

VARIABILITY ANALYSIS OF DISCRETE COSINE TRANSFORM

COEFFICIENT (DCTC) FEATURES FOR SPEECH PROCESSING

by

Bingjun Dai

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
December 1998

ABSTRACT

VARIABILITY ANALYSIS OF DISCRETE COSINE TRANSFORM
COEFFICIENT (DCTC) FEATURES FOR SPEECH PROCESSING

Bingjun Dai

Old Dominion University, 1998
Director: Dr. Stephen A. Zahorian

In this research, the variability of Discrete Cosine

Transform Coefficient (DCTC) features was investigated.

Additionally, a new pitch-synchronous processing method was

explored to increase the stability of features and to reduce

window effects when compared to the regular method. The noise

sources that lead to feature variability were analyzed, and

different smoothing methods were tested. It was found that

longer frames, frequency warping, time smoothing of the log

spectrum, and DCS level time smoothing, all help reduce DCTC

variability and increase classification performance. The pitch-

synchronous method was implemented with Matlab. Important

processing methods, including pitch period estimation, time-

domain resampling, and pitch-dependent scaled frequency range,

were investigated. Twenty-four training speakers and eight test

speakers were used for the classification tests. The final

results showed similar performance as compared to the

conventional method, which implies that window effects are a

minor factor in speech recognition. However, processing using a

pitch-dependent spectrum led to better performance than the

conventional pitch-independent method. In addition, the new

method appears to reduce DCTC feature variability by a small

amount.

 iv

ACKNOWLEGMENTS

I would like to express my gratitude to my advisor, Dr.

Stephen A. Zahorian. His expertise and insight in the field of

Speech Recognition has been a great help in this research. This

work is impossible without his invaluable guidance, constant

support and patience.

I would also give my thanks to the additional members of

the advisory committee, Dr. Stoughton and Dr. Gray, for their

precious time in reviewing this thesis and constructive

suggestions.

Special thanks to my co-workers at ODU speech lab,

Matthew Zimmer and Montri Karnjanadecha, for their suggestions

and assistance.

 v

TABLE OF CONTENTS

Page

LIST OF TABLES..vii

LIST OF FIGURES..viii

Chapter

 I. INTRODUCTION..1
1.1 Background...1
1.2 Objective..3
1.3 Overview Of Following Chapters.....................5

 II.DCTC FEATURE VARIABILITY................................6
2.1 Overview...6
2.2 Visual Speech Display (VSD) Software...............6
2.3 DCTC Feature Variability Analysis.................11

2.3.1 DCTC Features...............................11
2.3.2 Possible Coding Errors......................14
2.3.3 Background And Component Noise..............15
2.3.4 Possible Inherently Unstable Nature of DCTC. .

Features....................................19
2.3.5 Experimental Efforts To Mitigate Feature.

Variability..............................
2.3.6 Classification Tests With Time Smoothing

Spectrum.................................
2.4 Conclusions....................................

III.PITCH-SYNCHRONOUS DCTC FEATURE COMPUTATIONS.........
3.1 Overview.......................................
3.2 Pitch Periodicity In Voiced Speech.............
3.3 Eliminating Windowing Effects..................
3.4 System Framework...............................
3.5 Main Functional Blocks.........................

3.5.1 Segment Extraction.......................
3.5.2 Pitch Period Estimation..................
3.5.3 Scaled Pitch-Dependent Frequency Range...
3.5.4 Multiple Quasi-Periods...................
3.5.5 Time-Domain Resampling...................

3.6 Conclusions....................................

 IV. MATLAB IMPLEMENTATION OF PITCH-SYNCHRONOUS DCTC FEAT
 COMPUTATIONS..

4.1 Overview.......................................
4.2 Implementation Of Pitch-Synchronous DCTC.

Computations...................................
.

...
On.
...
...

...

...

...

...

...

...

...

...

...

...

...

...

URE
...
...
...
...
.

21
.
.
27
32

35
35
36
37
41
44
44
45
48
53
55
57

.
5
5
.
5

.

9
9
.
.

9

 vi

 Page

4.2.1 Generation Of Vowel Token Files.............61
4.2.2 Segment Extraction..........................61
4.2.3 Pitch Period Estimation.....................63
4.2.4 Single Or Multiple Period Extraction........68
4.2.5 Resampling..................................71
4.2.6 Spectral Analysis...........................73
4.2.7 Generation Of DCTC Features.................76

4.3 Experiments......................................79
4.3.1 Speech Database.............................79
4.3.2 Neural Network Classifier...................80
4.3.3 Experiment Results..........................82

4.4 Conclusions......................................88

 V. ACHIEVEMENTS AND FUTURE WORK..........................89
5.1 Achievements.....................................89
5.2 Future Work......................................90

REFERENCES...92

 vii

LIST OF TABLES

TABLE Page

1. Classification performance of different smoothing methods
after log scaling...30

2. Classification performance of different smoothing methods

before log scaling..31

3. Classification results in Control Mode, Mode 1 and

Mode 2, for general speakers..............................82

4. Classification results in Control Mode, Mode 1 and

Mode 2, for male speakers.................................83

5. Classification results in Control Mode, Mode 1 and

Mode 2, for female speakers...............................84

6. Classification results in Control Mode, Mode 1 and

Mode 2, for child speakers................................85

 viii

LIST OF FIGURES

FIGURE Page

1. Framework of the Visual Speech Display software............7

2. Bargraph Display when the vowel sound “ur” is

correctly uttered..9

3. Bargraph Display when a vowel sound “ah” is

incorrectly uttered.......................................10

4. Ellipse Display when the vowel “ur” is correctly

uttered...10

5. DCTC features displayed for vowel sound “ee”..........13

6. FFT plot on PC #1 when the sound card microphone

was turned off..16

7. FFT plot on PC #2 when the sound card microphone

was turned off..16

8. FFT plot on PC #1 when the microphone was turned

on, but no signal input...................................17

9. FFT plot on PC #1 when the vowel sound “ee” was

uttered...18

10.The first 4 DCTC features of token “ah” over 240
 milliseconds (16 frames).................................23

11. Effects of frequency warping in reducing DCTC

Variability...24

12. Effects of overlapping between frames in reducing

DCTC variability..25

13. Effects of time smoothing on spectrum in reducing

the DCTC variability......................................26

14. Effects of block level smoothing in reducing DCTC

variability...27

15. Classification results based on ODU Speech Lab

vowel database..32

16. A segment of the vowel sound “ah” uttered by a

male speaker..37

 ix

FIGURE Page

17. Comparison of window based method and

pitch-synchronous method..................................40

18. Diagram of pitch-synchronous DCTC computation

System..42

19. Autocorrelation sequence of a vowel token segment.........47

20. Spectral plots of “ur” of different speakers

on fixed frequency range..................................52

21. Spectral plots of “ur” of different speakers

on scaled frequency range................................53

22. Detection of zero-crossings...............................54

23. No resampling, simply zero-padding........................56

24. Resampling period by period...............................57

25. 80-ms segment extracted from the center of

token “ah”..62

26. 4 consecutive frames (26 ms long) with a 13-ms

overlap...63

27. Autocorrelation sequence for an 80-ms signal

segment of token “ah”.....................................64

28. Autocorrelation sequence for a 26-ms signal

frame of token “ah”.......................................65

29. Multiple period extraction from a 80 ms segment

of token “ah”...69

30. Single period extraction from a 26-ms segment

of token “ah”...69

31. Time-domain resampling of triangular signal...............72

32. Spectra of Triangular Waveforms in Figure 31..............73

33. Power spectrum of token “ee” without time-domain

Resampling..74

34. Power spectrum over scaled frequency range for

Mode 1..75

 x

FIGURE Page

35. Power spectrum over scaled frequency range for

Mode 2..76

36. The structure of a neuron.................................80

37. Structure of the neural network classifier in the

experiments...81

38. First four DCTC feature values over time for

token “ah”..87

 1

CHAPTER I

INTRODUCTION

1.1 Background

In the field of speech recognition and classification,

the proper definition and extraction of acoustically invariant

characteristics (features) is an objective that has been sought

for decades. Among the various types of features investigated

over the past 40 years are two popular ones: spectral formants

and features that reflect global spectral shape, such as

cepstral coefficients.

Spectral formants represent the natural resonance of

humans’ vocal tracts in the frequency domain (Kelkar, 1992). On

a spectrum plot, formants are the peaks of the spectral

envelope, which are named as F1, F2, F3, etc., in the order of

increasing frequency. In a classic paper, Peterson and Barney

(1952) claimed that the first three formants(F1, F2 and F3)

could be regarded as the primary source of spectral

information. Ever since this paper, scientists and researchers

have studied formant-based vowel perception extensively. Many

successful models were developed to implement vowel perception

using spectral formants as the fundamental feature set. For

example, Miller (1989) developed the auditory-perceptual

theory, which was based on formant-ratio theory, and

__
The reference model followed is The Journal of the Acoustical
Society of America.

 2

demonstrated that the preliminary target zones in formant space

could be used to classify a proprietary database of American

English vowels with up to 93% accuracy. Although the formant

representation of speech spectra enjoys widespread use,

particularly for the perception of vowels, some challenging

problems remain. Bladon (1982) made arguments against the

formant representation of speech primarily with regard to three

aspects: first, formant representation is an incomplete

spectral description; second, there is great difficulty in

locating the formants in many cases; third, a formant

representation does not provide a good prediction when the

spectral peaks are widely spaced (Zahorian and Jagharghi,

1993). Furthermore, as stated in Kelkar’s thesis (1992),

formants may be located in overlapped frequency regions;

spurious peaks due to a single formant’s split make it

difficult to identify the actual formant; the frequencies of

adjacent formants may be too close to resolve. All these issues

associated with spectral formants have caused interest in

finding better feature representation methods. Global spectral

shape factors have proved to be a good alternative.

As early as the late 60’s, a group of researchers had

completed a series of experiments using spectral-shape

representation of vowel spectra (Plomp et al., 1967; Pols et

al., 1969; Klein et al., 1970). They defined a principal-

components spectral-shape representation of vowel spectra and

demonstrated that vowels could be classified automatically as

accurately from a principal-components representation as from a

 3

formant representation (Zahorian and Jagharghi, 1993). The

Discrete Cosine Transform Coefficients (DCTCs) of the log

magnitude spectrum are one type of global spectral shape

features. Zahorian and Gordy (1983) showed that a series cosine

basis vector representation is very similar to a principal-

components representation. Zahorian and Jagharghi (1993) also

experimentally compared vowel classification test results

between formants and DCTCs and found that the DCTC results were

significantly higher (3.5%) than for the formant case, provided

enough DCTCs (ten or more) were used.

The Visual Speech Display (VSD) system developed in Old

Dominion University’s Speech Lab uses DCT basis vectors as the

feature set to implement vowel classification. In the process

of improving system performance, we have found instability of

DCTC features in the real-time display. The major interest of

this research is to explore the instability issue and develop

approaches to address it.

1.2 Objective

The Visual Speech Display (VSD) system was originally

developed on a DOS based personal computer. All signal

processing work was implemented on a dedicated DSP board, with

TMS320C25 being the core DSP chip. Although this hardware based

system worked well in terms of recognition performance, it was

expensive (due to dedicated hardware), and difficult to

maintain and update (since the DSP chip requires assembly

language programming). Because of all these drawbacks and

 4

thanks to the dramatic increase in CPU speed, a Windows NT/95

based system has been implemented. A standard multimedia sound

card fulfills I/O operation. All signal processing and neural

network classification work is done by software. This offers

greater cost-effectiveness and flexibility than the old system.

However, an unexplained and unwanted phenomenon was

observed in the process of system testing and refinement. Both

the Bargraph Display and the Ellipse Display (these two display

types are explained in Chapter II) showed “jitter” on the

amplitude of the “bar” or the screen position of the “ball”

even when the speaker pronounced and steadily held a vowel

sound. In the meantime, a real-time plot of DCTC features

showed similar variations. Intuitively, for steady-state

vowels, the display should be steady, too. An “unstable”

display is an indication of “unstable” neural network output,

which determines the recognition performance. We suspect that

this variability, to some extent, limits the classification

performance of the new system. As a matter of fact, the

previous hardware based system did give a more stable display

when a vowel was steadily uttered. It was obvious that the

migration from the previous system to the new system introduced

some problems. These problems could have been the result of

coding errors, background noise and noise of PC components

(including the sound card), or due to changes in the methods

used to compute the DCTCs.

The main objective of this research was to track the

reasons of the DCTC feature variability and to investigate

 5

various approaches to eliminate this unwanted effect. First,

the DCTC variability was recorded and the reasons for it were

analyzed. Then, different approaches were compared and adopted

to reduce the DCTC variability. Finally, a new pitch based DCTC

feature computation approach was explored with the expectation

of reducing variability from a different perspective. This last

point is the most significant contribution of this thesis.

1.3 Overview Of Following Chapters

In chapter II, a brief description of the Visual Speech

Display (VSD) software is given. The observed DCTC feature

variability is described and analyzed. The efforts to eliminate

or reduce the variability are also discussed.

Chapter III explores, theoretically, a pitch-synchronous

approach in an attempt to enhance the front-end DCTC feature

analysis. Important processing steps, such as pitch estimation,

time-domain resampling, non-linear frequency scaling and pitch-

dependent spectra, are explained in detail.

Chapter IV presents the experimental verification of the

approach described in Chapter II using Matlab programs. System

modules and routines implementing the pitch-synchronous front-

end processing are listed and explained. The classification

results of an Artificial Neural Network (ANN) are shown to test

the performance of the pitch-synchronous front-end processor.

Chapter V summarizes the achievements attained in this

research and discusses future work and possible improvements.

 6

CHAPTER II

DCTC FEATURE VARIABILITY

2.1 Overview

The focus of this chapter is the DCTC feature variability

observed on the Windows NT/95 based Visual Speech Display (VSD)

system. In 2.2, a brief description is given on the structure

and functionality of the VSD system. We describe the DCTC

feature variability in 2.3. The possible reasons that cause

this variability are explored and analyzed in the same section.

Based on the analysis made in 2.3, three possible “noise”

sources causing the variability are further verified,

theoretically and experimentally, in 2.4 through 2.6.

Conclusions are summarized in 2.7.

2.2 Visual Speech Display (VSD) Software

The Windows NT/95 based Visual Speech Display software is

the result of the combined efforts of a group of people who

worked or are currently working in the Speech Communications

Lab. It is designed to generate visual feedback for vowel

sounds uttered by speakers. An A/D converter, a front-end

processor, an artificial neural network classifier and a

Windows Graphical Interface are the main functional blocks in

the system. Figure 1 shows the overall framework.

 7

Vowel Sound

A/D Converter Speech Signal Acquisition from Sound Card

Signal Segmentation, FFT Analysis,
DCTC Computation, Final Feature Generation

Neural Network Classification

Display Classification Results

Front-End Processor

Neural Network Classifier

Windows Graphical Interface

Waveform, FFT, Features, Bargraph or Ellipse Display

A/D

Applicatio

multimedia

into digit

Front

blocks: Fr

the Frame

A/D conver

subsequent

frame is f

eliminate
Figure 1. Framework of the Visual Speech Display software
Converter: the A/D converter utilizes the Windows

n Programming Interface (API) to work with a

 sound card to transform the analog acoustic signal

al form.

-End Processor: this part can be divided into two

ame Level Processing and Block Level Processing. In

Level Processing, each signal segment output by the

ter is divided into one or more frames. A series of

 processing is based on these frames. The individual

irst windowed (using a Hamming or Kaiser window) to

time-domain discontinuities at the edges of frames.

 8

FFT analysis is then done to generate the log magnitude

spectrum. Appropriate frequency smoothing and time smoothing

are also implemented in this step. Frequency smoothing is done

with morphological filtering which emphasizes the envelope of

the spectral peaks rather than the spectral details. Time

smoothing is used to reduce the temporal variability between

consecutive frames. DCTC features are computed based on the

smoothed spectrum of an individual frame and a series of pre-

defined basis vectors over frequency (as further explained in

2.3).

In the Block Level Processing, several consecutive frames

are combined as a block, and the final features, named Discrete

Cosine Series (DCS), are calculated based on DCTC features of

all frames in the block. This processing is explained in 2.3.

Neural Network Classifier: The features at the output of

Front-End Processor are used as inputs to an artificial neural

network for pattern classification. The neural network uses the

back-propagation learning algorithm as described in Lippmann

(1987). A typical structure of the neural network classifier

used in the VSD system includes one hidden layer with 25 nodes,

and 10 output nodes. For experiments reported in this thesis,

the learning rate generally ranged from 0.30 to 0.35. Two

hundred thousand learning iterations were generally used.

Windows Graphical Interface: In this final step, the

classification output is displayed on the screen to give visual

feedback to speakers. There are two primary displays: the

Bargraph Display and the Ellipse Display.

 9

The Bargraph Display shows only one significantly high

bar when the corresponding vowel sound is correctly uttered;

otherwise this bar is not high and/or the bars associated with

some other vowels may appear. Figure 2 illustrates a correct

utterance case, while Figure 3 shows an incorrect one.

Figure 2. Bargraph Display when the vowel sound “ur” is correctly uttered

The Ellipse Display defines 10 elliptic areas on the

screen corresponding to the 10 vowel sounds. When a vowel is

properly uttered, a small basketball slides into the oval

associated with that vowel sound, and the color of the

basketball is changed to match that of the oval. The size of

the ball is designed to vary with the strength of the sound as

an indicator of loudness. Figure 4 gives an example of the

Ellipse Display.

 10

2.3
 Figure 3. Bargraph Display when a vowel sound “ah” is incorrectly uttered

 Figure 4. Ellipse Display when the vowel “ur” is correctly uttered

 DCTC Feature Variability Analysis

 11

When we evaluated the overall performance of the Visual

Speech Display system as described above, we observed “jitter”

in both the Bargraph Display and the Ellipse Display even if

the speaker held his utterance as stable as possible. This

variability could also be shown by displaying the FFT spectrum

and the DCTC feature values. In contrast, the previously

developed DSP-board-based system appeared to have had a more

stable display. Intuitively, the more stable the display, the

higher the performance. We suspected that some type of “noise”

had been introduced into the system in the process of the

migration work. We focused on the analysis of three major

possible noise sources: coding errors, noise from background

and PC components, or some inherently unstable nature of DCTC

features.

2.3.1 DCTC Features

Before we go into the analysis, it is necessary to

describe the DCTC features mathematically. As described in

Nossair (1989), the DCTCs encode the smoothed global shape of

the spectrum, which provides the primary information about the

spectral pattern of the speech. The DCTCs are computed using a

simple dot product equation involving the spectrum and cosine

basis vectors, as given by

∑
−

=

=
1

0
),()()(

N

k

kikXiDCTC φ (2.1)

where X(k) is the scaled log magnitude frequency sample with the

sample index k ranging from 0 to (N-1), corresponding to an

 12

absolute frequency range of [0, Fs/2](Fs is the sampling rate).

φ(,)i k is a pre-defined set of samples of a cosine series

expansion over the same frequency range. If there is no

frequency “warping,” the basis vectors are obtained as sampled

values of cosines, as given in Equation 2.2.

 +

=
N

kiki)5.0(cos),(πφ (2.2)

where i is the index of DCTC, k is the index of frequency

sample, N is the total number of frequency samples. Note that

if frequency “warping” is used, which leads to non-uniform

frequency resolution, the equations for these basis vectors

will change; otherwise, the computations are the same.

DCTCs are the features for Frame Level Processing in the

system framework described in 2.2. In order to take advantage

of the close correlation of neighboring frames, Discrete Cosine

Series (DCS) can be calculated, based on a group of consecutive

frames. DCSs are the final features to be used by the neural

network for pattern classification.

∑
−

=

Φ=
1

0
),(),(),(

M

l
illjDCTCijDCS (2.3)

In Equation 2.3, the i th DCS of DCTC j is computed as the

sum of the DCTC j multiplied by appropriate basis vectors, over

all M frames of the block. The basis vectors used here are

defined in a similar way as those for DCTC computation. The

only difference is that the basis vectors in DCS calculation

are computed over time rather than over frequency, as is done

in DCTC feature computation. That is,

 13

 +

=Φ
M
ilil)5.(cos),(π

 (2.4)

where l is the index of frame, i is the index of DCS, and M is

the total number of frames.

Figure 5 shows a snapshot, for a single time instant, of

the first 12 DCTC features in the VSD real-time display. When a

vowel is uttered and held, the slight variability of the

amplitude of each feature (over time) can be easily seen in the

real-time display.

Figure 5. DCTC features displayed for vowel sound “ee”

More figures are given in 2.3.5 to better illustrate the

DCTC feature variability. In the meantime, approaches to reduce

this variability are explored and verified in the same section.

2.3.2 Possible Coding Errors

 14

Although the early versions of the Visual Speech Display

Software worked well, we did find some hidden flaws that could

be one possible noise source causing the DCTC feature

variability. The faults primarily came from modularity issues.

Modularity is the key point to a large software system,

since it provides a clear structure that makes it possible for

different people to add in new features or make changes. The

original version of software defined global variables that were

used virtually everywhere in the entire code. This made the

code intertwined and greatly reduced the independence of

functions, which could easily cause problems when one tried to

add in, remove, or modify parts of the code. Aimed at tackling

all these negative effects, a combined effort to rewrite the

code of the early version was done by A.M.Zimmer,

M.Karnjanadecha and myself. A new and flexible A/D and D/A

converter was implemented by Karnjanadecha, which could provide

full-duplex operation of the sound card. A standard fundamental

Windows function template and a naming convention were defined

by Zimmer. This helped standardize the programming procedure

and increased the readability of the code. Zimmer and I also

rewrote much of the graphical interface part, using a set of

graphical APIs which we defined.

In the experimental observation and performance

comparison after the careful code rewriting, we found that

there was no measurable difference between the new system and

the old one. This, combined with careful checking of

intermediate signal calculations for known deterministic

 15

signals, implied that the DCTC feature variability was not due

to coding errors.

2.3.3 Background And Component Noise

To seek the cost-effectiveness and compatibility of the

entire system while maintaining good performance, a standard

commercial sound card was used for I/O operation. We found that

noise might come from the background and the PC components,

including the sound card.

Figure 6 shows an FFT spectrum plot when there was no

signal input (the sound card microphone was turned off). This

power spectrum indicates the existence of noise from the sound

card and other PC components.

Figure 8 is the FFT plot with the same sound card used

for Figure 6, but when the microphone was turned on. It can be

observed that the overall amplitude of noise power spectrum has

increased, particularly in low frequency bands (< 2kHz). This

indicates the existence of background noise.

Figure 7. FFT plot on PC #2 when the sound card microphone was turned off Figure 6. FFT plot on PC #1 when the sound card microphone was turned off

 16

Figure 8. FFT plot on PC #1 when the microphone was turned on, but no signal input

Another noticeable point is that the noise from the sound

card and other PC components varies from machine to machine.

Figure 6 and Figure 7 are FFT plots on PC #1 and PC #2,

respectively. The microphones on both sound cards were turned

off. Both sound cards had the same volume settings. It is

easily seen that the noise produced on PC #2 is significantly

lower than on PC #1. Note that PC #2 was a newer machine with

higher quality sound card. This indicates that the noise

strength depends upon the quality of PC and sound card.

The most important issue we are concerned with is the

extent to which the background and component noise affects

 17

system performance. The comparison of Figure 8 and Figure 9

serves as an example for evaluating this extent. Figure 8 is

the FFT plot on PC #1 with the sound card microphone turned on,

but without speech signal input. Figure 9 is the FFT plot on PC

#1 when a vowel sound “ee” was uttered. Hence, Figure 8 shows

the noise power spectrum, while Figure 9 gives a description of

power spectrum of mixed signal and noise. The quantity of

Signal to Noise Ratio (SNR) can be roughly estimated by

comparing Figure 8 and Figure 9. It can be seen that the noise

may not affect spectral formants since the SNR around formants

is generally greater than 15dB.

However, in the spectral valleys where SNR is close to

0dB or even lower, noise does play a significant role.

Figure 9. FFT plot on PC #1 when the vowel sound “ee” was uttered

 18

In summary, the background noise strength may vary from

place to place and from instant to instant; the noise from

components depends on the quality of PC and sound card, and is

different from machine to machine. Using high quality PCs and

sound cards reduces the component noise. As observed in this

research, noise affects spectral details in certain frequency

bands, especially in spectral valleys. For speech recognition,

since general spectral shape is more important than spectral

details, we may use smoothing in the frequency domain to smooth

out spectral details and thus reduce the negative effects of

noise. Different smoothing methods are further discussed in

2.3.5.

2.3.4 Possible Inherently Unstable Nature of DCTC Features

As claimed in Zahorian and Jagharghi (1993), the DCTCs,

as spectral trajectory features, are computed the same way as

cepstral coefficients commonly used in speech processing except

for small differences. The exploration of the oscillations of

cepstral coefficient-based trajectory models may reflect some

similar characteristics of DCTC features.

A recent paper by Hu and Barnard (1997) described a

measurement method developed to evaluate the smoothness of

cepstral coefficient-based trajectories. They found that the

trajectories contain spurious oscillations over time, which

suggests that the trajectory features might have a high within-

class variance. This happens even when the speech signal is

changing slowly and smoothly. This issue could be due to the

 19

mapping between cepstral coefficients and frequency components.

The researchers set up a model and a series of relevant

simulation experiments using both rising tones (generated by

adding two sinusoidal signals) and real TIMIT speech data. They

observed significant oscillations of the mel scale cepstral

coefficient (MFCC) based trajectory features.

The analysis mentioned above closely corresponds to the

instability that we observed on the display of DCTC features

through the Visual Speech Display system.

Hu and Barnard (1997) also showed that formant

trajectories are significantly smoother than trajectories of

mel scale cepstral coefficients (MFCC). However, the

classification experiments that they performed did not result

in better performance using formant trajectory features versus

cepstral coefficient features despite the smoothness and

smaller variances of formant features. They finally claimed

that adding additional information, such as the average

bandwidth and contextual features (i.e. the average formant

location of the three frames to the left of the left boundary

and three frames to the right of the right boundary of the

segment), could improve the overall classification performance

based on formant features. The performance could not be

improved by adding this information with cepstral coefficient

based features. It seems that the additional spectral

information contained in MFCCs accounts for at least some

performance differences observed in experiments.

 20

In summary, DCTC features, as a type of cepstral

coefficient features, could have inherently unstable

characteristics over time, which may cause the observed

fluctuations over time. Therefore, this is also a possible

“noise” source besides the noise from PC components, as

discussed in the previous section.

2.3.5 Experimental Efforts To Mitigate Feature Variability

A group of experiments were done in an attempt to reduce

the DCTC feature variability. Before these procedures are

described, a definition of parameters is given below. In

describing the experiments, symbols in the parentheses are used

to represent their corresponding parameters.

Segment_Time(St): Time duration of a speech signal segment.

Frame_Time(Ft): Time duration of a frame extracted from a

speech segment.

Frame_Space(Sf): Time interval between adjacent frames. Equation

2.5 shows the relationship between the starting time of

adjacent frames and Sf.

Ti+1 = Ti + Sf (2.5)

where T is the starting time of a specific frame. For example,

if frame #i starts at 50ms and Sf is 15ms, frame #(i+1) starts at

(50+15)ms.

The relationship between Ft and Sf is: if Ft=Sf, there is no

overlap between adjacent frames; if Ft >Sf, there is overlap

 21

between adjacent frames, and the length of overlapped part

equals (Ft -Sf).

FFT_Length(Nfft): Length of FFT in number of samples.

Block_Length(BL): The length of a block in number of frames.

Block_Space(Sb): The number of frames between adjacent blocks.

The following equation indicates the relationship between the

starting frame number of adjacent blocks and Sb.

Bj+1 = Bj + Sb (2.6)

where B is the starting frame number in a specific block. For

example, if block #j starts at frame #k and Sb=3, block #(j+1)

starts at frame #(k+3).

The relationship between BL and Sb is: if BL=Sb, there is

no overlap between adjacent blocks; if BL>Sb, there is overlap

between adjacent blocks, and the length of overlapped part

equals (BL-Sb).

Warp_Factor(W): Warping factor when frequency warping is used

to give non-uniform frequency resolution.

Window_Length(Lw): Length of smoothing window in number of

frames.

With all these parameters defined above, several

experiments were done in order to test if the adjustment of

front-end processing parameters would help reduce DCTC

variability. The results of these experiments are illustrated

and analyzed through a group of figures as shown below.

 22

Note that the following five DCTC feature plots, from

Figure 10 through Figure 14, were all generated with Matlab

programs. All features were computed through the revised real-

time VSD system and based on the same vowel token from the

database of ODU Speech Communications Lab.

Figure 10 shows a plot of the first 4 DCTC features of

the vowel “ah” uttered by a male speaker. A total of sixteen

15-ms frames were extracted from the center of the token, with

no overlap between frames. Note that for this figure, no

frequency warping, time smoothing on the spectrum or time

smoothing in block level was used. Expressed with the

parameters defined above, St=240ms, Ft=15ms, Sf=15ms, BL=Sb=1,

Nfft=512, W=0, and Lw=0.

 23

Figure 10. The first 4 DCTC features of token “ah” over 240 milliseconds (16 frames)

The first experiment tested the contribution of frequency

“warping” to reducing the DCTC variability. Frequency warping

used here actually produces non-uniform frequency resolution

and increases the resolution in low frequencies, since we

believe that important spectral information is concentrated in

low frequencies rather than high frequencies. Figure 11 shows a

plot with appropriate frequency warping. The warping factor was

set to W=0.45, with all the other parameters being the same as

in Figure 10. Compared to Figure 10, it is apparent that

frequency warping reduces the variability of DCTC features.

However, the improvements are not very distinct.

 24

Figure 11. Effects of frequency warping in reducing DCTC variability

The second experiment was designed to test the effects of

overlap between adjacent frames. In Figure 12, St=255ms Ft=30ms,

Sf=15ms, BL=Sb=1, Nfft=512, W=0.45, Lww=0. Therefore, all parameter

settings were set the same as in Figure 11, except that there

was a 15-ms overlap between adjacent frames, and the segment

length became 255ms due to the overlapping. If we compare

Figure 12 and Figure 11, it can be observed that, by using

longer frames, the variability of DCTC features is greatly

reduced.

 25

 Figure 12. Effects of overlapping between frames in reducing DCTC variability

The third experiment was done to evaluate if time

smoothing on the spectrum would help stabilize the DCTC

features. Compared to the parameter settings in Figure 12, the

only difference in the third experiment is that we set a 5-

frame time smoothing window to smooth out the spectrum before

the DCTC features were computed, i.e. Lw=5. In our experiments,

maximum smoothing, which is explained in detail in the next

section, was used. It is shown, in Figure 13, that the DCTC

variability was further reduced when proper time smoothing on

the spectrum was performed.

 26

Figure 13. Effects of time smoothing on spectrum in reducing the DCTC variability

Finally, we tested the advantages of using smoothing for

the DCS computations, which is in Block Level Processing as

described in 2.3.1. Figure 14 illustrates a similar case as in

Figure 13, expect for the use of DCS type smoothing. For this

figure, BL=5 and Sb=1. Hence, the smoothing was based on a

block of 5 frames, with a block spacing of 1 frame. Note that

only one DCS was computed from block to block, which was

equivalent to the smoothed DCTC over time. However, the

benefits of the block level smoothing are not readily seen in

Figure 14, since frequency warping and time smoothing over the

 27

spectrum already contribute much to reducing the DCTC

variability.

Figure 14. Effects of block level smoothing in reducing DCTC variability

2.3.6 Classification Tests With Time Smoothing On Spectrum

To further explore the approaches to be taken to reduce

the DCTC feature variability and improve system performance,

some classification tests were done with the real-time version

of Visual Speech Display software. The main objective was to

compare different time smoothing methods used before the DCTC

computations.

Maximum smoothing and average smoothing are both common

time smoothing methods for digital signals. Simply put, maximum

 28

smoothing finds the maximum value within a smoothing window

about a specific sample index and uses it as the smoothed value

for that sample. The following formula describes maximum

smoothing.

 22),(),(' liXMAXLiX
NLlML +≤≤−

= (2.7)

In Equation 2.7, the left-hand side represents the ith

smoothed squared spectral component of Frame #L, and the right-

hand side stands for the maximum value of the ith squared

spectral component of continuous frames around Frame #L, with a

window length of (M+N) frames. For real-time processing, N is

set to be zero, since smoothing is always based on the current

and past frames.

Similarly, average smoothing computes the average value

within the smoothing window of (M+N) frames, which is depicted

in Equation 2.8.

∑
+≤≤−+

=
NLlML

liY
NM

LiY 22),(1),(' (2.8)

Time smoothing can be performed before or after log

scaling of the spectrum. Maximum smoothing before log scaling

is shown in Equation 2.9:

()22),(log),(' liXMAXLiX
NLlML +≤≤−

= (2.9)

 29

As a comparison, maximum smoothing after log scaling is

shown in Equation 2.10.

()22),(log),(' liXMAXLiX
NLlML +≤≤−

= (2.10)

Similarly, average smoothing before or after log scaling

is described in the following two equations:

+

= ∑
+≤≤− NLlML

liY
NM

LiY 22),(1log),(' (2.11)

()∑
+≤≤−+

=
NLlML

liY
NM

LiY 22),(log1),(' (2.12)

In summary, four different time smoothing methods can be

performed, i.e. maximum smoothing after log scaling, maximum

smoothing before log scaling, average smoothing after log

scaling, and average smoothing before log scaling. We wanted to

determine how the different smoothing methods affect

classification results and which method is the best.

Table 1 shows the classification results from a sample

experiment with maximum smoothing and average smoothing, which

were both implemented after the log spectrum was computed.

These results were obtained under the condition that St=2000ms,

Ft=30ms, Lw=10 frames. There were 24 speakers in the training

set of a specific gender/age group (i.e. Male, Female, Child),

and 8 speakers in the test set. The “general” test set included

24 speakers from all three gender/age groups. Three iterations

of each vowel by each speaker were used. As shown in Table 1,

 30

there is not much difference between the two smoothing methods.

In general, we used maximum smoothing since it emphasizes

spectral peaks, which are believed to carry most of the speech

information.

Gender Group
Test Recognition Rate

 (Maximum Smoothing after Log
Spectrum is computed)

Test Recognition Rate
(Average Smoothing after Log

Spectrum is computed)
Male 89.5% 89.2%

Female 92.1% 92.2%
Child 86.2% 85.9%

General Speakers
(Male, Female, Child) 81.2% 80.5%

Table 1. Classification performance of different smoothing methods after log scaling

For maximum smoothing, the index of the maximum value

before or after log scaling should be the same due to the

monotonicity of the log operation. Hence, it should make no

difference whether maximum smoothing is done before or after

log scaling. In other words, maximum smoothing before log

scaling and maximum smoothing after log scaling are the same

method. As for average smoothing, however, there could be minor

differences.

Our experimental observations matched the analysis stated

above. Table 2 contains the classification results with maximum

smoothing and average smoothing before log scaling. If we

compare Table 2 with Table 1, we can see that there was no

difference in the results between maximum smoothing before log

scaling and maximum smoothing after log scaling. For average

smoothing, only a slight difference was seen between smoothing

before log scaling and smoothing after log scaling. Note that

 31

the training set and test set in this experiment were the same

as in Table 1.

Gender Group
Test Recognition Rate

(Maximum Smoothing before
Log Spectrum is computed)

Test Recognition Rate
(Average Smoothing before
Log Spectrum is computed)

Male 89.5% 89.2%
Female 92.1% 92.0%
Child 86.2% 85.9%

General Speakers
(Male, Female, Child) 81.2% 80.8%

 Table 2. Classification performance of different smoothing methods before log scaling

A group of tests were also done in order to determine if

longer windows would help improve classification performance.

Figure 15 shows the training classification results (for the

Bargraph Display) based on a proprietary speech database

defined and established in Old Dominion University’s Speech

Lab. This figure clearly shows that the classification rate

increases as the smoothing window length increases. However, if

the window is too long, the system response is very slow, which

is undesirable for the real-time display. Therefore, an

appropriate smoothing window length needs to be used for

acceptable system response time.

 32

 Figure 15. Classification results based on ODU Speech Lab vowel database

2.4 Conclusions

The variability of DCTC features observed in the Visual

Speech Display system may be a combination of two sources:

noise of the PC components and the inherently unstable nature

of cepstral coefficient based (i.e., DCTC) trajectories. It

seems that the combined effects are rather complex, and both

noise sources cannot be easily and directly eliminated.

Although the variability of DCTC features may not

contribute much to performance degradation, we still would like

to have a stable display that gives better visual effects. The

experiments of this section showed that the DCTC variability

 33

could be reduced through proper adjustment of some processing

parameters.

Three types of time smoothing methods were tested in our

experiments: overlap of signal frames, time smoothing of log

spectra before DCTC computations, and time smoothing of DCTC

features in the block level. All of these methods showed

positive effects in reducing the DCTC instability.

To be more exact, the following approaches were found to be

effective:

1. It is always helpful if we use appropriate overlapping

between adjacent frames when they are extracted from the

speech segment. This method reduces the temporal variations

from frame to frame, which contributes to the stability of

DCTC features. Overlap is typically set to be half of the

frame length. For example, if the frame length (Ft) is 30ms,

the frame space (Sf) should be set to 15ms, which generates a

frame overlap of 15ms.

2. Utilizing proper frequency warping, typically with a warping

factor (W) of 0.45, also helps reduce the DCTC feature

variability.

3. When DCSs are computed from DCTC features in the block level

processing, the overlap between adjacent blocks helps

increase the DCTC stability. Typically, if we use a block

length (BL) of 5 frames, it is desirable that the block

space(Sb) is set to be 1 frame, thus generating a block

overlap of 4 frames.

 34

4. Time smoothing of the log magnitude spectrum is very helpful

for improving both DCTC stability and classification

results. Since maximum smoothing before log scaling is the

same method as maximum smoothing after log scaling, we

actually tested three time smoothing methods in our

experiments. Maximum time smoothing after log scaling of the

spectrum appears to be the best method, as compared to

average smoothing before or after log scaling. Note that the

smoothing window cannot be too long, since longer windows

may greatly slow down the response of display and impair the

real-time characteristics of the system. A smoothing window

length of 10 to 20 frames is appropriate.

 35

CHAPTER III

PITCH-SYNCHRONOUS DCTC FEATURE COMPUTATIONS

3.1 Overview

Most conventional spectral analysis methods, including

those used for the experiments reported in the last chapter,

use a window to extract a segment for processing. However,

windowing results in spectral smearing, which impairs spectral

resolution. In this research, we are interested in exploring a

processing method that eliminates or at least reduces window

effects. This chapter describes a new DCTC feature computation

algorithm based on pitch-synchronous analysis. No windowing is

needed in this new method, since processing is based on one or

more pitch periods extracted from the speech signal.

In 3.3, we analyze the negative effects of conventional

windowing method for steady-state vowel processing; we also

explore the advantages and feasibility of utilizing pitch

periodicity for spectral analysis.

With a system framework introduced in 3.4, 3.5 explains

major functional blocks in the framework, among which three

important modules are emphasized. The pitch period estimation

method, which is the fundamental for the entire system, is

explained in 3.5.2. In 3.5.3, a non-linear frequency scaling

method is given in search of a general spectral pattern across

different gender/age groups, which makes possible a general

classifier for these groups (Male, Female and Child). Since the

information contained in a single period may not be sufficient

 36

for spectral analysis, multiple periods of speech are extracted

and used, as is described in 3.5.4. Time-domain resampling is

described in 3.5.5 as a method of reducing spectral smearing

when multiple periods are extracted.

3.2 Pitch Periodicity In Voiced Speech

Generally, speech signals are generated by the vibration

of the human’s vocal cords, which are stretched by muscles in

the larynx. Vocal cords vibrate when air is forced through

them. The resultant sounds are in the form of a pulse train,

which is rich in harmonics. The repetition rate of these pulses

determines the pitch, or the fundamental frequency, of the

voice (Haddad and Parsons, 1991).

As stated in Haddad and Parsons (1991), the vibration of

the vocal cords is termed phonation. Voiced speech is generated

by phonation. The speech becomes unvoiced when phonation does

not occur. It has been observed that the voiced speech shows

quasi-periodicity, but not strict periodicity, over time, since

its contents tend to vary continually. Pitch and its harmonics,

which are commonly used to characterize periodic signals, can

also be utilized to distinguish between quasi-periodic voiced

speech.

Steady-state vowels are a type of voiced speech. Figure

16 shows a steady state vowel sound of “ah” uttered by a male

speaker. The quasi-periodicity is obvious. If we carefully

inspect the signal, we also find that the details in the

 37

waveform, such as peak amplitude, peak shape and period length,

show slight variability of over time.

3.3 El

As

spectra

segment

process

two maj

Fi

of vow

fundame

Fs/N, wh

However

vowels,

fundame

compone

“correc
Figure 16. A segment of the vowel sound “ah” uttered by a male speaker
iminating Windowing Effects

 stated at the beginning of this chapter, conventional

l processing methods use windows to extract speech

 for analysis. However, this may not be a good

ing method for voiced speech, such as vowels. There are

or problems.

rst, if windowing is used for the spectral processing

els, frequency components do not line up with the

ntal and its harmonics, but are spaced at intervals of

ere Fs is the sampling rate and N is the FFT length.

, for the case of periodic signal such as steady-state

 the spectral information is contained at the

ntal frequency and its harmonics. Hence, the frequency

nts acquired by window-based processing are not entirely

t” for vowels.

 38

The second problem lies in the fact that windowing

inevitably results in spectral smearing, which reduces spectral

resolution. Hence, even if the frequency components could be

accurately measured, their values might not be correct due to

spectral smearing.

The basic idea, used throughout this section, is that the

harmonics of periodic signals line up precisely with FFT

samples, provided that the FFT length contains an integer

number of cycles of the fundamental. This can easily be shown

as follows.

Assume that a steady-state vowel segment has M periods,

and the FFT length for this segment is N, where N is chosen to

be equal to the length of M periods. Let the period be T, the

fundamental frequency be f0 and the sampling rate be Fs, it must

be that

 (3.1)

M
NT =

and

TF
f

s

10 = (3.2)

From Equation 3.1 and 3.2, the following equation holds:

sFM
N

f
11

0

×= (3.3)

From Equation 3.3, we also have:

F
N f

Ms =
⋅ 0 (3.4)

 39

Since the spacing between FFT samples is

∆f
F
N

s= (3.5)

we finally have

∆f
f
M

= 0 (3.6)

In particular, as shown in Equation 3.7, if there is only

one period for processing, the frequency spacing between

adjacent FFT samples is equal to the fundamental frequency. In

other words, the FFT samples are exactly coincident with the

fundamental and its harmonics.

0ff =∆ (3.7)

If M is greater than 1, then every Mth FFT sample is

exactly coincident with a spectral harmonic.

Figure 17 clearly illustrates the windowing effects and

the benefits of pitch-synchronous frequency range in reducing

windowing effects. The top plot is the time-domain signal used

for spectral analysis. The middle plot shows the superimposed

spectra of 4 overlapped 30-ms frames (15-ms overlap), which

were Hamming windowed before the spectral processing. It can be

seen from this plot that the harmonics, especially in the

middle to high frequency bands, are not distinct and vary from

frame to frame. This implies spectral smearing due to the

windowing effects. In contrast, the bottom plot, which was

generated with pitch dependent frequency range, shows very

sharp and clear harmonics over the whole frequency band. The

pitch period for the bottom plot was 98.04Hz, and 30 harmonics

 40

were plotted in the range of [100Hz, 3000Hz]. This further

illustrates that for pitch-synchronous analysis, FFT samples

precisely coincide with harmonics.

Figure 17. Comparison of window based method and pitch-synchronous method

The objective of this pitch-synchronous method is to

eliminate the two negative effects caused by windowing and take

advantage of sampling the spectrum at exactly the “right”

places without spectral smearing. It was hoped that this type

of spectral analysis would lead to more stable DCTC features,

and also to higher automatic vowel classification performance.

The difficulties with pitch-synchronous analysis are that

fundamental frequency must be determined very accurately, and

the speech signal must then be resampled so that each frame of

 41

speech data contains an integer number of periods, and the

total length equals a power of 2 (256, 512, etc.). Furthermore,

this must be done using an interval that typically contains

several pitch cycles, for which the pitch period is typically

slowly changing.

The important part of this chapter was to investigate

techniques for pitch-synchronous vowel analysis, and determine

whether any of these are superior to conventional window based

spectral analysis. As another issue, since pitch was required

to do this analysis anyway, pitch based speaker normalization

was also investigated as a method for improving vowel

classification.

3.4 System Framework

A framework of the pitch-synchronous DCTC feature

computation system is illustrated in Figure 18. In our

experiments, two operation modes, Mode 1 and Mode 2, were

implemented to simulate different processing approaches.

Processing in Mode 1 was based on a large segment

consisting of multiple periods. In Mode 2, processing was based

on the average spectrum of multiple single periods, each of

which was extracted from a short frame. Pitch period estimation

methods implemented in the two modes were also different. In

particular, the pitch period estimation method for Mode 1 was

more suitable for long intervals, whereas the pitch period

 42

detection method used in Mode 2 was more suitable for

processing based on short frames.

Vowel Token

Segment or short frame extraction from the token

Pitch period estimation,
fundamental frequency detrmination

Definition of fixed frequency range or scaled pitch-
dependent frequency range (scale_factor=1/3)

Extract one or multiple quasi-periods from the
vowel segment

Resampling on multiple periods Resampling on single period

Optional pre-emphasis filtering

Optional windowing

Frequency domain downsampling
(for Mode 1 only)

DCTC feature computation based on fixed or pitch-
dependent frequency range

DCTC features

Mode 1 Mode 2

FFT spectral analysis

Figure 18. Diagram of pitch-synchronous DCTC computation system

 43

In Mode 1, a large segment is extracted from the central

portion of a steady-state vowel token. By computing the

autocorrelation, the pitch period and the fundamental frequency

are determined based on the whole segment. Multiple periods of

samples are then extracted from the original segment. Time-

domain resampling is performed on the multiple periods to

extend them to an appropriate FFT length, which should be a

power of 2. The significance of resampling is that it extends

existing periods to some desirable FFT length while maintaining

the periodicity. The FFT analysis is done with the resampled

periodic signal. Since the resultant spectrum is based on

multiple periods, appropriate frequency downsampling must be

done to select only those frequency components that line up

with the fundamental and its harmonics. Finally, DCTC features

are computed based on the spectral components and pre-computed

cosine basis vectors over a fixed frequency range or pitch

dependent scaled frequency range.

Mode 2 is similar to Mode 1 except for the pitch period

estimation and some details of spectral processing. Since Mode

2 is designed for pitch period estimation from short frames,

the algorithm of period detection is different from that used

in Mode 1. In spectral processing, the spectrum of each

individual period is computed separately. Multiple spectra are

then averaged. Note that, as shown in 3.3, no further frequency

downsampling is required in this mode, since the interval

between the FFT samples is exactly equal to the fundamental

 44

frequency. The final DCTC features are computed from the

averaged spectra.

For the purposes of comparison, an extra “Control Mode”

was also implemented using the conventional window based

processing. In this mode, pitch period estimation was not

required; no time-domain resampling and frequency downsampling

were used. Instead, frames of fixed length were directly zero-

padded to the desired FFT length and then windowed (using a

Hamming or Kaiser window) before the spectral analysis.

In addition, a bandpass pre-emphasis filter, with a

center frequency of 3200Hz given that the sampling rate was

11025 samples/sec, was generally used for all modes to filter

out unwanted noise in both low and high frequencies.

3.5 Main Functional Blocks

This part describes the major functional blocks in the

diagram of the pitch-synchronous DCTC feature computation

system. A Matlab software implementation of this system is

explained in the next chapter.

3.5.1 Segment Extraction

This block is simple and straightforward. When we have a

vowel token for steady-state analysis, it is desirable that we

extract a segment from about the center of the token, since

this part should be the most stable. Vowel token files are

digitally recorded versions of vowel sounds, which may have

 45

different formats according to different standards followed.

For example, a TIMIT format file is comprised of two parts: a

file header containing information about the token, and a token

body that stores the speech samples. If we are dealing with

token files, we need to separate the header from the token body

so that the steady-state part of the token is accurately

extracted. Figure 16 in 3.2 gives an example of a segment

extracted from a vowel token.

3.5.2 Pitch Period Estimation

This is the most critical and difficult part of the whole

system. This step is important because all the subsequent

processing, especially the FFT analysis, is heavily dependent

on the accuracy of locating individual pitch periods. However,

this step is also difficult since the signal’s periodicity is

slowly varying with time.

In this research, we implemented two methods to detect

pitch periods. The first method was designed for processing

based on a large segment containing multiple periods (Mode 1);

while the second method was developed especially for processing

based on a short frame (Mode 2), which generally contains only

one or two periods.

The theoretical basis of the first method (Mode 1) is

autocorrelation theory, which is defined in Equation 3.8.

Φ xx
n

l x n x n[] [] []=
=−∞

∞

∑ l+ (3.8)

 46

In this equation, Φ xx l[] represents the correlation of

signal x n[] and a shifted copy of itself with a time difference

of l. It can be shown that when l equals zero, the

autocorrelation value reaches the local maximum. In particular,

if x n[] is periodic, Φ xx l[] reaches the local maximum when l=kN,

k=1,2,3..., where N is the period of the signal.

In this way, we can compute an autocorrelation sequence

for a multi-period segment. Peak values are expected to appear

at indices that are multiples of the quasi-period. Generally,

the index of the first peak value in the autocorrelation

sequence can be regarded as the pitch period. Figure 19 shows

the autocorrelation sequence of a segment extracted from the

center of vowel token “ah” uttered by a male speaker. The

vertical line marks the first peak, whose index is considered

as the pitch period.

Figure 19 also shows that the periodicity of vowel speech

varies slightly with time (i.e., the signal is not precisely

periodic). As we know, peaks in the autocorrelation sequence

correspond to multiples of period in time. If the signal is

strictly periodic, the value of autocorrelation peaks should

remain the same at all integer multiples of the pitch period.

However, in Figure 19, it can be seen that the peaks become

smaller at larger lag values, which indicates that the pitch

period changes over the interval of the segment.

 47

The se

processing

frames are

significant

autocorrela

does not pe

definition

s (

In E

correlation

short frame

period, s(k)

corresponds

period. Equ
Figure 19. Autocorrelation sequence of a vowel token segment
cond pitch period estimation method is suitable for

of short frames (Mode 2). In many cases, short

desirable because the spectral variability is not

 within a short period of time. However, the

tion computation, as mentioned for the first method,

rform well for very short segments. An appropriate

is given in Equation 3.9.

[] []

[] []()∑

∑
−

=

−

=

++

+⋅
⋅= kN

j

kN

j

kjxjx

kjxjx
k

1

22

12) (3.9)

quation 3.9, s(k) is the resultant normalized

 sequence, with 1 ≤ k ≤ N/2, and N is the length of the

. It is clear that when k equals to the length of a

is maximized. In other words, the index value that

 to the maximum of s(k) is regarded as the pitch

ation 3.9 was motivated by a period estimation

 48

method in Talkin (1995), in which local maximum values in the

correlation sequence were found to detect the pitch period.

Betancourt and Antrobus (1998) also researched a similar

method. In Mode 2, however, we computed correlation sequences

with peak values in order to take advantage of the same pitch

period detection algorithm as used in Mode 1.

Both pitch period estimation methods described above were

found to be effective and robust in our experiments, when vowel

tokens were produced with acceptable periodicity. However,

these two methods might not be successful in estimating periods

for tokens with poor periodicity. In the Matlab implementation

described in the next chapter, some additional processing is

described to handle cases when the periodicity was not readily

apparent.

3.5.3 Scaled Pitch-Dependent Frequency Range

The idea of using a scaled pitch-dependent frequency

range originated from the “sensory reference” concepts, which

were introduced by Peterson and Barney (1952). Miller (1989)

further developed these concepts in search of an approach to

eliminate the effects of talker age and gender. Although the

use of a pitch-dependent range is secondary to the main goal of

comparing spectral analysis using fixed window lengths versus a

pitch period dependent length, it does fit the more general

theme of determining methods to improve the accuracy of vowel

classification. Since pitch has to be computed anyway for the

pitch-synchronous analysis, the pitch dependent frequency range

 49

is a natural secondary issue to investigate. Finally, however,

note that this normalization can also be used (as a control),

for the case of window based spectral analysis, but with

computation of pitch only for this explicit purpose.

In Miller (1989), the sensory reference (SR) was defined

as a function of the geometric mean of the talker’s fundamental

frequency, such that the average ratio (SF1/SR), where SF1

refers to the first sensory formant, across all glottal-source

spectra would be independent of the talker’s age and sex. To

estimate the form of the desired function, the geometric mean

of the first formants (GMF1) and fundamental frequencies (GMF0)

reported in Miller (1989) were separately calculated for men,

women and children. It was found that the equation

k GMF
GMF

=

log /

1
01 3 (3.10)

results in a value of k that is nearly constant across talkers.

Note that the exponent 1/3 in the denominator was experimentally

determined to be optimal. The sensory reference was defined as

below:

SR GMF
=

168 0
168

1 3/

 (3.11)

where the value 168 is the geometric mean of adult male’s

average pitch 125Hz and adult female’s average pitch 225Hz. The

third variable defined in the auditory-perceptual space was

 y
GMF

SR
GMF

GMF
= =log() log[() ()]/

/

1
168

1
0

2 3
1 3 (3.12)

 50

Note that Equation 3.12 was acquired simply by

substituting Equation 3.11 in the denominator of Equation 3.10.

Through this formulation, the value of SR is shifted from the

absolute value of 168 to an appropriate value for the current

talker, such that the average value y is nearly identical

across talker groups.

The implication of the equations and experiments

mentioned in the preceding paragraphs is that, if we compare

the spectra of the same vowels uttered with different

fundamental frequencies (such as the difference between an

adult male and an adult female) on a log frequency scale, there

is a shift in the spectral patterns proportional to f0
1/3. When

using a linear frequency scale, the implication is that, if the

spectra from different speakers are viewed on ranges so that

the starting and ending frequencies are proportional to f0
1/3,

the variability among speakers for the same vowel is reduced

relative to that obtained with a fixed range for all speakers.

In the Old Dominion University Visual Speech System, we

have always used a fixed frequency range for spectral

processing. However, the fundamental frequency f0 is quite

different for male, female and child speakers. For example, the

pitch frequency of an adult female speaker is generally twice

as high as that of an adult male speaker. For the case of

pitch-synchronous analysis, a fixed frequency range implies

different number of harmonics. On the other hand, if we use a

fixed number of harmonics, there is a huge difference in the

frequency range for speakers from different gender/age group.

 51

Motivated by the “sensory reference” theory summarized

above, we explored the implementation of pitch and harmonics

related scaled frequency range for the purposes of finding an

age and sex independent feature set that could contribute to

better classification.

As shown in 3.3, for voiced speech, the intervals between

harmonics almost equal the pitch frequency due to the quasi-

periodicity. If we consider a fixed number of harmonics, the

overall frequency range over the pitch and harmonics can be

much different for people from different gender or age group.

For instance, if the voice of a male speaker has a pitch

frequency of 110Hz, the frequency range over the pitch and 29

harmonics is from 110Hz to 3300Hz. Likewise, if the voice of a

female speaker has a pitch frequency of 220Hz, the

corresponding frequency range of the pitch and 29 harmonics is

from 220Hz to 6600Hz.

We need to do some kind of non-linear frequency scaling

in order to reduce the difference. The method used is described

below.

First, we defined a standard pitch frequency and the

number of harmonics to be considered. Based on this

information, we computed two range-limiting coefficients for

the non-linear scaling. Let a standard pitch frequency be SF0,

the number of harmonics be N, the lower limit coefficient be K1

and the upper limit coefficient K2, then

K
SF

SF
1

0
01 3= / (3.13)

 52

K
N SF

SF
2

1 0
01 3=

+ ⋅()
/ (3.14)

where the exponent 1/3 was defined following the “sensory

reference” concepts stated above, and was tested in our

experiments to be optimal.

With a specific speaker, the scaled frequency range over

the pitch and N harmonics is

K F F K F1 0 2 01 3 1 3⋅ ≤ ≤ ⋅() ()/ / (3.15)

Figure 20. Spectral plots of “ur” of different speakers on fixed frequency range

Figure 20 and Figure 21 show the spectra of “ur” of a

male speaker and a female speaker over fixed frequency range

and f0
1/3 scaled frequency range, respectively. It can be seen

that the spectral envelopes of different speakers look more

 53

similar to each other in Figure 21 than in Figure 20. This

implies that f0
1/3 scaled frequency range helps reduce the

spectral variability among speakers. Note that the plots in

Figure 20 and Figure 21 were generated based on Mode 1, which

is described in 3.4.

 Figure 21. Spectral plots of “ur” of different speakers on scaled frequency range

3.5.4 Multiple Quasi-Periods

Based on the autocorrelation method described in 3.5.2, a

single period of speech signal may not carry enough information

for processing due to the possibly imprecise estimation of

periods. Multiple periods need to be extracted.

 54

Since the “period” of voiced speech is slightly varying

over time, it may not be appropriate to get multiple periods

simply by extracting a chunk of signal whose length is a

multiple number of the estimated period. A method based on

“zero-crossing detection” was used in this research.

The procedure of detecting zero-crossings is illustrated

in Figure 22.

zero-crossing nearest to local peak

local peak in a single period

... ...

Figure 22 s

find the local pe

first dashed-lin

nearest zero-cros

dealing with di

exactly be zero.

first change in

the first zero-c

Once we determine

one period to the
Figure 22. Detection of zero-crossings
hows a segment of a periodic signal. We first

ak in the first period, which is marked by the

e arrow in the diagram. Then, we detect the

sing in the vicinity of the peak. Since we are

screte-time signals, zero-crossings may not

 Hence, we define zero-crossing as being the

signs from + to –. For the case in Figure 22,

rossing is marked by a bold arrow pointed up.

 the first zero-crossing, we add the length of

 first zero-crossing. The second zero-crossing

 55

is found in this vicinity. By using the same method, we are

able to identify all the subsequent zero-crossings.

Note that for voiced speech signal, the period itself

tends to vary slightly over time. Hence, it is extremely

difficult to ascertain that periods are clearly separated and

extracted. However, the zero-crossing method appeared to be

robust when we inspected a large group of speech tokens in our

experiments.

3.5.5 Time-Domain Resampling

As we know, a period or multiple periods extracted from a

signal segment generally do not have an appropriate FFT length

(power of 2), and need to be extended to an FFT length before

we do spectral processing. The resampling methods implemented

in our experiments are illustrated below.

Method 1: (there was actually no resampling; rather, the

signal segment was zero-padded to the proper FFT length. This

method was used in the simulation of regular processing, which

served as a comparison to the “real” resampling method (Method

2). Figure 23 illustrates the procedure of Method 1. Note that

Method 1 was used only in Control Mode, as described in the

next chapter.

 56

0

signal Segment

signal Segment

FFT LENGTH

SEGMENT LENGTH

copying

 Figure 23. No resampling, simply zero-padding

Method 2: this method was designed for both Mode 1 and

Mode 2, which are described in the next chapter. With this

method, we processed one or more periods extracted from the

vowel and the resampling was performed on a period-by-period

basis. Each period was stretched to a desired FFT length

through resampling. Since the FFT length is generally greater

than the number of samples in a period, we need to “resample”

the period with a new sampling rate. In the experiments, we

used linear interpolation to determine the resampled value

between the original sample values.

We first conducted linear interpolation between samples

of a period to obtain an interpolated signal, which was

continuous in time and included both sample values and

interpolated values. This interpolated signal was then

“resampled” at a proper sampling rate to acquire a new sequence

of the desired FFT length. This step was repeated on all the

periods.

Note that the resampling process may introduce errors.

The effects of errors depend on the original sampling rate and

 57

interpolation method used. Generally, the higher the original

sampling rate is, the more accurate the interpolation; non-

linear interpolation is better than linear interpolation. In

this research, since a high sampling rate of 11025 samples/sec

was used, we decided to perform linear interpolation for

computational simplicity and efficiency. Figure 24 illustrates

the processing in Method 2.

Period #1 Period #4Period #2 Period #3

resampling resampling resampling resampling

Resampled
Period #1

Resampled
Period #2

Resampled
Period #3

Resampled
Period #4

FFT LENGTH

SEGMENT LENGTH

3.6 Conclusion

In this ch

the pitch-synch

illustrated the

pitch period e

dependent scale

methods, based

processing long

analysis results

reduce spectral
Figure 24. Resampling period by period
s

apter, a system framework designed to implement

ronous processing method was discussed. We

 important modules in the framework, such as

stimation, time-domain resampling and pitch-

d frequency range. Two pitch period detection

on the autocorrelation, were designed for

frames and short frames, respectively. Spectral

 showed that the pitch-synchronous method helps

smearing, which is a result of window effects

 58

in the regular window-based processing method. We also found

that by using (f01/3) scaled frequency range, the formants in

the spectra of different speakers would line up more closely

with one another. This would be helpful for the spectral

analysis for general speakers.

In the next chapter, a Matlab software implementation of

this system framework is described.

 59

CHAPTER IV

MATLAB IMPLEMENTATION OF PITCH-SYNCHRONOUS DCTC

FEATURE COMPUTATIONS

4.1 Overview

In order to verify and illustrate the pitch-synchronous

algorithm described in the previous chapter, the algorithms

mentioned in the last chapter were programmed using Matlab V5.1

for Windows. This chapter first explains the implementation of

main functional modules and illustrates the results of

important processing steps. Then, classification experiments

with the pitch-synchronous method are described and compared to

experiments performed using the regular DCTC computation

method. Finally, conclusions are reached.

4.1 focuses on the description of major modules in the

Matlab application. Classification results based on the pitch-

synchronous approach are shown and discussed in 4.2.

Conclusions regarding the pitch-synchronous method are given in

4.3.

4.2 Implementation Of Pitch-Synchronous DCTC Computations

The Matlab implementation of the pitch-synchronous DCTC

feature computations was based on the system framework

described in 3.4. Two segment extraction and pitch period

 60

estimation methods were explored. They were defined as Mode 1

and Mode 2, respectively.

In Mode 1, a large segment is first extracted from the

center of a vowel token, and the pitch period is determined

based on the whole segment. Then, continuous multiple periods

are taken out of the segment. Spectral analysis and the

subsequent DCTC feature computations are both based on these

multiple periods.

In Mode 2, we evaluated another approach for pitch-

synchronous analysis. Instead of a single pitch computation for

the entire large segment, we used a series of short, overlapped

frames from the token center. The period estimation was

conducted separately on each individual frame in the series.

The estimated periods were revised through median smoothing to

reduce the likelihood of any major errors (such as pitch

doubling or halving) in the pitch track. Only one period was

extracted from each frame for spectral analysis. The spectrum

and DCTC features were computed on each frame separately, and

the final DCTC feature for a specific token was an average of

the DCTC features from individual frames.

What is common to both methods is that we used both

pitch-dependent and pitch-independent frequency ranges for

analysis and comparison, as explained in the following

sections. Note that we use the terms “Mode 1” and “Mode 2”

repeatedly in following sections while describing the Matlab

implementation.

 61

4.2.1 Generation Of Vowel Token Files

In the simulation, we first used WINSEL2.EXE, which was

an application developed in the Old Dominion University Speech

Lab, to generate two token list files—one for the training set

and the other for the test set--for the final classification.

The list files contained paths to all token files in the speech

database.

Since the Matlab application was designed to read and

process tokens of each vowel separately, the training and test

list files generated by WINSEL2.EXE could not be used directly.

An extra step was added to create 10 different “sub-list” files

for the training set and the test set, respectively.

4.2.2 Segment Extraction

As stated above, two operation modes were implemented

separately in order to compare different processing and

classification results. As a matter of fact, the segment

extraction methods implemented in the two modes were different

from each other.

A vowel token file is usually composed of two parts. The

first part is the header field, and the second is the data

field. The header field provides information about the token,

such as token length, header length, sampling rate, and bytes

per sample, etc. With the information in the header field, we

were able to identify the center of the data field and extract

a segment from this portion.

 62

In Mode 1, multiple periods were extracted for spectral

analysis and DCTC computations. A long segment, typically 80

milliseconds, was generally taken from the center of a vowel

token. This segment would have to be long enough for further

extraction of multiple periods. Figure 25 shows an 80-ms signal

segment extracted from the center of vowel token “ah.”

Figure 25. 80-ms segment extracted from the center of token “ah”

For Mode 2, a long segment (typically 300 ms) was first

extracted from the center of a token. This segment, however,

was not directly used for pitch period estimation and

additional processing. Instead, a number of short frames were

further extracted from this segment. By default, we would

extract up to 16 frames, with each frame being 26 milliseconds

long. In an attempt to increase the correlation between

adjacent frames, frames were overlapped, typically by half of

the frame length. Figure 26 gives an example of four

consecutive 26-ms frames, with a 13-ms overlap, extracted from

the same token “ah” as shown in Figure 25.

 63

Frame # 1 Frame # 2

Frame # 3 Frame # 4

Figure 26. 4 consecutive frames (26 ms long) with a 13-ms overlap

4.2.3 Pitch Period Estimation

The basic methods for both Mode 1 and Mode 2 were to

compute the pitch period based on the autocorrelation

calculations (with some variations between the two modes), as

was explained in 3.5.2. The actual Matlab implementation was

also different between Mode 1 and Mode 2.

The pitch period estimation for Mode 1 was based on the

theory that the inverse FFT of the power spectrum of a random

input signal is the autocorrelation of the input sequence

(Proakis and Manolakis, 1996). The mathematical expression is

given in Equation 4.1.

 64

() () dFeF Fj
xxxx

τπτγ 2⋅Γ= ∫
∞

∞−
(4.1)

where γxx represents the autocorrelation of the input random

signal, and ΓXX stands for the power spectral density of the

input signal. Since the speech signal can be regarded as a

special type of random signal, this equation also applies to

our implementation.

An example of the output autocorrelation sequence of an

80-ms signal segment for the token “ah” is illustrated in

Figure 27. Since an 80-ms segment is equivalent to 882 samples

at a sampling rate of 11025 samples/sec, we chose an FFT length

of 1024 points, which resulted in an autocorrelation sequence

of 512 points.

 Figure 27. Autocorrelation sequence for an 80-ms signal segment of token “ah”

As we know, the statistical reliability of

autocorrelation calculations for the speech signal is better in

large segments than in short frames. Therefore, Equation 4.1 is

not likely to yield accurate estimates in Mode 2, which is

 65

based on short frames. Alternatively, we used Equation 3.9 in

3.5.2 for Mode 2, which was believed to be more suitable for

short frames.

Figure 28 shows the correlation sequence based on

Equation 3.9. The same vowel token was used as in Figure 27,

but the input signal was a 26-ms short frame rather than on an

80-ms segment. Note that this short frame is 286 points long at

a sampling rate of 11025 samples/sec, and the length of the

correlation sequence is 143 points.

 Figure 28. Autocorrelation sequence for a 26-ms signal frame of token “ah”

Once the autocorrelation sequence is defined, the next

step is to identify the peak index in the sequence, and use

this index as the pitch period. One or more periods can be

identified in the original signal segment.

The way of finding the autocorrelation peak value in the

sequence is straightforward and applies to both Mode 1 and Mode

2. A typical implementation is: starting from the first index,

go through the whole sequence, and the first index with a value

above a certain threshold is deemed as the pitch period. In the

 66

experiment, 0.8 was chosen as the default threshold, which was

empirically determined to be appropriate for most cases.

Since we were dealing with steady-state vowel speech

signal, which is quasi-periodic, some measures were taken to

prevent obviously incorrect period estimations.

The first measure was setting a reasonable range for

searching for the peak value index in the autocorrelation

sequence. Observations of the autocorrelation sequences of a

number of tokens showed that for some tokens, there were

spurious peaks at very small indices. To eliminate these kinds

of errors, we defined a revised frequency range between 70 Hz

and 500 Hz, which corresponds to an index range between 22

samples and 157 samples at a sampling rate of 11025

samples/sec. By inspecting hundreds of tokens from all types of

genders, we made sure that this was an appropriate index range

that helped avoid incorrect period estimation.

There are also some cases in which all the peak values in

the autocorrelation sequence are below the threshold, because

of overall “poor” periodicity. Hence, it is possible that when

we go through the entire sequence, we cannot find an index

corresponding to a peak value above the threshold. To avoid

this case, we visually inspected a number of tokens from male,

female and child speakers, and selected three separate

fundamental frequency ranges as shown below. More than 96% of

the speakers inspected fell into these fundamental frequency

ranges.

 67

For male speakers: [80Hz, 155Hz];

For female speakers: [135Hz, 275Hz];

For child speakers: [185Hz, 370Hz]

For the training set, the speaker gender information was

obtained from the token list files. This way, whenever we could

not find an index that corresponded to an autocorrelation peak

value above the threshold, we would detect the peak value in an

index range corresponding to one of the fundamental frequency

ranges defined above. The index that corresponded to this peak

value was used as the pitch period.

For the test set, however, speaker gender information was

not available. Hence, we could not take advantage of the

frequency ranges above. In this case, we detected the

autocorrelation peak in the general pitch frequency range for

all genders, which was defined as [70Hz, 500Hz], and used the

corresponding index as the pitch period.

For some 600 tokens that we visually inspected in the

experiment, we were able to obtain reasonable pitch period

identification for over 96% of all tokens, with the frequency

range revision measures being taken as described above. Still,

there were less than 4% of the tokens whose periodicity was too

“bad” and could not be determined correctly in any way. In this

case, we simply used the index, which corresponded to the

maximum autocorrelation value in the general frequency range of

[70Hz, 500Hz], as the pitch period. These “poorly periodic”

tokens, however, were still included in the classification

 68

experiments in order that the database be identical for pitch-

synchronous and non pitch-synchronous cases. This presumably

degraded the classification results for the pitch-synchronous

cases.

Once the pitch period was determined, we were able to

extract one or more periods from the original signal segment,

as described in the following section.

4.2.4 Single Or Multiple Period Extraction

In Mode 1, we extracted multiple periods for further

spectral analysis, since we believed that one quasi-period

might not provide complete information.

In our experiments, we used zero-crossing detection to

help identify the edges of period. This method is illustrated

in 3.5.4. To implement this method, we found the peak in the

first pitch period of the signal segment, then detected zero-

crossing points before and after the peak, respectively. The

index of the zero-crossing point closest to the peak was used

as the starting index for the extraction of multiple periods.

We then added the length of one pitch period to the starting

index. The zero-crossing in the nearest vicinity was the ending

index for the first period.

In the meantime, the ending index of the first period was

deemed as the starting index of the second period. By adding

the length of one pitch period and finding zero-crossings in

its vicinity, we were able to determine the ending index of the

second period. This process was conducted repeatedly until we

 69

found the starting and ending indices for all the periods to be

extracted. In our experiment, 4 periods were generally

extracted. Figure 29 shows an example of zero-crossing based

period-edge detection. Vertical lines in this figure mark the

period edges, which are also zero-crossing points. As can be

seen in Figure 29, 6 complete periods were identified.

Figure 29. Multiple period extraction from a 80 ms segment of token “ah”

In Mode 2, we used exactly the same zero-crossing based

method, as in Mode 1, to detect the period edges. An example is

shown in Figure 30. The two vertical lines mark the edges of a

single pitch period.

Figure 30. Single period extraction from a 26-ms segment of token “ah”

 70

As compared to Mode 1, which extracted multiple periods

from the same large segment, we extracted only one pitch period

out of a short signal frame in Mode 2. Subsequent spectral

processing was based on a single pitch period from each frame,

instead of on multiple periods.

Since we used consecutive, overlapping frames, the pitch

period should not vary much from frame to frame. In order to

avoid accidental large variations in the pitch period

estimation and ensure more accurate period extraction, we used

an extra median smoothing step in Mode 2, which was not

necessary in Mode 1.

Except for end points, we used a symmetrical median

smoothing window, which was generally 3 points or 5 points

long. Smoothing was performed on a pitch period value only when

it was M% in deviation from the median value within the

corresponding smoothing window.

In the Matlab implementation for Mode 2, we first

estimated the pitch period for each of the overlapped frames.

These pitch periods formed a “period vector.” Median smoothing

was then performed on this vector to acquire a smoothed “period

vector”. The following Matlab capture shows how median

smoothing was done on the estimated pitch periods from 16

overlapped frames. The smoothing window length was 5, and the

threshold for smoothing was set to 3%(M=3). Note that

smoothing was actually done only to the underlined values,

where large variations (greater than 3%) occurred.

 71

Original_Period_Vec =

 111 112 112 112 112 112 113 113 112 113 112 104 117 101 108 115

Smoothed_Period_Vec =

 111 112 112 112 112 112 113 113 112 113 112 112 108 108 108 108

After smoothing, more accurate pitch period values for

all frames were obtained. We then began to extract a single

pitch period from each of the frames, and conduct spectral

processing on this period. The final spectrum for a specific

token was the average of the spectra of all the individual

frames extracted from this token.

4.2.5 Resampling

As discussed in 3.5.5, time-domain resampling is required

for the proper spectral processing in both Mode 1 and Mode 2.

In the experiments, we used a resampling method on a period-by-

period basis. This resampling method applied to both Mode 1 and

Mode 2. The only difference is that there are multiple periods

to be resampled one by one in Mode 1, while there is only one

period to be resampled in Mode 2.

As a comparison, an extra case named the Control Mode was

also implemented. For the Control Mode, there was actually no

resampling, but just zero-padding. The algorithms of both

resampling and zero-padding have been illustrated in 3.5.5.

Resampling results for different methods are shown in Figure 31

and Figure 32.

 72

In Figure 31, the input signal is a 4-period triangular

signal, with the period being 9 milliseconds and a sampling

rate of 11025Hz. The top graph shows Control Mode, in which the

original signal was zero-padded to an appropriate FFT length of

512. The bottom plot illustrates the “resampled” signal, which

was extended to an FFT length of 512 based on period-by-period

resampling.

 Figure 31. Time-domain resampling of triangular signal

Figure 32 further illustrates the spectral results of

resampling. The two figures are the spectra of their

corresponding time-domain waveforms in Figure 31.

 73

 Figure 32. Spectra of Triangular Waveforms in Figure 31

As we can see from the examples in Figure 31 and Figure

32, when proper resampling was used, fundamental frequency and

its harmonics were emphasized and spurious spectral peaks were

reduced. This implies that resampling is desirable for spectral

processing based on fundamental frequency and its harmonics.

4.2.6 Spectral Analysis

As stated above, we explored two methods of pitch-related

processing: Mode 1 was based on multiple periods extracted from

a large segment, while Mode 2 was based on single periods taken

from short frames. Spectral analysis was performed the same way

for both Mode 1 and Mode 2, except for one extra step

implemented in Mode 1. That is, frequency downsampling was

 74

conducted to acquire the spectrum of a single period from the

spectrum based on multiple periods. An explanation of frequency

downsampling was given in 3.3.

It is obvious that no frequency downsampling is required

in Mode 2, since it is always based on single periods.

As a comparison, a regular method that was not based on

pitch periods was first implemented. Figure 33 shows the

spectrum of a token processed using the regular method, in

which multiple periods were zero-padded to a proper FFT length.

In the regular method, no frequency scaling was implemented,

and the whole spectral index range corresponded to a fixed

frequency range of [100Hz, 5000Hz].

Figure 33. Power spectrum of token “ee” without time-domain resampling

A sample spectrum generated in Mode 1 is illustrated in

Figure 34. Note that time-domain resampling was conducted

period by period in this mode.

Non linear frequency scaling, as described in 3.5.3, was

conducted in Mode 1. Note that this figure is based on the

(f0
1/3) scaled frequency range of [103Hz, 3603Hz], which includes

the fundamental frequency 103 Hz and its 35 harmonics.

 75

Figure 34. Power spectrum over scaled frequency range for Mode 1

Figure 34 actually shows the envelope of the fundamental

frequency and its harmonics. Although Figure 34 cannot be

directly compared to Figure 33 due to different frequency

ranges, it is obvious that the overall frequency envelope

remains consistent in both figures on the same frequency range,

which implies the validity of Mode 1.

Since Mode 2 was based on single periods from the

individual frames, we used the same resampling method as in

Mode 1 to resample only one period extracted from each

individual frame. Figure 35 illustrates the spectrum of a

single period extracted from a 26-ms short frame for the same

token “ee” as in Figure 34 and Figure 33. It can be observed

that Figure 35 shows a quite similar spectrum compared to that

in Figure 34, despite the fact that the processing in Mode 1

and Mode 2 was quite different. Obviously the processing in

Mode 2 was consistent with the implementation in Mode 1.

 76

Figure 35. Power spectrum over scaled frequency range for Mode 2

4.2.7 Generation Of DCTC Features

Before the DCTC features were determined, a pre-defined

cosine basis vector was generated according to the algorithm

described in 2.3.1.

When we computed DCTC features, we explored two frequency

ranges: one was fundamental frequency dependent, or f0

dependent; the other was fundamental frequency independent, or

f0 independent. For the f0 dependent range, we simply calculated

pre-defined basis vectors over the whole frequency range,

namely, [0, Fs/2]; for the f0 independent range, we computed pre-

defined basis vectors over a user-defined frequency range [Fmin ,

Fmax].

The pre-defined basis vectors and spectra were used to

compute the final DCTC features according to the formula given

in Equation 2.1 in 2.3.1.

In generating DCTC features, it was essential that

frequency components be multiplied by their corresponding basis

vector components on exactly the same frequency range and with

the same frequency spacing. The rest of this section explains

 77

how the frequency range and its spacing were determined in

different operation modes.

When we considered the f0 independent frequency range, the

pre-defined basis vectors were computed over [Fmin , Fmax], where

Fmin and Fmax were the lower and upper frequency limits defined in

the configuration file. As implemented in the simulation, a

control mode and two new operation modes, Mode 1 and Mode 2,

are described below:

1. Control mode: in this mode, the spectrum had the same

frequency spacing as in pre-defined basis vectors. In

this case, spectral components over the range of [Fmin

, Fmax] were directly multiplied by basis vector

components over the same range to generate the DCTC

features.

2. Mode 1 and Mode 2: for these two modes, the frequency

samples had a spacing of f0. However, the pre-defined

basis vector components were computed with a frequency

spacing of

fft

s

N
F

 (4.3)

where Fs was the sampling rate, and Nfft was the FFT

length per period. Due to the difference in frequency

spacing, interpolation was used to make the spectrum

have a frequency spacing as shown in Expression 4.3.

This extra processing step produced a one-to-one

 78

mapping between the frequency components and basis

vector components over the same scaled frequency

range. Thus, DCTC features could be properly computed.

For the f0 dependent frequency range, the (f0
1/3) scaled

frequency range varies from token to token. Hence, the pre-

defined basis vectors could not be computed over a fixed

frequency range. Instead, the basis vectors were computed over

the whole frequency range [0, Fs /2], where Fs was the sampling

rate. Again, the processing for different modes was also

different.

1. Control mode: in this mode, fixed frequency range

[Fmin, Fmax] was first nonlinearly scaled to the

frequency range of [Fmin_scaled, Fmax_scaled], with the

algorithm described in 3.5.3. Then, basis vectors on

the same scaled frequency range were multiplied by

the corresponding spectral components to generate

DCTC features. Note that in this mode, the frequency

spacing between frequency samples was the same as

expressed in Equation 4.3.

2. Mode 1 and Mode 2: for these two modes, the scaled

frequency range for spectral computations still had

a spacing of f0. Therefore, we interpolated the f0-

spaced, scaled spectrum to a new spectrum, which had

the same frequency spacing as basis vectors. The

DCTC features were computed by multiplying the

frequency samples with their corresponding basis

 79

vector components on the same range and with the

same frequency spacing.

4.3 Experiments

To verify the effects of the Matlab simulation described

in 4.2, the generated DCTC features (15 features were used in

the experiments) were used with an artificial neural network

classifier for classification. Experiment results are

summarized and analyzed in this part.

4.3.1 Speech Database

In this research, we used a speech database recorded by

the Old Dominion University Speech Lab. The speakers included

male, female and child. For each of the speakers, up to 3

iterations were recorded for the same vowel token.

In the experiments, we chose 24 speakers from male,

female and child group, respectively, to form the training set.

For each vowel, 3 iterations of the same speaker were used.

Similarly, we chose 8 speakers from different gender/age groups

to generate the training set. There were also 3 iterations for

each of the 10 vowel tokens. Note that the training set and the

test set were entirely different from each other to ensure that

these results correspond to a speaker independent case.

In summary, the training set contained 72 speakers and a

total of 2160 vowel tokens; the test set contained 24 speakers

and a total of 720 vowel tokens.

 80

4.3.2 Neural Network Classifier

Neural networks are widely used in the field of speech

recognition because they are powerful and flexible tools for

pattern recognition. In this research, we used a Multiple-Layer

Perceptron (MLP) neural network for classification. The MLP

network contains a number of nodes called neurons. A group of

neurons forms a layer. There may be one or more layers in a MLP

network.

x1

f(neti)

θi

-1
win

wi2

wi1

neti

x2

oi

xn

Figure 36. The structure of a neuron

A neuron is comprised of one or more inputs, associated

weights, an internal offset and one output. In Figure 36, x1 -xn

are input values to the ith neuron, wi1-win represent the weights

associated with their corresponding input values. θk is the

internal offset, and f(neti) stands for the activation function. oi

is the output of the neuron. The structure in Figure 36 can be

expressed in the equation below.

()

−

⋅== ∑

=
i

n

k
kikii xwfnetfo θ

1

(4.4)

 81

The neural network classifier used in our experiments

included one input layer, one output layer and one hidden

layer. The overall structure of the neural network classifier

is illustrated in Figure 37.

Hidden Layer
(25 neurons)

H25

H3

H2

H1

O10

O2

O1

I15

I2

I1

Output Layer
(10 neurons)

Input Layer
(15 neurons)

x1 o1

x2 o2

x15 o10

Figure 37. Structure of the neural network classifier in the experiments

The input layer consisted of 15 neurons corresponding to

15 DCTC features; and the output layer consisted of 10 neurons

that output associated normalized weights for classifying the

input features. The hidden layer with 25 hidden neurons was

located between the input layer and the output layer.

4.3.3 Experiment Results

Table 3 shows the classification results with general

speakers for different operation modes in the experiments.

 82

General Speakers (24 x3 speakers for training, 8x3 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 91.2% 79.9%
Control Mode (regular

processing) 90.4% 82.3%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

89.2% 80.6%
Mode 1(period-by-

period resampling on
multiple periods)

88.9% 81.9%

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 89.1% 80.5%
Mode 2(resampling on

a single period) 89.8% 81.2%

Table 3. Classification results in Control Mode, Mode 1 and Mode 2, for general speakers

In Table 3, the Control Mode was used to simulate the

regular processing method developed in the Old Dominion

University Visual Speech Display system, which was not based on

integer multiples of the pitch period. In the Control Mode, we

used a 20-ms fixed frame length, with a 15 ms overlap.

Frequency warping, with a warping factor of 0.45, was also

used. The sampling rate was 11025 samples/sec, and the FFT

length used was 256. In the meantime, the results with Mode 1

and Mode 2 are also shown in the same table. In Mode 1, we

extracted 4 periods from an 80-ms segment, and used an FFT

length of 1024 for these 4 periods. For Mode 2, we used sixteen

26-ms frames, with a 13-ms overlap between frames.

Male Speakers (24 speakers for training, 8 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 98.2% 88.7%
Control Mode (regular

processing) 98.6% 90.0%

Training
Set

Test
Set

Training
Set

Test
Set

 83

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

98.9% 90.0%
Mode 1(period-by-

period resampling on
multiple periods)

98.2% 87.5%

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 99.2% 89.5%
Mode 2(resampling on

a single period) 98.6% 87.9%

Table 4. Classification results in Control Mode, Mode 1 and Mode 2, for male speakers

Table 4, Table 5 and Table 6 contain the classification

results of three additional tests for male speakers, female

speakers and child speakers, respectively. Note that the tokens

used in these tests come from the same database as in the test

with general speakers.

As can be seen in Table 4, the use of f0 dependent

frequency range did not lead to better classification

performance in Mode 1 and Mode 2 for the case of male speakers.

In contrast, for female and child speakers as in Table 5 and

Table 6, f0 dependent frequency range did result in higher

performance. We found that the tokens of male speakers

generally have better periodicity and more distinctive

harmonics in spectrum than those of female and child speakers.

This implies that the (f0
1/3) frequency scaling may not be

necessary for processing tokens that have good periodicity.

Female Speakers (24 speakers for training, 8 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 97.4% 88.1%
Control Mode (regular

processing) 97.2% 89.8%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

98.0% 81.8%
Mode 1(period-by-

period resampling on
multiple periods)

96.2% 84.8%

 84

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 96.4% 85.6%
Mode 2(resampling on

a single period) 97.3% 89.0%

Table 5. Classification results in Control Mode, Mode 1 and Mode 2, for female speakers

The test results in Table 6 shows inferior performance

with child speakers as compared to male and female speakers. It

was found that, by visual inspection, the tokens of child

speakers in the database generally have worse periodicity than

those of male and female speakers. This implies that f0

dependent processing may not result in good performance when

the periodicity of speech signal is not good.

If we study the test results for the Control Mode in

Table 4 through Table 6, we may find that the use of f0

dependent frequency range helps increase the classification

performance for the regular processing method with all types of

speakers. This shows again that f0 could be a useful clue for

speech recognition.

It can be seen that no significant performance

improvement was obtained when using the multiple-period based

method instead of the regular method. There could be three

possible reasons.

Child Speakers (24 speakers for training, 8 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 95.6% 77.8%
Control Mode (regular

processing) 96.2% 79.1%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

87.2% 72.6%
Mode 1(period-by-

period resampling on
multiple periods)

86.7% 75.7%

Training
Set

Test
Set

Training
Set

Test
Set

 85

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 89.5% 69.7%
Mode 2(resampling on

a single period) 87.5% 71.1%

Table 6. Classification results in Control Mode, Mode 1 and Mode 2, for child speakers

The first reason was related to the random

characteristics of speech signal. The speech signal by nature

is random and quasi-periodic. The quasi-periodicity of a speech

token contributed to the inaccuracy of recognition in the

experiments. In this research, we visually inspected hundreds

of tokens, and found that some 4% of the total tokens did not

have an acceptable periodicity suitable for period-based

processing. These tokens, however, were included in the

processing and classification to maintain generality. Errors

could be introduced due to those poorly periodic tokens.

The second reason might due to the pitch period

estimation. In our experiments, we utilized a method of

autocorrelation and zero-crossing detection. This method was

proved to be effective through visual inspection. However, we

were concerned about the fact that the random characteristics

of speech signal could lead to the incorrect detection of

period edges. This could also result in overall degradation in

classification performance.

The third reason might come from the interpolation

process before DCTC features were computed. Since the frequency

spacing of the basis vector computations might not be the same

as that for spectrum computations, linear interpolation was

required to obtain unique frequency spacing. The interpolation

 86

process could also bring in some errors in spectrum, thus

making the final DCTC features inaccurate.

As can be seen in Table 3, the processing based on single

periods extracted from short frames, which was implemented in

Mode 2, contributed to roughly the same recognition results as

compared to Mode 1, where spectral processing was based on

multiple periods. This shows that the processing based on short

frames and spectral averaging did not excel in performance,

compared to the method based on multiple periods extracted from

a large segment.

One interesting point we found in all the operation modes

is that, the f0 dependent frequency range was helpful in getting

better recognition results regardless of what method was used.

If we compare the test results for the f0 dependent range and

the fixed frequency range, it is obvious that there was an

increase in recognition rate when the f0 dependent frequency

range was used to compute DCTC features. This implied that f0,

the fundamental frequency, could be an important clue in

recognition no matter what specific method was used.

Another interesting observation was the DCTC feature

stability over time. For Mode 1, it is hard to illustrate this

point, since the multiple periods were extracted from the

center of the token only once. However, because Mode 2

extracted a series of short, overlapped frames from the token,

we were able to illustrate the variations of the DCTC feature

values over time.

 87

Figure 38. First four DCTC feature values over time for token “ah”

As shown in Figure 38, sixteen overlapped frames were

extracted from the center of the token, with each frame being

26 ms and the overlap between frames being 13 ms. Figure 10 in

Chapter II illustrated the first four DCTC features of the same

token generated in the Control Mode, in which 16 non-

overlapping, 15-ms frames were used.

If we compare Figure 38 with Figure 10, it can be seen

that the short-frame based pitch-synchronous method,

implemented in Mode 2, reduces the variability of the DCTC

features, although the final classification results did not

show significant improvements compared to the regular method

implemented in the Control Mode.

 88

4.4 Conclusions

In this chapter, we explored the Matlab software

implementation of the system described in Chapter III. The

implementation of the pitch period estimation, which is the

fundamental of this system, was visually examined to be robust.

We plotted the signal waveforms of 600 speech tokens, in which

estimated periods were marked, and found that this period

estimation method worked well for over 96% of all the tokens.

For less than 4% of the tokens, whose periodicity could not

even be identified by visual inspection, the pitch period

estimation method did not work.

The final classification results showed that the pitch-

synchronous processing did not outperform the regular window-

based method, although the pitch-synchronous method was shown

to help reduce spectral smearing. This implies that window

effects could be a minor factor in speech recognition. However,

we found that the spectral analysis on pitch-dependent, (f01/3)

scaled frequency ranges leads to better classification results,

as compared to pitch-independent frequency ranges. In addition,

pitch-synchronous method also helped reduce the DCTC

variability.

 89

CHAPTER V

ACHIEVEMENTS AND FUTURE WORK

5.1 Achievements

 The whole work in this research was implemented in two

major steps. The first step was focused on the exploration of

DCTC feature variability and the algorithms to reduce this

variability. In the second step, we implemented a pitch-

synchronous system aimed at reducing DCTC feature variability

from a new perspective.

 We found that the DCTC feature variability, which showed

up in both real-time Visual Speech Display and non real-time

analysis, was due to the noise and inherently unstable

characteristics of the DCTC features. Noise may come from the

background and PC components, including the sound card and

other components.

 We also explored various methods to reduce DCTC

variability. Undoubtedly, using a high quality sound card and

PC will help reduce this variability. Our experimental results

also indicated it always helped reduce DCTC variability when

appropriate length overlapping frames, proper frequency warping

and time smoothing were used.

 In our second attempt to reduce DCTC variability, we

implemented a new pitch period based algorithm and simulated it

in Matlab. This algorithm consisted of extracting a long

segment or a short frame from the center of a vowel, estimating

 90

the pitch period based on these segments or short frames using

the autocorrelation, and generating DCTC features utilizing

pitch-dependent or pitch-independent spectra. The Matlab

simulation not only fully implemented this algorithm, but also

included extra steps to handle exceptions when some poorly

periodic tokens were processed.

 Visual inspections on hundreds of tokens showed that the

pitch period estimation method was successful for over 96% of

all tokens. We also showed that time-domain resampling helped

increase frequency-domain resolution, and that spectral

analysis based on pitch-dependent frequency range produced

better classification results than regular pitch-independent

frequency range.

5.2 Future Work

 The utilization of pitch-synchronous analysis in vowel

token recognition is a new and promising approach. However,

this method may be limited by the inherently random

characteristics of speech signals. This probably is the reason

why this method does not show improvements in classification

results as compared to conventional non pitch-synchronous

methods.

 For the pitch-synchronous method, the key point is the

estimation of pitch period. Although the estimated pitch

periods have been visually inspected to be accurate, we are not

able to check temporal details at the edges of period. It is

 91

likely that for some tokens we could not correctly determine

the period edges due to the randomness of temporal details in

the token.

 Future work may focus on a better algorithm in

determining the pitch period from a segment, and in detecting

the period edges when multiple periods are required to be

extracted from the token for analysis.

 Further experiments can also be done using only those

tokens with “good” periodicity, i.e. the tokens whose

autocorrelation peak value exceeds the threshold 0.8, as

discussed in Chapter IV. The results of these experiments will

provide more information about the extent of performance

degradation in the presence of “poorly periodic” tokens.

 92

REFERENCES

Betancourt, O., and Antrobus, J. (1998). “Using natural
 harmonics as acoustic features in speech recognition: a vowel
classification example”, J. Acoust. Soc. Am. Manuscript,
JASA97/015

Bladon, R.A.V., (1982). “Arguments against formants in the
 auditory representation of speech,” from The Representation
 of Speech in the Peripheral Auditory System, edited by R.
 Carlson and B. Granstrom (Elsevier, Amsterdam), pp. 95-102

Haddad, R.A., and Parsons, T.W. (1991). “Digital signal
 processing: theory, applications, and hardware,” Computer
 Science Press, 1991, pp. 367-370

Hu, Z., and Barnard, E. (1997). “Smoothness analysis for
 trajectory features,” ICASSP-97, Volume 2, 979-982

Kelkar, S.U., (1992). “Formant estimation from DCTC’s using a
 feedforward neural network,” Master’s Thesis, Old Dominion
 University, May 1992

Klein, W., Plomp, R., and Plos, L. (1970). “Vowel spectra,
 vowel spaces, and vowel identification,” J. Acoust. Soc. Am.
 48, 999-1009

Lippmann, R., (1987), “An introduction to computing with
 neural nets,” IEEE ASSP Magazine, April, 4-22

Miller, J.D. (1989). “Auditory-perceptual representation of
 the vowel,” J. Acoust. Soc. Am. 85, 2114-2134

Nossair, Z.B., (1989). “Dynamic spectral shape features as
 acoustic correlates for stop consonants,” Research Report,
 Old Dominion University Research Foundation, December 1989

Nossair, Z., Silsbee, P., and Zahorian, S. (1995). “Signal
 modeling enhancements for automatic speech recognition,”
 ICASSP-95, pp. 824-827

Peterson, G.E., and Barney, H.L. (1952). “Control methods used
 in a study of the vowels,” J. Acoust. Soc. Am.24, 175- 184

Plomp, R. Plos, L.C.W., and van de Geer, J.P. (1967).
 “Dimensional analysis of vowel spectra,” J. Acoust. Soc. Am.
 41, 707-712

Pols, L.C.W., van der Kamp, L.J.Th., and Plomp, R. (1969).
 “Perceptual and physical space of vowel sounds,” J.Acoust.
 Soc. Am. 46, 458-467

 93

Proakis, J.G, and Manolakis, D.G. (1996). “Digital Signal
 Processing: Principles, Algorithms, and Applications,” 3rd
 Edition, Prentice Hall, pp. 327-330

Talkin, D., (1995). “A robust algorithm for pitch tracking
 (RAPT),” from Speech Coding and Synthesis, edited by W.B.
 Kleijn and K.K. Paliwal (Elsevier Science B.V.), pp. 502-507

Zahorian, S.A., and Amir Jalali Jagharghi(1993). “Spectral-
 shape features versus formants as acoustic correlates for
 vowels,” J. Acoust. Soc. Am. 94(4), 1966-1982

Zahorian, S.A., and Gordy, P.E.(1983). “Finite impluse
 response(FIR) filters for speech analysis and synthesis,”
 ICASSP-83, 808-811

General Speakers (24 x3 speakers for training, 8x3 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 91.2% 79.9%
Control Mode (regular

processing) 90.4% 82.3%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

89.2% 80.6%
Mode 1(period-by-

period resampling on
multiple periods)

88.9% 81.9%

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 89.1% 80.5%
Mode 2(resampling on

a single period) 89.8% 81.2%

Table 3. Classification results with Control Mode, Mode 1 and Mode 2, for general speakers

Male Speakers (24 speakers for training, 8 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 98.2% 88.7%
Control Mode (regular

processing) 98.6% 90.0%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

98.9% 90.0%
Mode 1(period-by-

period resampling on
multiple periods)

98.2% 87.5%

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 99.2% 89.5%
Mode 2(resampling on

a single period) 98.6% 87.9%

Table 4. Classification results with Control Mode, Mode 1 and Mode 2, for male speakers

Female Speakers (24 speakers for training, 8 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 97.4% 88.1%
Control Mode (regular

processing) 97.2% 89.8%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

98.0% 81.8%
Mode 1(period-by-

period resampling on
multiple periods)

96.2% 84.8%

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 96.4% 85.6%
Mode 2(resampling on

a single period) 97.3% 89.0%

Table 5. Classification results with Control Mode, Mode 1 and Mode 2, for female speakers

Child Speakers (24 speakers for training, 8 speakers for test)
Processing

based on fixed frequency range
Processing

based on f0 dependent frequency range
Training

Set
Test
Set

Training
Set

Test
Set Control Mode (regular

processing) 95.6% 77.8%
Control Mode (regular

processing) 96.2% 79.1%

Training
Set

Test
Set

Training
Set

Test
Set Mode 1(period-by-

period resampling on
multiple periods)

87.2% 72.6%
Mode 1(period-by-

period resampling on
multiple periods)

86.7% 75.7%

Training
Set

Test
Set

Training
Set

Test
Set Mode 2(resampling on a

single period) 89.5% 69.7%
Mode 2(resampling on

a single period) 87.5% 71.1%

Table 6. Classification results with Control Mode, Mode 1 and Mode 2, for child speakers

Table 4, Table 5 and Table 6 contain the classification

results of three additional tests for male speakers, female

speakers and child speakers, respectively. Note that the tokens

used in these tests come from the same database as in the test

with general speakers.

As can be seen in Table 4, the use of f0 dependent frequency

range did not lead to better classification performance in Mode 1

and Mode 2 for the case of male speakers. In contrast, for female

and child speakers as in Table 5 and Table 6, f0 dependent

frequency range did result in higher performance. We found that

the tokens of male speakers generally have better periodicity and

more distinctive harmonics in spectrum than those of female and

child speakers. This implies that the (f0
1/3) frequency scaling may

not be necessary for processing tokens that have good

periodicity.

The test results in Table 6 shows inferior performance with

child speakers as compared to male and female speakers. It was

found that, by visual inspection, the tokens of child speakers in

the database generally have worse periodicity than male and

female speakers. This implies that f0 dependent processing may not

result in good performance when the periodicity of speech signal

is not good.

If we study the test results for the Control Mode in Table

4 through Table 6, we may find that the use of f0 dependent

frequency range helps increase the classification performance for

the regular processing method with all types of speakers. This

shows again that f0 could be a useful clue for speech recognition.

	OTHERPAG.pdf
	ACKNOWLEGMENTS
	I would like to express my gratitude to my advisor, Dr. Stephen A. Zahorian. His expertise and insight in the field of Speech Recognition has been a great help in this research. This work is impossible without his invaluable guidance, constant support an
	V. ACHIEVEMENTS AND FUTURE WORK..........................89
	LIST OF TABLES
	LIST OF FIGURES
	FFT plot on PC #1 when the sound card microphone
	was turned off..16
	FFT plot on PC #2 when the sound card microphone
	was turned off..16
	FFT plot on PC #1 when the microphone was turned
	on, but no signal input...................................17

	CHAPTER3.pdf
	PITCH-SYNCHRONOUS DCTC FEATURE COMPUTATIONS

	CHAPTER4.pdf
	where Fs was the sampling rate, and Nfft was the FFT length per period. Due to the difference in frequency spacing, interpolation was used to make the spectrum have a frequency spacing as shown in Expression 4.3. This extra processing step produced a on

	CHAPTER5.pdf
	ACHIEVEMENTS AND FUTURE WORK

	CHAPTER3.pdf
	PITCH-SYNCHRONOUS DCTC FEATURE COMPUTATIONS

	CHAPTER4.pdf
	where Fs was the sampling rate, and Nfft was the FFT length per period. Due to the difference in frequency spacing, interpolation was used to make the spectrum have a frequency spacing as shown in Expression 4.3. This extra processing step produced a on

	CHAPTER5.pdf
	ACHIEVEMENTS AND FUTURE WORK

