female speakers. It 

was found that, by visual inspection, the tokens of child 

speakers in the database generally have worse periodicity than 

those of male and female speakers. This implies that f0 

dependent processing may not result in good performance when 

the periodicity of speech signal is not good. 

If we study the test results for the Control Mode in 

Table 4 through Table 6, we may find that the use of f0 

dependent frequency range helps increase the classification 

performance for the regular processing method with all types of 

speakers. This shows again that f0 could be a useful clue for 

speech recognition. 

It can be seen that no significant performance 

improvement was obtained when using the multiple-period based 

method instead of the regular method. There could be three 

possible reasons. 

Child Speakers ( 24 speakers for training, 8 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 95.6% 77.8% 
Control Mode (regular 

processing) 96.2% 79.1% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

87.2% 72.6% 
Mode 1(period-by-

period resampling on 
multiple periods) 

86.7% 75.7% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set 
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Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 89.5% 69.7% 
Mode 2(resampling on 

a single period) 87.5% 71.1% 

Table 6.    Classification results in Control Mode, Mode 1 and Mode 2, for child speakers 

 

The first reason was related to the random 

characteristics of speech signal. The speech signal by nature 

is random and quasi-periodic. The quasi-periodicity of a speech 

token contributed to the inaccuracy of recognition in the 

experiments. In this research, we visually inspected hundreds 

of tokens, and found that some 4% of the total tokens did not 

have an acceptable periodicity suitable for period-based 

processing. These tokens, however, were included in the 

processing and classification to maintain generality. Errors 

could be introduced due to those poorly periodic tokens. 

The second reason might due to the pitch period 

estimation. In our experiments, we utilized a method of 

autocorrelation and zero-crossing detection. This method was 

proved to be effective through visual inspection. However, we 

were concerned about the fact that the random characteristics 

of speech signal could lead to the incorrect detection of 

period edges. This could also result in overall degradation in 

classification performance. 

The third reason might come from the interpolation 

process before DCTC features were computed. Since the frequency 

spacing of the basis vector computations might not be the same 

as that for spectrum computations, linear interpolation was 

required to obtain unique frequency spacing. The interpolation 
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process could also bring in some errors in spectrum, thus 

making the final DCTC features inaccurate. 

As can be seen in Table 3, the processing based on single 

periods extracted from short frames, which was implemented in 

Mode 2, contributed to roughly the same recognition results as 

compared to Mode 1, where spectral processing was based on 

multiple periods. This shows that the processing based on short 

frames and spectral averaging did not excel in performance, 

compared to the method based on multiple periods extracted from 

a large segment. 

One interesting point we found in all the operation modes 

is that, the f0  dependent frequency range was helpful in getting 

better recognition results regardless of what method was used. 

If we compare the test results for the f0 dependent range and 

the fixed frequency range, it is obvious that there was an 

increase in recognition rate when the f0 dependent frequency 

range was used to compute DCTC features. This implied that f0, 

the fundamental frequency, could be an important clue in 

recognition no matter what specific method was used. 

Another interesting observation was the DCTC feature 

stability over time. For Mode 1, it is hard to illustrate this 

point, since the multiple periods were extracted from the 

center of the token only once. However, because Mode 2 

extracted a series of short, overlapped frames from the token, 

we were able to illustrate the variations of the DCTC feature 

values over time. 
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Figure 38.    First four DCTC feature values over time for token “ah” 

 

As shown in Figure 38, sixteen overlapped frames were 

extracted from the center of the token, with each frame being 

26 ms and the overlap between frames being 13 ms. Figure 10 in 

Chapter II illustrated the first four DCTC features of the same 

token generated in the Control Mode, in which 16 non-

overlapping, 15-ms frames were used. 

If we compare Figure 38 with Figure 10, it can be seen 

that the short-frame based pitch-synchronous method, 

implemented in Mode 2, reduces the variability of the DCTC 

features, although the final classification results did not 

show significant improvements compared to the regular method 

implemented in the Control Mode. 
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4.4 Conclusions 

In this chapter, we explored the Matlab software 

implementation of the system described in Chapter III. The 

implementation of the pitch period estimation, which is the 

fundamental of this system, was visually examined to be robust. 

We plotted the signal waveforms of 600 speech tokens, in which 

estimated periods were marked, and found that this period 

estimation method worked well for over 96% of all the tokens. 

For less than 4% of the tokens, whose periodicity could not 

even be identified by visual inspection, the pitch period 

estimation method did not work. 

The final classification results showed that the pitch-

synchronous processing did not outperform the regular window-

based method, although the pitch-synchronous method was shown 

to help reduce spectral smearing. This implies that window 

effects could be a minor factor in speech recognition. However, 

we found that the spectral analysis on pitch-dependent, (f01/3) 

scaled frequency ranges leads to better classification results, 

as compared to pitch-independent frequency ranges. In addition, 

pitch-synchronous method also helped reduce the DCTC 

variability. 
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CHAPTER V 

ACHIEVEMENTS AND FUTURE WORK 

 

5.1 Achievements 

 The whole work in this research was implemented in two 

major steps. The first step was focused on the exploration of 

DCTC feature variability and the algorithms to reduce this 

variability. In the second step, we implemented a pitch-

synchronous system aimed at reducing DCTC feature variability 

from a new perspective. 

 We found that the DCTC feature variability, which showed 

up in both real-time Visual Speech Display and non real-time 

analysis, was due to the noise and inherently unstable 

characteristics of the DCTC features. Noise may come from the 

background and PC components, including the sound card and 

other components. 

 We also explored various methods to reduce DCTC 

variability. Undoubtedly, using a high quality sound card and 

PC will help reduce this variability. Our experimental results 

also indicated it always helped reduce DCTC variability when 

appropriate length overlapping frames, proper frequency warping 

and time smoothing were used. 

 In our second attempt to reduce DCTC variability, we 

implemented a new pitch period based algorithm and simulated it 

in Matlab. This algorithm consisted of extracting a long 

segment or a short frame from the center of a vowel, estimating 
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the pitch period based on these segments or short frames using 

the autocorrelation, and generating DCTC features utilizing 

pitch-dependent or pitch-independent spectra. The Matlab 

simulation not only fully implemented this algorithm, but also 

included extra steps to handle exceptions when some poorly 

periodic tokens were processed. 

 Visual inspections on hundreds of tokens showed that the 

pitch period estimation method was successful for over 96% of 

all tokens. We also showed that time-domain resampling helped 

increase frequency-domain resolution, and that spectral 

analysis based on pitch-dependent frequency range produced 

better classification results than regular pitch-independent 

frequency range. 

 

 

5.2 Future Work 

 The utilization of pitch-synchronous analysis in vowel 

token recognition is a new and promising approach. However, 

this method may be limited by the inherently random 

characteristics of speech signals. This probably is the reason 

why this method does not show improvements in classification 

results as compared to conventional non pitch-synchronous 

methods. 

 For the pitch-synchronous method, the key point is the 

estimation of pitch period. Although the estimated pitch 

periods have been visually inspected to be accurate, we are not 

able to check temporal details at the edges of period. It is 
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likely that for some tokens we could not correctly determine 

the period edges due to the randomness of temporal details in 

the token. 

 Future work may focus on a better algorithm in 

determining the pitch period from a segment, and in detecting 

the period edges when multiple periods are required to be 

extracted from the token for analysis. 

 Further experiments can also be done using only those 

tokens with “good” periodicity, i.e. the tokens whose 

autocorrelation peak value exceeds the threshold 0.8, as 

discussed in Chapter IV. The results of these experiments will 

provide more information about the extent of performance 

degradation in the presence of “poorly periodic” tokens. 

 



 92

REFERENCES 
 
 
Betancourt, O., and Antrobus, J. (1998). “Using natural 
 harmonics as acoustic features in speech recognition: a  vowel 
classification example”, J. Acoust. Soc. Am.  Manuscript, 
JASA97/015 
 
Bladon, R.A.V., (1982). “Arguments against formants in the 
 auditory representation of speech,” from The Representation 
 of Speech in the Peripheral Auditory System, edited by R. 
 Carlson and B. Granstrom (Elsevier, Amsterdam), pp. 95-102 
 
Haddad, R.A., and Parsons, T.W. (1991). “Digital signal 
 processing: theory, applications, and hardware,” Computer 
 Science Press, 1991, pp. 367-370 
 
Hu, Z., and Barnard, E. (1997). “Smoothness analysis for 
 trajectory features,” ICASSP-97, Volume 2, 979-982 
 
Kelkar, S.U., (1992). “Formant estimation from DCTC’s using a 
 feedforward neural network,” Master’s Thesis, Old Dominion 
 University, May 1992 
 
Klein, W., Plomp, R., and Plos, L. (1970). “Vowel spectra, 
 vowel spaces, and vowel identification,” J. Acoust. Soc. Am. 
 48, 999-1009 
 
Lippmann, R., (1987), “An introduction to computing with 
 neural nets,” IEEE ASSP Magazine, April, 4-22 
 
Miller, J.D. (1989). “Auditory-perceptual  representation of 
 the vowel,” J. Acoust. Soc. Am. 85, 2114-2134 
 
Nossair, Z.B., (1989). “Dynamic spectral shape features as 
 acoustic correlates for stop consonants,” Research Report, 
 Old Dominion University Research Foundation, December 1989 
 
Nossair, Z., Silsbee, P., and Zahorian, S. (1995). “Signal 
 modeling enhancements for automatic speech recognition,” 
 ICASSP-95, pp. 824-827 
 
Peterson, G.E., and Barney, H.L. (1952). “Control methods used 
 in a study of the vowels,” J. Acoust. Soc. Am.24, 175- 184 
 
Plomp, R. Plos, L.C.W., and van de Geer, J.P. (1967). 
 “Dimensional analysis of vowel spectra,” J. Acoust. Soc. Am. 
 41, 707-712 
 
Pols, L.C.W., van der Kamp, L.J.Th., and Plomp, R. (1969). 
 “Perceptual and physical space of vowel sounds,” J.Acoust. 
 Soc. Am. 46, 458-467 
 



 93

Proakis, J.G, and Manolakis, D.G. (1996). “Digital Signal 
 Processing: Principles, Algorithms, and Applications,” 3rd 
 Edition, Prentice Hall, pp. 327-330 
 
Talkin, D., (1995). “A robust algorithm for pitch tracking 
 (RAPT),” from Speech Coding and Synthesis, edited by W.B. 
 Kleijn and K.K. Paliwal (Elsevier Science B.V.), pp. 502-507 
 
Zahorian, S.A., and Amir Jalali Jagharghi(1993). “Spectral-
 shape features versus formants as acoustic correlates for 
 vowels,” J. Acoust. Soc. Am. 94(4), 1966-1982 
 
Zahorian, S.A., and Gordy, P.E.(1983). “Finite impluse 
 response(FIR) filters for speech analysis and synthesis,” 
 ICASSP-83, 808-811 



 

General Speakers ( 24 x3 speakers for training, 8x3 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 91.2% 79.9% 
Control Mode (regular 

processing) 90.4% 82.3% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

89.2% 80.6% 
Mode 1(period-by-

period resampling on 
multiple periods) 

88.9% 81.9% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 89.1% 80.5% 
Mode 2(resampling on 

a single period) 89.8% 81.2% 

Table 3.    Classification results with Control Mode, Mode 1 and Mode 2, for general speakers 

 

Male Speakers ( 24 speakers for training, 8 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 98.2% 88.7% 
Control Mode (regular 

processing) 98.6% 90.0% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

98.9% 90.0% 
Mode 1(period-by-

period resampling on 
multiple periods) 

98.2% 87.5% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 99.2% 89.5% 
Mode 2(resampling on 

a single period) 98.6% 87.9% 

Table 4.    Classification results with Control Mode, Mode 1 and Mode 2, for male speakers 

 

Female Speakers ( 24  speakers for training, 8 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 97.4% 88.1% 
Control Mode (regular 

processing) 97.2% 89.8% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

98.0% 81.8% 
Mode 1(period-by-

period resampling on 
multiple periods) 

96.2% 84.8% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 96.4% 85.6% 
Mode 2(resampling on 

a single period) 97.3% 89.0% 

Table 5.    Classification results with Control Mode, Mode 1 and Mode 2, for female speakers 

 



Child Speakers ( 24 speakers for training, 8 speakers for test) 
Processing  

based on fixed frequency range 
Processing  

based on f0 dependent frequency range 
Training 

Set 
Test 
Set 

Training 
Set 

Test 
Set Control Mode (regular 

processing) 95.6% 77.8% 
Control Mode (regular 

processing) 96.2% 79.1% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 1(period-by-

period resampling on 
multiple periods) 

87.2% 72.6% 
Mode 1(period-by-

period resampling on 
multiple periods) 

86.7% 75.7% 

Training 
Set 

Test 
Set 

Training 
Set 

Test 
Set Mode 2(resampling on a 

single period) 89.5% 69.7% 
Mode 2(resampling on 

a single period) 87.5% 71.1% 

Table 6.    Classification results with Control Mode, Mode 1 and Mode 2, for child speakers 

 

Table 4, Table 5 and Table 6 contain the classification 

results of three additional tests for male speakers, female 

speakers and child speakers, respectively. Note that the tokens 

used in these tests come from the same database as in the test 

with general speakers. 

As can be seen in Table 4, the use of f0 dependent frequency 

range did not lead to better classification performance in Mode 1 

and Mode 2 for the case of male speakers. In contrast, for female 

and child speakers as in Table 5 and Table 6, f0 dependent 

frequency range did result in higher performance. We found that 

the tokens of male speakers generally have better periodicity and 

more distinctive harmonics in spectrum than those of female and 

child speakers. This implies that the (f0 
1/3) frequency scaling may 

not be necessary for processing tokens that have good 

periodicity. 

The test results in Table 6 shows inferior performance with 

child speakers as compared to male and female speakers. It was 

found that, by visual inspection, the tokens of child speakers in 



the database generally have worse periodicity than male and 

female speakers. This implies that f0 dependent processing may not 

result in good performance when the periodicity of speech signal 

is not good. 

If we study the test results for the Control Mode in Table 

4 through Table 6, we may find that the use of f0 dependent 

frequency range helps increase the classification performance for 

the regular processing method with all types of speakers. This 

shows again that f0 could be a useful clue for speech recognition. 
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