

ABSTRACT

SPEECH FEATURE COMPUTATIONS FOR VISUAL
SPEECH ARTICULATION TRAINING

Stefan Auberg
Old Dominion University, 1996

Director: Dr. Stephen A. Zahorian

A new version of the Visual Speech Articulation Training

Aid was implemented which provides real-time visual feedback for

speech articulation training. This version was migrated to a

Windows Multimedia PC from a previous version which used a

Personal Computer (PC) system and additional specialized and

expensive custom hardware. This new version will make the system

more available to schools and private users. A new method was

developed for computing spectral/temporal features which

characterize the speech sounds. In addition to the typical

frame-based spectral analysis parameters, the new method

represents temporal changes of the spectrum with a small number

of features. The flexible method implemented can easily be

adapted to compute features for a wide range of speech

processing tasks. Linguistically-based distinctive features were

also investigated as candidate features for the visual display

system. Some experimental results are given for vowels using the

new system.

SPEECH FEATURE COMPUTATION FOR VISUAL SPEECH
ARTICULATION TRAINING

by

Stefan Auberg

A Thesis submitted to the Faculty
of Old Dominion University in
Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE
ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
April 1996

Approved by:

Stephen A. Zahorian (Director)

TRADEMARKS

80386, 80486 and Pentium are registered trademarks of

Intel Corporation.

Microsoft, MS-DOS, Windows NT, Windows 95 and Visual C/C++

are registered trademarks of Microsoft Corporation.

DEDICATION

I dedicate this work to my wonderful wife Aoi who

supported me with all her love and patience.

 iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr.

Stephen A. Zahorian, for invaluable guidance and advice. During

the last two years I could greatly expand my knowledge in the

area of Automatic Speech Recognition through his expertise and

support. This thesis would not have been possible without his

patience, encouragement and availability.

I would also like to thank the additional members of the

thesis advisory committee, Dr. Peter L. Silsbee and Dr. Oscar R.

González, for their much appreciated time and assistance.

In addition I like to thank all my coworkers in the Speech

Communications Lab for their help with knowledge, comments and

suggestions.

This research was made possible by grant number NSF-BES-

9411607 from the National Science Foundation.

 iv

TABLE OF CONTENTS

LIST OF TABLES... vii

LIST OF FIGURES....................................... viii

1. INTRODUCTION.. 1

1.1 Objectives... 1

1.2 Software Implementations........................... 2

1.2.1 WinBar ... 3

1.2.2 WinRec ... 5

1.2.3 WinPlay .. 6

1.2.4 Tfrontc .. 6

1.2.5 Neural ... 7

1.3 Overview of Following Chapters..................... 7

2. MIGRATION TO WINDOWS.................................. 9

2.1 Overview of the TMS System......................... 9

2.2 Limitation of the TMS System....................... 9

2.3 Windows Multimedia and Sound Cards................ 10

2.4 Advantages of 32bit Windows....................... 11

3. IMPROVED SIGNAL PROCESSING........................... 13

3.1 Introduction...................................... 13

3.2 Goals... 14

3.3 Signal Processing................................. 15

3.3.1 Frame Level Processing 18

3.3.2 Block Level Processing 29

 v

3.3.3 Final Features 33

3.4 cp_Feat... 34

4. THE WinBar PROGRAM................................... 39

4.1 Introduction...................................... 39

4.2 Real-time Signal Processing....................... 40

4.3 Artificial Neural Network Classifier.............. 46

4.4 Graphical Display................................. 49

4.5 WinBar Program Structure.......................... 49

5. TRAINING OF THE WHOLE SYSTEM......................... 54

5.1 Overview.. 54

5.2 Recording of Speech Files......................... 54

5.3 Feature Computation with Tfrontc.................. 55

5.4 Scaling of the Features........................... 56

5.5 Neural Network Training........................... 56

5.6 Setting up WinBar................................. 58

6. INVESTIGATION OF DISTINCTIVE FEATURES................ 61

6.1 Introduction...................................... 60

6.2 Acoustic Features................................. 63

6.3 Distinctive Features.............................. 64

6.4 Experiments....................................... 65

6.5 Results and Comparison............................ 70

6.6 Conclusion.. 72

7. ACHIEVEMENTS AND FUTURE IMPROVEMENTS................. 75

7.1 Achievements...................................... 74

7.2 Working not only with Vowels...................... 75

7.3 Other Display Types............................... 77

 vi

LIST OF TABLES

Table 1: Ten American English Vowels 3

Table 2: Neural Network Training Results 58

Table 3: Experimental Set of 13 American English Vowels 63

Table 4: The Representation of the Vowels with Distinctive

 Features ... 64

Table 5: Thirteen Features 66

Table 6: An Independent Set of Six Features 68

Table 7: Four Strictly Binary Features 68

Table 8: Four Scrambled Binary Features 69

Table 9: Six Modified Internal Features 72

 vii

LIST OF FIGURES

Figure 1: Correct Pronunciation of /ee/ 4

Figure 2: Incorrect Pronunciation of /ee/ 5

Figure 3: Signal Processing Block Diagram 17

Figure 4: Square Magnitude Spectrum 19

Figure 5: Morphological Smoothing of the Spectrum 21

Figure 6: Spectrum after Smoothing 22

Figure 7: Original and Frequency Smoothed Spectrum 23

Figure 8: Time Smoothing 25

Figure 9: The Effect of Smoothing 26

Figure 10: Basis Vectors over Frequency, Warping = 0 28

Figure 11: Basis Vectors over Frequency, Warping = 0.45 29

Figure 12: Basis Vectors over Time, Warping = 0 31

Figure 13: Basis Vectors over Time, Warping = 5 32

Figure 14: Blocks with Increasing Length 33

Figure 15: ComputeLogSpectrum() 35

Figure 16: TimeSmoothing() 36

Figure 17: ComputeDCTCs() 37

Figure 18: ComputeDCSs() 37

Figure 19: Double-Buffering Scheme 42

Figure 20: Sequential Buffers (A) 45

Figure 21: Sequential Buffers (B) 46

Figure 22: Structure of a Neuron 47

 viii

Figure 23: MLP with One Hidden Layer 48

Figure 24: WinBar Program Structure 53

Figure 25: Training of the Whole System 60

Figure 26: Evaluation Results over N 71

 ix

1. INTRODUCTION

Take this page out and adjust page numbers !

 1

CHAPTER ONE

INTRODUCTION

1.1 Objectives

The main objective of this research was to develop a new

and improved version of the Visual Speech Articulation Training

Aid. The previous version (Correal, 1994) was limited by the

need for expensive custom hardware and the use of very

specialized signal processing for the classification of steady

state vowels. The newly developed version is able to run on a

“standard” Windows Multimedia Personal Computer without any

specialized hardware. Furthermore, the signal processing

routines incorporate a large amount of flexibility so they can

process other types of phonemes. A new approach to compute

temporal/spectral speech features was implemented. In addition,

the performance of an artificial neural network using these

temporal/spectral features as inputs was compared to different

types of neural networks using various kinds of features as

inputs. In particular, distinctive features were investigated as

a possibility for a more basic phonetic-based training of

hearing impaired or foreign speakers.

A large portion of the work, and the most obvious

“product,” was the development of software for the improved

 2

signal processing algorithms and the incorporation of

these routines into the new Windows based Visual Speech

Articulation Training Aid. The next sections of Chapter One give

an overview of the programs developed during this work.

1.2 Software Implementation

From the user point of view, the newly implemented Visual

Speech Articulation Training Aid system primarily consists of

one executable program which displays the “correctness” of the

pronunciation of ten American English vowels graphically on a

computer screen. This program first computes temporal/spectral

features from a speech signal in real-time. These features are

used as inputs to an artificial neural network which classifies

the speech signal using a measure of the correctness of the

pronunciation for each of the vowels. The neural network outputs

are then graphically displayed on the computer screen. These

outputs thus inform the user if the intended vowel sound was

pronounced correctly.

The neural network used for classification in the main

routine mentioned above must first be trained to classify the

phonemes correctly. This training phase requires a large number

of speech samples, spoken correctly by native speakers. The

recording and labeling of sample data is accomplished with a

separate program. The neural network is trained with another

program. Therefore, several support programs were also developed

as described in the following sections.

 3

1.2.1 WinBar

WinBar is the main program of the Visual Speech Display

under Windows. It provides visual feedback for the correctness

of pronunciation of the ten monophthong English vowels in the

English language, as listed in Table 1.

IPA a i u æ
g

I ε 7

ARPABET aa iy uw ae er ih eh ao ah uh

ODU ah ee ue ae ur ih eh aw uh oo

Word bah beet blue had hurt hid head law shut book

Table 1: Ten American English Vowels

The first row in the table gives the International

Phonetic Alphabet notation for the vowels used for the visual

speech display work. In the second row the ARPABET notation for

these vowels is listed. The third row shows our in-house

notation, which is used in this work at ODU. This “ODU”

notation, which has been used in previous work with the Visual

Training Aid, was selected for the user interface, since this

notation corresponds to common usage patterns for these vowels.

A typical word including the vowel is given in the last row.

The graphical display for Winbar shows a bar for each of

the vowels with the height of each bar indicating the “amount”

of each vowel sound in the vowel articulated. Thus a correctly

articulated vowel will result in the corresponding bar reaching

 4

its maximum height and all other bars remaining at their

minimum height. Incorrectly pronounced vowels will result in

either multiple nonzero bars or the incorrect vowel bar

activated. Figure 1 shows the screen of the WinBar program.

This display was obtained when a male speaker correctly

pronounced the vowel /ee/.

Figure 1: Correct Pronunciation of /ee/

Figure 2 shows the display of the WinBar program in the

case of an incorrectly pronounced vowel. For this case, a male

user wanted to say /ee/ (as in beet) but it sounded somewhat

like /ih/ (as in hid), at least as judged by the automatic

scoring of the computer algorithms.

 5

Figure 2: Incorrect Pronunciation of /ee/

Instead of using expensive specialized hardware (for

example a DSP board) the speech signal is recorded with a

microphone and a standard sound card. The program performs the

following three major steps in real-time: First, the signal

processing routines compute the temporal/spectral features.

Second, an Artificial Neural Network is used to classify these

features. Third, the classification results are graphically

displayed. In addition, by using the Windows standard, the user

interface is very user friendly.

1.2.2 WinRec

WinRec is another Windows Multimedia based program. It is

used to gather the sample speech data needed to train the neural

 6

network which is used in the WinBar program. This

flexible program prompts the user to speak a certain sound or

word into the microphone. The program then scans the stream of

incoming samples from the sound card and automatically begins

recording to a file when the user begins speaking. Using a

unique labeling procedure and a header for each file, a large

number of these files can be created and easily organized for

later use.

1.2.3 WinPlay

This program is used to display and playback the content

of the speech files recorded with the WinRec program. Since this

program is also Windows based with a typical windows user

interface, it is used to rapidly and easily check a large number

of speech files for quality and correctness of the labeling.

1.2.4 Tfrontc

The Tfrontc program uses the same code for computing

features as does the WinBar program. However, the Tfrontc

program is designed to work on speech data stored in previously

recorded files, as opposed to real-time data. After the features

are calculated with Tfrontc, a feature file is created for each

vowel, containing all the examples collected for that vowel.

These files are used as the inputs to the neural network

training program Neural.

 7

1.2.5 Neural

The training of the neural network is done with the Neural

program. It reads in the features for each vowel and uses these

to train the network using the back propagation iterative

procedure. The network parameters are stored in a weight file.

This training, which requires a large amount of time, does not

need to be done in real-time. The neural network in the WinBar

program uses these values to classify the speech data.

1.3 Overview of Following Chapters

This section gives an overview of the contents of the

following chapters in this thesis.

Chapter Two describes the motivation and the benefits of

migrating the Visual Speech Articulation Training Aid to Windows

based applications. In addition, an overview of the older

version of the Visual Speech Display is given and its

limitations are discussed.

In Chapter Three the improved signal processing is

described. This is first done from a signal processing point of

view. The implementation of the signal processing with flexible

routines is also explained. Even though the routines are

currently used only to compute temporal/spectral features for

vowel classification, they can be used without code changes for

stop consonant classification and also to compute features for

other speech processing tasks such as speaker verification.

Chapter Four contains more detailed information of the

Windows based version of the bargraph display. This includes the

 8

real-time use of the signal processing routines and more

information about the artificial neural network used.

In Chapter Five the process of training the overall

system is described. This includes gathering training data,

computing features, scaling the features and finally the

training of the neural network.

The topic of Chapter Six is an investigation of

distinctive features versus temporal/spectral features. The

performance of various kinds of neural network architectures and

features are compared. One motivation for the work presented in

this chapter is to justify using temporal/spectral features for

vowel classification. In addition, the material in this chapter

provides some new insights in the use of distinctive features

and the internal representation of features inside a neural

network. The use of distinctive features is also a possibility

for a type of training display.

Chapter Seven closes this thesis with a short summary of

the achievements of this work and a description of possible

further improvements. Also the use of the signal processing

routine with phonemes other than vowels are discussed.

 9

2. MIGRATION TO WINDOWS

Take this page out and adjust page numbers !

 9

CHAPTER TWO

MIGRATION TO WINDOWS

2.1 Overview of the TMS System

The previous version of the Visual Speech Display was

implemented on a Personal Computer (PC) hosting a Digital Signal

Processing board. This DSP board from Texas Instruments was

based on the TMS320C25 floating point DSP chip. The microphone

was connected using a custom built external amplifier to the DSP

board. All signal processing and neural network computations

were done on the DSP board. Using complex synchronization and

data transfer routines, the results were sent to the PC. The PC

was only required for the user interface and for the graphical

displays. This system was successfully used for teaching and

improving the pronunciation of vowels of hearing impaired

children (Correal, 1994). Using virtually the same processing

routines on the DSP board, a variety of displays were developed

using different PC programs. These included a bargraph display,

a two-dimensional ellipse display, and three games.

2.2 Limitation of the TMS System

Although the performance of the system was good, there

were several limitations. An important factor was the high cost

 10

of the specialized hardware of about $1,000 (1994). This

represented a big obstacle in making the system available to the

average person. Another limitation was the complex development

of the software. In particular, two separate programs were

needed to create one application. The first program, which ran

on the DSP board, was built using a specialized compiler from

TI. The second program for the PC was created using a standard C

compiler. However, great care was needed for reliable

synchronization and data transfer routines, which enabled both

programs to work together. In addition the memory model of MS-

DOS and for the DSP board are totally different. This structure

makes it extremely difficult to debug and to maintain the code.

A third limitation was that for each PC program a great amount

of programming time was required to create a friendly user

interface.

2.3 Windows Multimedia and Sound Cards

To overcome the limitations of the TMS system, the Windows

environment was selected as the platform for a improved version

of the Visual Speech Display. Windows has become the most

popular operating system on Personal Computers. One design goal

for Windows was to provide the user with a standard mouse

controlled user interface, such that even unknown applications

would look familiar. Using this interface standard, a large

amount of development time can be saved for writing the user

interface. But more importantly, the advancements in technology

have increased the computation speed of PCs dramatically.

Instead of using the computer power of a 386 PC and a DSP card

 11

with floating point chip together in parallel, a 486 or

Pentium based PC is able to finish both tasks in the same time

or faster. This factor allows the use of a commercial sound card

as the speech input device.

Consisting mainly of an A/D and D/A converter and some

secondary chips, the much simpler construction and the large

number of sound cards sold result in a price about one-tenth

that of a DSP board (about $100 for a mainstream sound card

(1996)). In addition, an external amplifier is not required

since the sound card has a designated microphone input port and

on-board amplifier. Using Windows Application Programming

Interface (API) routines, a sound card can easily be controlled.

Now all functions of a Visual Speech Display application can be

combined into one program without the need to write specialized

routines for synchronization or data transfer functions. Using

the sampled speech data from the sound card, all signal

processing, the classification with a neural network and the

graphical display can be done in real-time from within this one

program.

2.4 Advantages of 32 bit Windows

The earlier versions of Windows required the MS-DOS

operating system. This is a 16 bit real mode operating system

with limitations on speed and memory management. The newer

versions of Windows, that is Windows 95 and Windows NT, are 32

bit operating systems which operate in protected mode. The

change from 16 bits to 32 bits has increased performance

approximately twofold with all else equal. A linear memory model

 12

is also used, which removes array size limitations and

other problems for the programmer. In addition, the 32 bit API

allows easier program development. Newer systems are rapidly

migrating to the 32 bit platform. For all of these reasons, 32

bit Windows was chosen for this work. To receive maximum

benefits from both Windows multimedia and the advantages of a 32

bit operating system, Windows NT was chosen as the platform for

the new Visual Speech Display.1

1 However, except for minor graphics problems like slightly wrong

positioned buttons or labels in the recording program, all developed

code will also operate using Windows 95.

 13

3. IMPROVED SIGNAL PROCESSING

Take this page out and adjust page numbers !

 13

CHAPTER THREE

IMPROVED SIGNAL PROCESSING

3.1 Introduction

The migration of the Visual Speech Display to a Windows

based System with integrated digital signal processing routines

in one PC program allowed the implementation of much more

powerful and flexible algorithms. The signal processing routines

of the previous system were optimized to process only steady

state vowels. In contrast, the new system developed in this

study is able to process not only steady state vowels but also

short, coarticulated vowels extracted from words and other

phonemes such as stop consonants. The new signal processing

routines are therefore much more flexible, even though the first

stage of processing is based on the older system. In the first

stage spectral features are computed based on individual frames

of speech data. This processing is similar to the cepstral

analysis computations in many automatic speech recognition

systems. But, in addition, the new system incorporates a newly-

developed second stage of signal processing. This second stage

involves the computation of features which represent the time

history of the spectra of the speech signal. These are called

temporal/spectral features. These features were investigated in

 14

several previous studies in our lab and found to be

effective for improving classification rates for both vowels

(Zahorian and Jagharghi, 1993; Nossair et al., 1995) and stops

(Nossair and Zahorian, 1991; Correal, 1994).

3.2 Goals

The main goal for developing a new set of processing

routines was to make them flexible enough that they could be

used for a broad range of applications by just adjusting a few

parameters instead of writing similar but specialized routines

for each problem. The first programs mentioned in Chapter One

which used these signal processing routines were the WinBar and

the Tfrontc programs. As described in section 1.2.1, the WinBar

program uses the features computed by the signal processing

routines as inputs to a neural network classifier. The outputs

of the neural network are displayed as bars on the computer

screen with each bar representing the classification result for

one particular vowel.

The features for the training of the neural network are

computed by the Tfrontc program. The feature computation is done

by exactly the same routines as used in the WinBar program. The

WinBar program works with steady state vowels. However, other

phonemes like stop consonants are much harder to classify and

require slightly different features. Another application which

requires similar features, but with different optimizations, is

speaker identification and verification (Rudasi, 1991 and

Norton, et al., 1994).

 15

The signal processing routines developed in this

project are able to handle all of these cases without any code

changes. Instead, the details of the feature computation are

adjustable by a number of important parameters which are saved

in a convenient self-documented setup file. However, the most

important accomplishment of the flexible signal processing

routines implemented in this study was that they include the new

ideas and refinements determined over the several years of

research (for example Nossair and Zahorian, 1991; Nossair et

al., 1995; Zahorian, Nossair, and Norton, 1993).

3.3 Signal Processing

The goal of signal processing for speech recognition is to

represent the characteristics of speech data with a small number

of parameters called features. That is, the important properties

of the signal are represented by the features. These important

properties depend heavily on the particular problem. For speaker

verification, the important property of a speech signal is

information about the person who said these words. This has been

shown to depend on spectral details (Rudasi, 1991). For speech

recognition, speaker information is simply an added variability,

since the primary goal is to compactly represent the phonetic

information of the speech segment. These features have been

shown to depend primarily on the global spectral shape (Zahorian

and Jagharghi, 1993).

To extract this information from the time waveform of a

speech signal a technique known as the short-time spectral

analysis is used. To achieve high resolution in the spectrum, a

 16

long segment of time domain data is needed. However, to

capture signal changes over time, much shorter segments should

be used. In typical short-time spectral analysis the signal is

partitioned into short (typically 20 to 40ms) intervals called

frames. For each frame the spectrum is computed. These frame

lengths are long enough to obtain good spectral resolution for

speech analysis. However, in some cases it is preferable to have

better time resolution at the expense of frequency resolution.

This can be done by using shorter frames (on the order of 5 to

10 ms) which overlap by a large amount. This leads to frames

which are long enough to have moderate spectral resolution but

spaced close enough together to enable good time resolution.

All further spectral computations are based on these frames.

These processing steps are called the frame level processing.

 To also include the temporal properties, i.e., parameters

which characterize how the frequency content changes from frame

to frame, a number of frames are combined to blocks. In the

block level processing the temporal properties of the block are

extracted. Figure 3 shows a block diagram of the more detailed

steps involved in the signal processing. These steps are

explained in the following sections.

 17

Log scaling

One frame of time domain data

DC removal

Hamming window

Real-valued FFT

Select desired frequency range

Square magnitude calculation

Frequency smoothing

Time smoothing

DCTCs

Combining several frames into blocks

Final features

DCSs

Additional
frames

Basis vectors
over frequency

Additional
frames

Basis vectors
over time

Select desired terms

Frame level
processing

Block level
processing

Figure 3: Signal Processing Block Diagram

 18

3.3.1 Frame Level Processing

In the first step of the frame level processing the

sampled speech data is partitioned into a number of frames.

Commonly the length of a frame is on the order of 20 ms for

vowel recognition. Also, these can overlap (typically by 50% or

less) to enhance the time resolution of the analysis. The next

step of processing is to remove the DC level of each frame,

since the DC level is caused by the recording system and carries

no information. To minimize the effect of signal processing

artifacts created by partitioning the signal into frames, the

time waveform for each frame is multiplied by a Kaiser window.

The Kaiser window has a single parameter which controls the

shape ranging from a rectangular window to a very smoothly

tapered function. For the case of vowel processing, the Kaiser

window is usually adjusted to be very similar to the more common

Hamming window (thus the Hamming window notation in Figure 3).

Next the Fast Fourier Transform (FFT) is computed for each

frame. Since the length of a frame may be less than the desired

FFT length, the frame is zero padded to match the FFT length if

necessary. To increase the speed of the FFT computation an FFT

routine specialized for real input signals is used (Sorenson,

1987). The FFT length, although usually 256 or 512 points, could

also be chosen by setting a variable in the command file. Before

the magnitude is computed from the appropriate real and

imaginary terms, a lower and upper frequency bound is defined

based on the selected frequency range from the command file. As

explained below, since later steps might require a few

 19

additional values outside the final range of interest,

the processing range is slightly larger than the desired range.

To reduce computation time, the squared magnitude spectrum is

only computed for frequency values within the processing range.

Thus, after the steps described in this paragraph, a frame

consists of the squared magnitude spectrum for the corresponding

speech data.

Figure 4 illustrates in stylized form a squared magnitude

spectrum for a single frame. In this figure the processing range

and the desired range are shown. A few additional values

outside the processing range are also included, in order to show

that not all values are processed.

|X[k]|²

k

Desired range

Processing range

Figure 4: Squared Magnitude Spectrum

The phase of the spectrum does not carry significant

information about the speech and is therefore neglected. In

addition the general shape of the magnitude spectrum is more

relevant than spectral details. To emphasize the general shape,

 20

the squared magnitude spectrum is smoothed over

frequency. This is achieved with a morphological smoothing

window, explained as follows. The current frequency sample is

called the window origin. The window contains additional samples

previous to the origin and after the origin. The actual

smoothing operation is done by finding the maximum sample

amplitude over all samples included in the window. The result is

stored in a new array at a position corresponding to the

position of the window origin. The window origin is then moved

to the next sample. In this way all samples of the desired range

are smoothed. In Figure 5, the smoothing window includes the

window origin, |X[j]|2 , one previous value, |X[j-1]|2, and one

following sample, |X[j+1]|2. The smoothed value of the spectrum

|Y[j]|2 is found as the maximum value of the samples included in

the current window, i.e.,

[] []()Y j X l
j l j

2

1 1

2
=

− ≤ ≤ +
max

This smoothing is done over all samples in the desired

range, i.e., j ∈ desired range. Now it is also clear why the

processing range includes a few more values than the desired

range. This allows the correct smoothing of the first and last

samples in the desired range. Note that the smoothed values,

|Y[j]|2, are stored in another array, since the smoothing

procedure must process the original values |X[j]|2 .

 21

|X[k]|²

k
j-1 j j+1

Window origin

Desired
range

Moving
window

Figure 5: Morphological Smoothing of the Spectrum

The use of this kind of smoothing results in a broadening

of the peaks in the spectrum and in a reduction of the depth of

valleys. Figure 6 illustrates the results of this smoothing

process for the data from Figure 4. An important theoretical

reason for using this type of filtering is that that spectral

peaks, which are thought to be important perceptually are

emphasized, whereas spectral valleys, which are not thought to

carry much speech information, are de-emphasized. Furthermore,

from a signal processing point of view, the morphological

filtering removes noisy spectral dips between pitch harmonics in

the spectrum, prior to the log scaling step, as discussed

next.

 22

|Y[k]|²

k

Desired range

Figure 6: Spectrum after Smoothing

Figure 7 shows two graphs. The lower curve is the log

scaled spectrum of an actual frame of speech data. This spectrum

contains many details. As mentioned above, these details are not

considered to contain significant phonetic information. By using

frequency smoothing the general shape of the spectrum is

emphasized. This can be seen in the upper curve, where a

symmetric smoothing window with a length of seven samples

including the origin was used. The curves were separated such

that they don’t overlap. For that reason a constant term (one

unit on the y axis) was added to the smoothed curve.

 23

Frame Level Spectra

Frequency

Lo
g

am
pl

itu
de

Figure 7: Original and Frequency Smoothed Spectrum

The log scaling compresses the dynamic range of the sample

amplitudes. More importantly, however, the human auditory system

has a logarithmic amplitude resolution. Since the human auditory

system is presumably biologically optimized for speech

processing, an increase in performance of the digital signal

processing algorithms would be expected by modeling the human

auditory system.

After the scaling step, each frame consists of log scaled,

smoothed magnitude spectrum for that frame of speech. This

processing is consistent with the well established idea that

phonetic information is contained in the short time log

magnitude spectrum. However, as mentioned previously, not only

do the “instantaneous” values of the spectrum carry

information, but also the pattern of spectral changes over time

 24

is important. As for the spectrum itself, the general

trend of these changes is more important than fine details.

Therefore the spectral frames are smoothed over time using a

morphological smoothing process similar to the one previously

described for frequency smoothing within each frame. However,

the smoothing is now applied to samples at the same frequency

but over different frames. This is illustrated in Figure 8,

where the morphological smoothing window origin is at the third

frequency sample (k) of the fifth frame (j). The window contains

frequency samples from three previous frames. Typically the

smoothing over time is done with an asymmetric window. The

result of the time smoothing of frame j at frequency index k is

found in this example as:

[] []()Z k j Y k l
j l j

, ,max2

3

2
=

− ≤ ≤

More generally, the value of l covers all samples included

in the smoothing window. The resulting values |Z[k,j]|2 are

stored separately from the original values to ensure correct

smoothing of all original values. The smoothing is also applied

to all frequency samples of a frame. The process continues for

all frames which are contained in the processing buffer (as

explained in the next section.) Note that to better understand

the speech processing described in this thesis, speech

parameters should be viewed as a two dimensional time-frequency

matrix. Each row in the matrix is a single time frame. Different

rows are different times. After the steps described in this

 25

paragraph, each frame thus contains the time-smoothed

result of the log-scaled frequency-smoothed squared magnitude

spectrum.

Current frequency index k
Moving
window

Window origin

Time in
frames

Frequency

Current frame j

One row =
one frame

…

…

Figure 8: Time Smoothing

In Figure 9 the effect of the two smoothing operations is

shown for some real speech data. The curve in “front” is the

log scaled squared magnitude spectrum of a 30 ms frame of the

vowel /ah/. The spectrum was computed with a 512 point FFT.

Since no smoothing was applied to this data, the details of the

spectrum can be seen. The second graph shows the spectrum of the

same frame, after a symmetric smoothing window of width 150 Hz

was used to smooth the spectrum over frequency. At a sampling

frequency of 11.025 kHz, this corresponds to a window width of

seven frequency samples. It can be seen that deep valleys are

“filled” and peaks are broadened. The last graph shows the

 26

spectrum of the frame when smoothing over time is

applied in addition to the frequency smoothing. For the time

smoothing an asymmetric window including five previous frames

was used.

1 26 51 76 101 126 151 176
201

Lo
g

am
pl

itu
de

Frequency in samples

Frame Level Spectra

Figure 9: The Effect of Smoothing

The next processing step after time smoothing is the

computation of Discrete Cosine Transform Coefficients (DCTCs).

These coefficients encode the general shape of the spectrum with

a small number of values. To compute the DCTCs a discrete cosine

transform is applied to each frame, using the equation below:

DCTC i X k i k
k

N

() () (,)=
=

−

∑ φ
0

1

 27

The i-th DCTC is computed as the sum over all

frequency samples X(k), in the desired frequency range k,

multiplied by the basis vectors over frequency N(i,k). The basis

vectors given in the equation, which, for the most

straightforward case, are samples of integer multiples of a

half-cycle of a cosine,

φ
π

(,) cos
(.)

i k
i k
N

=
+

5

are generally modified as discussed below.

 Since only a small number of DCTCs are needed (typically

10 to 15), and also because of the frequency range limitations,

the DCTCs were computed with the straightforward dot-product

approach rather than a fast transform based method. However, to

increase the speed of these calculations the required cosine

basis vectors are precomputed.

An important theoretical issue that affects the DCTC

calculations is that a non-linear scaling of the frequency axis

improves the performance of the whole classification system

significantly (for example, Nossair et al., 1995). This agrees

again with biologically motivated considerations in that the

human ear has a much higher frequency resolution at low

frequencies than at higher frequencies. To take this non-linear

scaling of the frequency axis into account, the frequency axis

of the frame level spectrum should be “warped” before the DCTCs

are computed. That is, the spectrum could be re-sampled such

that samples are closer in frequency at low frequencies and

 28

farther apart in frequency at high frequencies. This

approach, which is used in many current speech systems and in a

previous version of the Visual Speech Display, is

computationally inefficient and results in approximate matches

to desired warping functions. Research in our lab has shown that

a better approach is to incorporate the warping into the basis

vectors (Rudasi, 1992). Since the basis vectors are pre-

computed, no additional computations are required to implement

time frequency warping. Figure 10 and Figure 11 illustrate basis

vectors computed without and with warping incorporated

respectively. As can be seen in Figure 11 the warping causes the

basis vectors to vary more rapidly and to have higher amplitude

at lower frequencies than at higher frequencies. This results in

effectively higher resolution of lower frequencies than for high

frequencies. More details are given in (Rudasi, 1992) Wang et

al., (1996).

Basis vectors over Frequency, no warping

BVF0 BVF1 BVF2

Figure 10: Basis Vectors over Frequency, Warping = 0

 29

Basis Vectors over Frequency, 0.45 warping

BVF0 BVF1 BVF2

Figure 11: Basis Vectors over Frequency, Warping = 0.45

Except for several refinements such as the morphological

filtering over frequency and method for accomplishing frequency

warping, the processing in the previous version of the Visual

Speech Display was similar to that described thus far for the

new system. That is, the frame level DCTCs just described were

used as the inputs to the neural network classifier used for the

actual phonetic recognition. In addition to this much greater

efficiency, accuracy, and flexibility incorporated into the

frame level processing, a “block level” processing step was

incorporated for the present study, as described in the next

section of this thesis.

3.3.2 Block Level Processing

As mentioned previously, research (for example Zahorian

and Jagharghi, 1993) has shown that the performance of phonetic

classifiers can be improved dramatically if not only the DCTCs

of the current frame are used but also the change of the DCTCs

 30

over time are used as features. Therefore a number of

frames of DCTCs are combined to form a block. The goal of the

block level processing is to represent the change of the DCTCs

from frame to frame with a small number of values. As mentioned

before only the general trend of the change is important for

this analysis. This trend can be appropriately encoded using a

Discrete Cosine Series (DCS) expansion. This calculation is

performed using the exact same dot product approach previously

described for the DCTC calculations:

DCS i j DCTC j k i k
k

M

(,) (,) (,)=
=

−

∑ Φ
0

1

where the i-th DCS of DCTC j is computed as the sum of the

DCTC j, over all frames k in the current block, multiplied by

the basis vectors over time M(i,k). The length of the current

block is denoted with M.

To save computation time, the required basis vectors are

pre-computed similarly to the basis vectors for the DCTC

computation. However, as described Nossair et al. (1995), time

resolution should generally be non-uniform over the block. For

the case of vowels, maximum resolution should occur near the

center of the interval, with decreased resolution at the

endpoints of the block. This non-uniform resolution can be done

with a non-linear warping of the time axis before the DCSs are

computed. Using a similar technique to that used for the

frequency warping, the warping of the time axis is incorporated

into the basis vector computations. The DCS terms, which are

features which incorporate the time-warping effect, are thus

 31

efficiently and easily computed by a dot product of the

history of a certain DCTC and the DCS basis vectors. Figure 12

and Figure 13 show the basis vectors over time without and with

warping respectively. Figure 13, which depicts the basis vectors

with warping, shows that the basis vectors vary more rapidly and

are larger in the middle of the interval than at the endpoints.

This results in an increased time resolution of the values in

the center of a block and a decreased time resolution at both

ends.

Basis Vectors over Time, no warping

BVT0 BVT1 BVT2

Figure 12: Basis Vectors over Time, Warping = 0

 32

Basis Vectors over Time, 5 warping

BVT0 BVT1 BVT2

Figure 13: Basis Vectors over Time, Warping = 5

Yet another consideration taken into account in the

development of the signal processing software is that, in

certain cases, for example stop consonants, the speech signal

changes very rapidly at the onset and then changes more slowly.

Therefore, the block level processing was written to allow

blocks with increasing length. The start of the first and

shortest block is synchronized with the speech onset. The

following blocks are of increasing length up to the desired

maximum block length. This results in a very detailed

representation of the speech onset compared to the normal

resolution of the block processing. Figure 14 shows how frames

are combined to form blocks of increasing length. The shaded

frames contain the speech signal of interest, starting in frame

five. As can be seen the block length is increased from one

frame to the maximum block length of five frames. The rate of

increase (labeled Block_jump) equals two frames in this case.

The same value is used to advance the blocks after the length of

a block reaches the maximum block length. This can be seen for

the last two blocks.

 33

0 2 983 4 5 6 7 10 111 12

Speech onset

Block 0

Block 1
Block_jump

Block_length_max

Block 3

Block 2

Frames

Figure 14: Blocks with Increasing Length

3.3.3 Final Features

The block level processing results in a set of DCS terms

for each DCTC. However, for some phonetic classification

applications (for example Zahorian and Jagharghi, 1993), better

results are obtained with a subset of these terms. Therefore,

another option was added such that only specific DCS terms are

used. To save computation time, only these needed terms are

actually computed. These DCS terms over the DCTCs are the final

features representing the speech signal for each block. They are

used as the inputs to a neural network classifier.

In the remaining section of this chapter, the actual

software routines used to implement the signal processing just

summarized are described. Some additional issues concerning

efficient data management for real-time operation are also

 34

described. All of this code was developed using

Microsoft Visual C/C++, Version 4.0, for Windows NT and Windows

95.

3.4 cp_Feat

All the primary signal processing routines are contained in the

cp_Feat.c source file. Other routines, such as the routines to

compute the basis vectors, are located in secondary source

files. A very detailed description of the routines of cp_Feat

can be found in (Auberg, 1996). This section provides a relation

between the signal processing steps and the implementation of

the C routines. In the comments in the code and in the detailed

help file (Auberg, 1996) the following notation is used. A

segment is an array of time domain data. All computations are

based on the data included in a segment. For real-time use, a

segment denotes the non-overlapping (i.e., the “new”) portion of

the data obtained each time the program communicates with the

sound card. A buffer is an internally used array of time domain

data which is composed of one frame length of “old” data taken

from the end of the previous segment and the current segment

itself. A buffer therefore contains overlapping (the “old” frame

length of data) and non-overlapping data (the current segment).

A frame contains a small amount of data taken from the buffer.

For each frame the FFT is computed. A frame can therefore

contain time or frequency domain data. Finally, a block consists

of a group of frames containing frequency domain data. For each

block a set of the final temporal/spectral features is computed.

This notation is also used in Chapter Four.

 35

The frame level processing is partitioned into

three routines. All block level processing is accomplished with

one routine. The routines were designed to be called only once

per segment. This meant that a certain amount of data management

had to be included in the routines.

Figure 15 shows the signal processing steps which are

included in the first C routine called ComputeLogSpectrum().

These steps are identical to the steps in the upper section of

Figure 3.

Log scaling

DC removal

Hamming window

Real-valued FFT

Square magnitude calculation

Frequency smoothing

Partition speech segment into frames

For all frames in the segment

Figure 15: ComputeLogSpectrum()

There are only two differences between the routine and the

steps in Figure 3. First, the partitioning of the speech signal

into frames is handled here. Second, the routine computes the

log scaled spectrum for all frames included in the current

 36

segment before the next processing steps take place.

Therefore, this processing results in a group of frames

containing log scaled spectra.

Some additional data management is also included in the

ComputeLogSpectrum() routine. This data management enables the

following routine to work continuously on a speech signal which

is longer than the one segment given to the routine. However, a

more detailed explanation is delayed until Chapter Four. To

smooth these log scaled frame level spectra over time, they are

passed to the time smoothing routine. The block diagram is shown

in Figure 16.

Time smoothing

For all frames in the segment

Figure 16: TimeSmoothing()

After all frame level spectra have been smoothed over

time, the DCTCs can be computed for each frame. The routine

called ComputeDCTCs() uses a set of pre-computed basis vectors

over frequency. Recall that these basis vectors incorporate the

warping of the frequency axis if that option is selected. Figure

17 shows the signal processing steps implemented in the last

frame level processing routine.

 37

Compute DCTCs
using the precomputed basis vectors over

frequency

For all frames in the segment

Figure 17: ComputeDCTCs()

The next processing routine incorporates all block level

processing. First, a number of frames are combined to form

blocks. The routine, called ComputeDCSs(), uses the pre-computed

basis vectors over time, to compute the DCS terms. These basis

vectors also incorporate the non-uniform resolution over the

block, as discussed previously. After the DCS features for a

given block are computed, the next block is processed. Note that

the blocks may overlap and that the length of blocks can

increase with time. Figure 18 shows the processing steps

implemented in the ComputeDCSs() routine.

Final features

Compute DCS
using the pre-computed basis vectors over time

Select desired terms

Partition frames into blocks

For all blocks

Figure 18: ComputeDCSs()

 38

The next chapter describes how these routines are

used in real-time. The WinBar program is used as an example of a

typical program using real-time signal processing.

 39

4. THE WinBar PROGRAM

Take this page out and adjust page numbers !

 39

CHAPTER FOUR

THE WinBar PROGRAM

4.1 Introduction

Chapter Three described the basics of the signal

processing. Also the implementation of the signal processing

ideas into signal processing routines was described. These

routines are used in two different types of programs for the

overall system. First, the routines are used to compute features

from pre-recorded speech data. Thus this program runs off-line

using data stored in computer files. These features are required

to train the neural network classifier. Next, the same signal

processing routines are used in a classification program. In

this chapter, the WinBar program is used as an example. In

WinBar, the features are computed from a unknown speech signal

in real-time. These features are then “processed” by a trained

neural network classifier and the classification results are

displayed on the screen. To ensure consistency, the processing

routines in both application must be the same. However, real-

time operation requires some additional data management. The

next section describes this additional data management.

 40

4.2 Real-time Signal Processing

The main difference between real-time and off-line

processing is that for the real-time case, it is not known what

the speaker will say and when the sounds will be produced.

Therefore a classification program such as the WinBar program

needs to constantly ‘listen’ to the incoming signal to detect a

possible start of an utterance. The basic approach to processing

continuous data is a typical double-buffering scheme. That is,

two arrays of the same length are utilized, as depicted in

Figure 19. During the time the Collection Array is filling with

sampled speech data, the data in the Process Array can be

processed. In using the notation of Chapter Three, the Process

Array is referred to as the current segment. When the Collection

Array is filled, the roles of the two arrays are interchanged,

so that the new data can be processed. This demonstrates the

real-time requirement of the signal processing. That is, all

calculations on the Process Array must be completed in the time

required to fill the Collection Array, in order that no data is

lost. For example, with a sampling rate of 11.025 kHz, and a

segment lengths of 1103 points, all processing for the 1103

points must be completed in less than 100 ms, the time within

which the next 1103 points would be collected.

Another important point for processing continuous data is

that a certain number of samples from the previous segment are

needed to accommodate overlapping operations required for speech

processing. Furthermore, for maximum flexibility, the

relationship between the segment length, i.e., the length of the

 41

Collection and Process Array in Figure 19, and the frame

lengths and frame spacing should be arbitrary. That is, the

segment length is based on real-time considerations (such as

time between screen updates) whereas frame length and frame

spacing should be based on time/frequency resolution

considerations as mentioned previously. Also, for the best

performance, the processing should be synchronized with the

speech onset. This is especially important for many of the

consonants. The extra data management required to allow this

flexibility is illustrated as follows. After the onset is found,

the speech data is partitioned into frames starting a certain

amount of samples before the detected speech onset. Typically

the data from the speech onset to the end of the Process Array

cannot be partitioned into an integer number of frames which

will use all the data. Therefore, there are a certain number of

samples at the end section of the Process Array (up to a maximum

of the frame length minus one) which cannot be processed until

the next array is filled. To accommodate for this difficulty, a

number of samples (one frame length) from the end of the

previous Process Array are saved, as shown in the lower left

hand corner of Figure 19. Thus a Buffer is defined for the

actual processing which consists of this overlapping data, i.e.,

data from the previous array, and the current data taken from

the Process Array. The steps for actual data management are also

shown in Figure 19.

 42

Sound Card

Microphone

Exchange of arrays
when the Collection
Array is filled.

2.

Collection Array

Process Array

Non-overlap

1.

Buffer

Overlap

Buffer

Figure 19: Double-Buffering Scheme

After the Buffer is formed, as outlined in the previous

paragraph, the next step is to identify one of the following

unique cases: (1) a silent Buffer with no speech data, (2) a

Buffer with speech starting after the beginning of the Buffer,

(3) a full Buffer, with valid speech data for the entire Buffer,

or (4) a Buffer with speech data in the beginning but ending

before the end of the Buffer. An implicit assumption is that

each valid utterance, and that pauses between utterances, are at

 43

least one segment length long. Therefore, cases such as

a single utterance beginning and ending within a single segment

are not allowed. To determine which of the cases above are

contained in the buffer, an algorithm was developed to locate

the speech onset. The routine in the WinBar program handling

this speech detection is called LocateSpeech(). Three variables

used by this function are now introduced. More details can be

found in (Auberg, 1996). The first variable is called

First_frame. This variable points to the start of the first

frame in the current buffer containing speech. The second

variable, Next_frame, points to the beginning of the first frame

which does not fit into the current buffer. The third variable,

First_call is set to one if a speech signal started in the

current buffer, and is set to zero otherwise.

As an initial condition case (1) is assumed. Therefore

First_call is set to one. Assume that a speech signal starts

somewhere in the current buffer and is about two and half

segments long. In the LocateSpeech() routine First_frame is set

to point to the first new sample in the buffer, i.e., it is

pointing to the start of the current segment. Starting from

First_frame, the data is partitioned into short non-overlapping

windows. For each window, from left to right, the energy of the

window is computed. Using a threshold it is decided if the

current window contains the speech onset. If the energy is below

the threshold the next window is tested. If the threshold is

reached, the value of First_frame is updated accordingly to the

point at the located onset, minus an offset equal to the number

 44

of samples defined for a pre-trigger. Using the value of

First_frame the number of frames fully contained in the buffer

is computed. The beginning of the first frame not contained in

the buffer is stored in the Next_frame variable. This is now the

case (2) mentioned above.

After the processing is done and the next buffer is

available, the value of First_frame is calculated based on the

buffer length, segment length and the value of Next_frame, which

is relative to the last buffer. Starting at First_frame the

buffer is partitioned into windows as described above. The

implicit model now only allows two possible states, case (3) or

case (4). To determine which case applies to the situation, the

energy of the windows is checked against the threshold. However,

the energy value is now checked starting from the end of the

buffer. This way it can easily determined if the signal lasts

until the end of the buffer or not. In our example the whole

buffer contains speech data, therefore case (3) is determined.

The variable First_call is set to zero, since the data in the

buffer continues data from the previous buffer. Figure 20 shows

first two buffers. An index is used to denote the different time

instances of the arrays and variables. The speech was detected

to start a little after the beginning of the segment (time n).

Clearly the overlap between the two buffers (time n and n+1) can

be seen. The lower section of Figure 20 shows the frames which

are built in the ComputeLogSpectrum() routine based on the

values of First_frame, the length of the frame, the frame

 45

spacing and the number of frames determined by the

LocateSpeech() routine.

First_frame[n]

First_frame[n+1]

Buffer[n+1]

0

1

2

3

4

0

1

2

3

4

5

x

Next_frame[n+1]

Buffer[n]

Figure 20: Sequential Buffers (A)

After the next buffer is available, the same two states

are possible as before, i.e., case (3) or case (4). As assumed

above the speech signal ends after about two and half segments

in the third buffer. After the current value of First_frame is

calculated, the energy of the windows is computed for this

buffer. By scanning from the end of the buffer, it is found that

the speech signal stops in the middle of the buffer. Therefore

case (4) is now given. Now the number of frames containing at

least some speech is found. Next_frame is set to point to the

first frame not containing any speech. Figure 21 shows this

situation. Here the last buffer of Figure 20 is shown again for

illustration of the continuous nature of the processing. From

the buffer at time n+2 only five frames are processed, since the

 46

next frame (marked with an ‘x’) does not contain any

speech but would still fit into the buffer.

After case (4) was detected for a buffer, case (1)

(initial condition) is assumed for the next buffer.

Buffer[n+1]

0

1

2

3

4

5

0

First_frame[n+2]

Buffer[n+2]

1

2

3

4

Next_frame[n+2]

x

Figure 21: Sequential Buffers (B)

After a speech onset was found in a buffer, the frame

level processing is applied to the data. As the next step, the

block level processing is done to calculate the final features.

These features are the inputs to the Artificial Neural Network.

4.3 Artificial Neural Network Classifier

Artificial Neural Network Classifiers are widely used in

automatic speech recognition based on their flexibility. The

type of network used in this thesis is known as a Multi-Layer

Perceptron (MLP). It consists of a large number of identical

nodes called neurons. Each neuron has a number of inputs with

associated weights, an internal offset and one output. The

 47

output is computed as the weighted sum of the inputs

minus the offset, where this sum is passed through a non-linear

function. Figure 22 shows the structure of a single neuron,

neuron k. The Xi are the inputs to the neuron, wki are the

weights and 2k denotes the offset. A sigmoid function ranging

between zero and one is used as the non-linear function N().

N(.)

2k

-1

X1

X2

X3

Xp

wk1

wkp

vk

yk

Figure 22: Structure of a Neuron

The output yk of the neuron is computed as follows:

y w xk k j j
j

p

= −

=
∑ϕ θ

1
k

The neurons are grouped into layers, where the outputs of

the previous layer are the inputs to all nodes of the next

layer. In the case of the WinBar program an MLP with one hidden

layer was used. Hidden layers are ‘hidden’ between the input

layer and the output layer. Figure 23 shows a typical MLP with

one hidden layer.

 48

Figure 23: MLP with One Hidden Layer

Since a non-linear function is used to compute the output

of each neuron, a MLP can create a non-linear mapping of the

input space to the output space. The complexity of the decision

region for each class depends on the number of layers and the

number of nodes in the layers. Previous research by Zahorian and

Jagharghi (1993) showed that to classify ten vowels a MLP with

one hidden layer is sufficient. The number of nodes in the

hidden layer can be between 30 and 50.

The network used in the WinBar program typically has about

20 inputs. These are the final features computed by the block

level processing. The actual number varies with the way the

features are computed. The hidden layer has 50 neurons. The

output layer consists of ten neurons with one neuron for each

vowel. The values of the weights and offset are computed during

 49

the training of the neural network. The training is

described in section 5.5.

4.4 Graphical Display

As mentioned above, the neural network has ten output

neurons, one for each vowel. The WinBar program displays the

neural network outputs using bars. The height of each bar

represents the value of an output neuron and therefore the

classification result for a particular vowel. The user can see

the quality of his/her articulation attempt by watching all ten

bars. For a good pronunciation only the bar associated with the

desired vowel should reach a maximum height and the height of

all other bars should be close to zero. The WinBar program works

in real-time. That means that all processing, the classification

of the features by the neural network and the graphical display

of the results are finished in the time needed to fill one array

used for the double-buffering.

4.5 WinBar Program Structure

This section gives a short introduction to the structure

of the WinBar program. Detailed information can be found in

(Auberg, 1996). Right after the WinBar program is started, two

initialization files are read. The primary information in the

first file consists of the names of the neural network weight

files. The second file contains the parameters which control the

signal processing. A typical parameter file is shown below. The

values of the more than twenty parameters can be adjusted to

make the signal processing extremely flexible.

 50

ID
FeatureComputation_SpecFile[cp_Fea1300]

// Basic parameters
Sample_rate: 11025 // Hz 8000 - 22050 Hz long
Segment_time: 100 // ms 50 - 500 ms long
Frame_time: 20 // ms 5 - 40 ms long
Frame_space: 10 // ms 2 - 100 ms long
FFT_length: 256 // points 64 - 1024 points long
Kaiser_Window_beta: 6 // without unit 0 - 6 float
Num_DCTC: 14 // without unit 8 - 25 long
DCTC_warp_fact: 0.45 // without unit 0 - 1 float
BVF_norm_flag: 0 // without unit 0 or 1 long
Low_freq: 100 // Hz 0 - 300 Hz long
High_freq: 5000 // Hz 3000 - 8000 Hz long

// Morphological filter parameters
Freq_kernel_before: 0 // Hz 0 - 100 Hz long
Freq_kernel_after: 0 // Hz 0 - 100 Hz long
Time_kernel_before: 0 // frames 0 - 5 frames long
Time_kernel_after: 0 // frames currently fixed to 0 long

// Block parameters
Block_length_min: 1 // frames 1 - 20 frames long
Block_length_max: 5 // frames 1 - 20 frames long
Block_jump: 2 // frames 1 - 20 frames long
Num_DCS: 1 // without unit 1 - 5 long
Time_warp_fact: 0 // without unit 0 - 10 float
BVT_norm_flag: 0 // without unit 0 or 1 long

Use_term:

// DCS0 DCS1 DCS2 DCS3 DCS4 DCS5 DCS6 DCS7
DCTC00 0 1 1 1 1 0 0 0
DCTC01 0 1 1 1 1 1 0 0
DCTC02 1 1 1 1 1 1 1 1
DCTC03 1 1 1 1 1 1 1 1
DCTC04 1 1 1 1 1 1 1 0
DCTC05 1 1 1 1 1 1 0 0
DCTC06 1 1 1 1 1 0 0 0
DCTC07 1 1 1 1 1 0 0 0
DCTC08 1 1 1 0 0 0 0 0
DCTC09 1 1 1 0 0 0 0 0
DCTC10 1 1 0 0 0 0 0 0
DCTC11 1 1 0 0 0 0 0 0
DCTC12 1 1 1 1 1 1 1 1
DCTC13 1 1 1 1 1 1 1 1
DCTC14 1 1 1 1 1 1 1 1
DCTC15 1 1 1 1 1 1 1 1

After these files are read, the basis vectors over

frequency are computed. These are needed to compute the DCTCs

which incorporate the warping over frequency. In the following

step the basis vectors over time are computed, which are needed

to compute the DCSs. These basis vectors over time can also

incorporate a warping of the time axis if desired. If an

 51

increasing block length is desired, a set of basis

vectors over time for each possible block length is needed.

In the next step the neural network classifier is

initialized with the weights and offsets read from a neural

network weight file. Recall that this file was created during

the training phase of the neural network. In addition a file

containing scale factors is read. This file was also created

during the training phase of the network. These scale factors

are needed later on to scale the final features to the same

ranges as those used for training the neural network. This step

completes the initialization phase of the WinBar program.

The next operation of the program is the processing phase

which starts with data received from the sound card using the

double-buffering scheme described above. If a speech signal is

detected, the frame and block level processing is applied to the

speech segment. The resulting features are scaled using the

scale factors mentioned above. The scaled features are then

input to the neural network. The classification results are

passed to the graphics routine, which controls the heights of

the bars on the screen. Next new speech data can be processed by

looping continuously through the processing phase. If the user

quits the program, certain clean up operations such as freeing

memory are done before the end of the program.

The program structure is shown in Figure 24. However, this

structure is greatly simplified relative to the actual program.

For example the user can switch between different neural

networks. This is done to optimize the classification

 52

performance with male, female or child speakers.

Typically speech samples of speakers of age 12 and under are

used for the child group. Speakers 18 years and older are used

for both adult groups. Speaker between 13 and 17 will be used in

the child or the adult groups depending on the sound of their

pronunciation. These speaker groups have very different speech

characteristics. Therefore a male speaker should chose the

network trained with male speakers for optimal performance. This

is especially important, if the program is used for

pronunciation training for hearing impaired or foreign speakers.

For example a child cannot expect to learn the correct

pronunciation of adult male French vowels. Another feature of

the WinBar program not shown here is the possibility to display

not only the final classification result but also intermediate

results such as the log scaled spectrum or the DCTCs of a frame.

In the case of the WinBar program, where currently only

steady state vowels are processed, it should be noted that some

of the newly implemented options of the signal processing are

not used. For example the time smoothing is disabled, all blocks

have the same length and the basis vectors over time are not

warped. Preliminary experiments showed that for steady state

vowels the use of these advanced techniques does not improve the

classification performance. However, since the routines can be

used with other phonemes than steady state vowels these options

of the signal processing will be used to process stop consonants

or other phonemes.

 53

Display

Get speech data from sound card

Locate speech onset

Frame level processing

Block level processing

Neural Network classifier

Initialize Neural Network

As long as desired

Compute basis vectors over time

Compute basis vectors over frequency

Read Feature Computation Specification File

Read ‘WinBar.ini’ file

Clean up and end program

Figure 24: WinBar Program Structure

 54

5. TRAINING OF THE WHOLE SYSTEM

Take this page out and adjust page numbers !

 54

CHAPTER FIVE

TRAINING OF THE WHOLE SYSTEM

5.1 Overview

In this chapter the steps required to train the neural

network used in the WinBar program are explained. The network in

the WinBar program operates using fixed weights and offsets, and

propagating the features through the network. This of course

requires that the weights and offsets are correctly pre-computed

for the specific classification task. The values for the weights

and offsets are determined in the training phase of the neural

network. This chapter describes all steps needed before the

WinBar program can be used. These are the same steps required if

the neural network needs to be retrained to incorporate more

training speakers or to classify a different set of phonemes.

5.2 Recording of Speech Files

The first step in the training procedure is to collect

training data. The training data is collected by the WinRec

program. This program was implemented for this thesis to enable

a convenient, reliable and fast way to collect a large amount of

speech samples under a large number of conditions. A detailed

 55

description of this program can be found in (Auberg,

1995). The program first prompts the user to correctly pronounce

a certain phoneme — vowels for the data actually collected in

this study. The steady state section of this vowel is located

and written to a file. The data files are labeled uniquely and

stored in a certain directory structure organized according to

gender and speaker. The filename specifies which vowel is

contained in the file. In addition, a secondary file containing

labeling information is created. Both files follow the TIMIT

standard for speech files (Lamel et al., 1986). Typically five

to ten repetitions of each of the ten vowels are saved per

recording session for each speaker.

5.3 Feature Computation with Tfrontc

The Tfrontc program is used to compute the features from

the training data files. A certain group of speakers can be

selected, such as, for example, male speakers, to train a

specialized neural network. The training data files are then

read for all these speakers. For each file the final features

are computed using the signal processing routines described in

Chapter Three. The features are stored in files using a

flexible format developed in the speech lab at ODU for speech

processing applications. One feature file is created for each

vowel. Each file then contains all selected training tokens for

that vowel, thus encompassing a broad range of pronunciations of

the vowel independently of a particular speaker.

 56

5.4 Scaling of the Features

The features for one particular phoneme vary with speaker

to speaker and even with different utterances spoken by the same

speaker. Therefore statistics such as the mean and standard

deviation can be computed for each feature. It has been shown

(for example, Haykin, 1994) that neural networks work best if

the features are scaled to have zero mean and a standard

deviation of about 0.2 . If a Gaussian distribution of the

features is assumed, which is generally valid according to the

Central Limit Theorem, the scaled values will then be between -1

and +1 in more than 99% of all cases. Thus the Scale program

reads the feature files and computes the mean and standard

deviation of each feature over all phonemes. These statistics,

which are used as scale factors, are written to a “scale” file.

The actual scaling is done with the Transfor program. This

program reads the scale file and creates a new set of feature

files which now contain the scaled version of the original

features. The scale file is also needed later on in the real-

time system. After the features are scaled, the neural network

can be trained.

5.5 Neural Network Training

The Back-propagation (Lippmann, 1987) learning algorithm

was used to train the neural network. For experiments done with

the Visual Speech Display, typically the initial learning rate

was .25. This rate was gradually reduced during training by

multiplying the previous learning rate by .96 after each 5,000

iterations. In our case, where 250,000 iterations were used, the

 57

minimum rate was therefore .032. The momentum term was

.65, and uni-polar sigmoid non-linearities were used. Networks

were typically trained with 250,000 updates, although

performance of the network changed relatively little after the

first 25,000 updates. Of course, the same network topology was

used in the WinBar program. For experimental testing of the

WinBar program, an MLP with one input node for each feature, 50

hidden nodes and ten outputs (one for each vowel) was used.

The network described and the Back-Propagation training

algorithm were found to perform quite well for vowel

classification, using the features computed in this study. A

very important consideration is generalization, that is the

ability of a trained neural network to correctly classify speech

data from a speaker who was not included in the training set.

This generalization is the most important characteristic of the

neural network, since it is impossible to include all possible

speakers in the training set. Typically 15 to 20 speaker per

gender group were found to be enough to achieve a good

performance with unknown speakers.

To achieve higher accuracy, typically four neural networks

were trained - one for male speaker, one for female speakers,

one for children and one using all groups of speakers. These

networks were all the same size and structure. These specialized

networks allow the user of the WinBar program to select the

optimal network for his/her pronunciation. The current version

of the system (April 1996) contains only three neural networks.

The first was trained with four male speakers, the second

 58

network was trained with two female speakers, and the

third network was trained with all six speakers. The performance

of the system was then informally tested with a small group of

speaker including the training speakers. Even though there were

insufficient training speakers, good performance was obtained.

That is, there were very few noted instances of discrepancy

between vowel sounds (as judged by the testers of the system),

and the observed displays. To give an approximation to the

potential performance of the system, Table 2 shows the training

classification results of these networks.

 Male Female All

Training 99.27% 96.46% 96.78%

Table 2: Neural Network Training Results

The reason that only this small amount of training data

was used is that the data collection is still an ongoing

process. From previous experience, better generalization

performance is expected after the networks are trained with a

sufficient amount of data.

(Stefan—some place in this section might be a good place

for the data I can give you)

5.6 Setting up WinBar

The WinBar program requires the names of the weight and

scale files for the different speaker groups which were created

 59

during the training phase. These names are specified in

a setup file. Storing the filenames in a setup file allows great

flexibility since the names can be changed without recompiling

the program. For the same reason the parameters, which control

the feature computation, are also stored in a file. This is the

same file which is used by the Tfrontc program to control the

feature computation during the training phase. To ensure that

the WinBar program works correctly, the values of the parameters

for the feature computations inside WinBar must be the same as

for the Tfrontc program. Otherwise there will be a discrepancy

between the features the neural network was training with and

the features given to the network for classification. This would

presumably result in more classification errors. After neural

network training is complete, the WinBar program can be started

and the newly trained networks are used to classify the unknown

speech signal of a speaker in real-time. The block diagram in

Figure 25 summarizes the steps needed to train the networks for

use in the WinBar program.

 60

Train the Neural Network

Scale the features

Compute scaling factors

Compute features

Record speech files

Setup and run the WinBar program

Figure 25: Training of the Whole System

 61

6. INVESTIGATION OF DISTINCTIVE FEATURES

Take this page out and adjust page numbers !

 60

CHAPTER SIX

INVESTIGATION OF DISTINCTIVE FEATURES

6.1 Introduction

Researchers from the signal processing area generally use

frequency domain features to represent phonemes, such as those

discussed in the preceding chapters of this thesis. The

frequency domain features favored by speech scientists are

formants, which denote the location of the largest peaks in the

frequency spectrum. In our work we use the temporal/spectral

features as described in Chapter Three. Linguists usually refer

to focus on perceptual or production features rather than

acoustic features. One group of such features, which are

commonly discussed in the speech science literature, are called

distinctive features (for example Chomsky and Halle, 1968).

These features attempt to characterize phonemes in the way they

are actually produced in the human vocal tract. Vowels are

usually represented by six distinctive features. These features

are usually viewed as binary attributes. That is, according to

the theory, each vowel can be represented by a six bit binary

code indicating the presence or absence of each of the features.

In the area of vowel pronunciation training, one

reasonable hypothesis is that displays which focus on

 61

distinctive features could be beneficial to the user.

That is, rather than only vowel classification based displays,

it might be helpful to show the trainee whether a particular

distinctive feature is contained in a production. For example,

one important feature which hearing impaired speakers often have

difficulty with over the entire vowel space is called “TENSE.”

The work reported in this chapter describes attempts to

investigate the viability of distinctive features for use in the

vowel training system.

Another important point to note, before discussing more

specifics of this part of this study, is that automatic

determination of distinctive features must still be based on

acoustic features, since the acoustic speech signal is the only

easily measurable signal. Neural networks are also a “natural”

method to convert acoustic features to distinctive features

since they are good universal function approximators, and since

they are also typically trained for binary target outputs.

Therefore, in this chapter, we present an experimental

investigation of the use of neural networks to convert acoustic

spectral/temporal features to distinctive features.

In our first set of experiments we attempt to replicate

results from (Meng, 1991), using a two stage classifier. The

first stage consists of a group of independent MLPs, each one

trained to extract a distinctive feature from the acoustic input

features. The outputs of these feature networks are then

processed with a secondary MLP stage which performs vowel

classification task using the six distinctive features as

 62

determined by the networks in the first stage. By

comparing the classification results of this two stage

classifier with those obtained with a single network, the degree

to which vowel information is preserved in the distinctive

features can be assessed.

Another classifier structure which bears some similarities

to the two stage method described in the previous paragraph, is

the Binary Pair Partition Neural Network (BPPNN) approach. This

partitioned approach was shown to be very effective for

automatic speaker identification (Norton, 1994) and is now also

used in our vowel classification research (Zahorian, 1993). For

the BPPNN, a group of independent MLPs is used with each one

discriminating only two vowels. The final result is computed by

a method described in (Zahorian, 1993). Thus the BPPNN is

similar to the distinctive feature approach in that multiple

networks are trained, and a second stage is also needed.

Therefore, in this chapter, BPPNN results and the results of

several different sets of distinctive features are compared to

the performance of a standard single MLP.

For this portion of the work we used 13 American English

vowels extracted from the TIMIT database. To make our results

comparable with the previous study cited (Meng, 1991), we used

the same vowels extracted from the identical subset of the TIMIT

data base. The set which includes 500 training speakers and 49

test speakers was used to compare the performance of the above

mentioned classifiers. The set spans all dialect regions

included in the TIMIT data base. The distribution of female and

 63

male speakers also matches the distribution of the

entire TIMIT data base. The following table shows the phonetic

and the ARPABET labels for the set of the 13 vowels

investigated:

IPA I I e ε æ a o 7 u
g

 ü

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

Table 3: Experimental Set of 13 American English Vowels

In this experiments three additional vowels are used in

addition to the ten phonemes used in the WinBar program. These

three are (using the ARPABET notation) /ey/, /ow/ and /ux/.

6.2 Acoustic Features

To compute acoustic (temporal/spectral) features the

speech data was extracted from the TIMIT database using the

provided labeling information. These temporal features were

computed with the same signal processing routines as described

in Chapter Three of this thesis. In this case a frame length of

10 ms and a frame spacing of 2 ms were used. For each frame 12

DCTCs were calculated. The trajectory over the last 150 frames

of each of these 12 DCTCs were represented by four DCS terms.

This resulted in a compact representation of a vowel with 48

features. These features were used as inputs of the single MLP

and the BPPNN. In addition, these features were also the inputs

 64

of each of the networks which extracted the desired

distinctive feature in the two stage classifier.

6.3 Distinctive Features

Instead of being directly related to the frequency

spectrum of the vowels, the idea behind distinctive features is

based on linguistics. They describe the way in which phonemes

are actually produced in the human vocal tract. For example the

position of the tongue hump is used to classify /i/ as a typical

front vowel and /o/ as a typical back vowel (Rabiner, 1993). For

this work we use the notation of previous work (Meng, 1991) and

the common distinctive features [HIGH], [TENSE], [LOW], [BACK],

[ROUND] and [RETROFLEX]. Each vowel was characterized to either

have a particular feature, denoted with , or not to have it,

symbolized with . This gave a unique but redundant binary

representation of each vowel. This representation is summarized

in Table 4:

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

HIGH

TENSE

LOW

BACK

ROUND

RETROFLEX

Table 4: The Representation of the Vowels with Distinctive

Features

 65

For each distinctive feature a MLP with one output

node was trained to give a output value close to one if the

vowel had the specific feature (i.e., a black circle in Table 4)

or an output of nearly zero otherwise. The six feature networks

comprised the first stage of the distinctive feature classifier.

The second stage consisted of one MLP with six inputs. These

were connected to the outputs of the six feature networks. This

MLP had one hidden layer with 50 nodes and 13 outputs and

classified the vowels.

6.4 Experiments

In our first group of experiments the performance of the

two stage classifier with the original set of six distinctive

features mentioned in Table 3 was compared to the performance of

a BPPNN approach and the result of a single MLP. All network

configurations, i.e., the number of hidden nodes, amount of

training, etc. were optimized in pilot experiments with another

set of training data mentioned in (Meng, 1991). The first stage

of the two stage classifier consisted of a group of memoryless

fully interconnected feed-forward MLPs with 48 input nodes, one

hidden layer with 50 nodes and one output node. The output of

each of these MLPs represented one distinctive feature. The

networks were trained with the back propagation algorithm with

200,000 iterations. For the network in the second stage, the

same type of one hidden layer MLP was used, but with 300,000

iterations. The number of inputs is the number of distinctive

features, i.e. the outputs of the networks in the first layer.

 66

For a different set of distinctive features, the

structure of the two stage classifier was modified such that 13

feature networks were used in the first stage. These are shown

in Table 5. Each of these was trained to distinguish one

particular vowel from all the other 12.

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

Feature a)

Feature b)

Feature c)

Feature d)

Feature e)

Feature f)

Feature g)

Feature h)

Feature i)

Feature j)

Feature k)

Feature l)

Feature m)

Table 5: Thirteen Features

The Binary Pair Partitioned Neural Network approach used

(13 * 12) / 2 (78) networks to distinguish the 13 vowels. That

is, for each group of two vowels, one network was trained to

discriminate them. Each of these 78 networks had 48 inputs, one

 67

hidden layer with 25 nodes and one output node. 100,000

iterations were used for training. The final result was obtained

using a method described in (Nossair, 1995). The fourth

classifier was a single MLP. This network had 48 inputs and 100

nodes in the hidden layer. This network was trained with 300,000

iterations.

In the second group of experiments we wanted to

investigate whether the original set of six distinctive features

was “optimum,” or whether other definitions of features were

significantly better or worse. To create different sets of six

features we circularly rotated the feature patterns for each

vowel but left the vowel labels in place. That means that the

features which characterized the vowel /iy/ are now used as the

features for /ih/, and the features originally used for /ux/ are

the new features for /iy/, and so on. This rotation of the

features by one vowel to the left was done several times. Also

another independent set of six features was developed as shown

in Table 6.

 68

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

Feature a)

Feature b)

Feature c)

Feature d)

Feature e)

Feature f)

Table 6: An Independent Set of Six Features

In a third group of experiments we observed that to encode

13 categories only four bits are necessary. So we determined two

sets of four features which are shown in Table 7 and Table 8.

Note a feature labeled ‘Feature a)’ in one table is totally

independent from another ‘Feature a)’ in a different table.

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

Feature a)

Feature b)

Feature c)

Feature d)

Table 7: Four Strictly Binary Features

 69

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

Feature a)

Feature b)

Feature c)

Feature d)

Table 8: Four Scrambled Binary Features

A general theoretical issue underlying all of this work is

the dimensionality required for this vowel classification

problem. The distinctive features, for example, can be viewed as

six dimensions representing vowels. To investigate this issue

with a different method, we trained a special MLP. The inputs

were the same 48 acoustic features. We used 100 nodes for the

first of three hidden layers such that the MLP was able to

perform complex mappings. The second layer was of particular

interest. We varied the number of nodes from 1 to 20 to create

an ‘information bottleneck’. The third hidden layer again

consisted of 100 nodes and the output layer had 13 nodes, with

each node corresponding to one vowel. By varying the number of

nodes (N) in the second hidden layer in this 48-100-N-100-13

structure we wanted to find the smallest number of nodes

required to achieve a peak performance of the overall MLP. The

assumption was that this value of N is an estimate of the

dimensionality needed to represent the 13 vowels.

 70

6.5 Results and Comparison

In the first group of experiments, which compared the

original set of six distinctive features with a set of 13

features and the BPPNN and single MLP classifiers, we found that

the BPPNN approach gave the highest result with 84.48% / 71.99%

(training / evaluation result). This classifier structure had

however the most complex structure, requiring the most weights.

The single MLP, which used far less weights than the BPPNN, gave

a very close evaluation result with 76.19% / 71.34%. The two

stage classifier with 13 feature networks in the first stage

gave 73.36% / 70.56% which is about 2.3% better than the

original set of six distinctive features. This use of six

distinctive features yielded results of 71.13% / 68.16%.

Although the results summarized in the previous paragraph

indicated that the six distinctive features did not perform as

well as other network configurations tested, results from the

second group of experiments did show that the original set of

six distinctive features were superior to all other six feature

configurations tested. The rotated set gave on average two to

three percent less than the original set. The other independent

set resulted in 68.12% / 65.41%, i.e., about 3% less.

In the third group of experiments only four features were

used. The strict binary set (Table 7) gave 65.76% / 64.99% and

the scrambled set (Table 8) resulted in 63.02% / 58.17%. Thus

four features did perform more poorly than six features.

The fourth group of experiments showed that with an

increasing number of hidden nodes in the second layer (N) the

 71

classification performance reached at maximum at N = 6

and remained approximately constant with increasing N. For N = 4

we achieved evaluation result of 66.13%, whereas N = 6 gave a

result of 69.66%. Figure 26 shows the evaluation results of this

experiment where N, the number of hidden nodes in the second

hidden layer, varies from one to 12.

Evaluation Results over N

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

Number of node in second hidden layer

Ev
al

ua
tio

n
re

su
lt

in
 %

Figure 26: Evaluation Results over N

The result for N = 6 in the preceding paragraph was very

close to the result using the six distinctive features. To find

out how the network represents the phonemes internally in the

second hidden layer, we extracted the outputs of these six

neurons. The mean of the output over each vowel was computed. We

can view the six mean values for a particular vowel as internal

features. These features were not strictly binary as for the

distinctive features. However, using a threshold, we determined

a modified set of features based on these mean values. These

 72

features were sorted and if necessary were inverted.

They are shown in Table 9.

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux

Feature a)

Feature b)

Feature c)

Feature d)

Feature e)

Feature f)

Table 9: Six Modified Internal Features

It is interesting to note that these modified internal

features, which were created unsupervised by the neural network,

are extremely similar to the six distinctive features shown in

Table 4.

In a new experiment we trained a set of feature networks

to create the six modified internal features. As in the

experiment with the six distinctive features a second neural

network was used to classify the 13 vowels based on theses six

modified internal features. The results of this experiment were

71.16% / 68.28%, which is slightly less than for the original

set of six features.

6.6 Conclusion

Keeping the performance of the classifiers in the first

group of experiments in mind, it can be said that for strict

automatic vowel classification there is no gain in first

 73

creating distinctive features in a first stage and then

combining these with a second MLP. A better result can be

obtained by a much less complex single MLP. Slightly better

results were obtained by the more complex BPPNN approach.

However, if one wants to use six intermediate features the

original set of six distinctive features listed in Table 4 work

best. It is interesting to note that our result with the same

set of distinctive features, based on 48 acoustic input

features, is about 5% higher than the result in (Meng, 1991),

where 120 input features based on an auditory model were used;

the BPPNN gave about 8% higher evaluation results.

Combining the results from group three and four, we can

conclude that four features are not enough and that the

dimensionality of the 13 vowel space is about six. Comparing the

N = 6 case which resulted in 69.66% (evaluation data) with the

68.16% from the original six distinctive feature set, we can say

that these distinctive features are a reasonably good

representation of the vowels.

However, by comparing the four different structures of the

first group of experiments it can be said that for strict

automatic vowel classification the use of distinctive features

has no advantage over a direct use of frequency based features.

Nevertheless, for the purposes of pronunciation training,

distinctive features could be used, and might be beneficial.

The results of the experiments reported in this chapter show

that at least most of the information in the vowels is contained

in six features. Additional work would be required to

 74

determine whether or not these distinctive features

would help in vowel articulation training.

 75

7. ACHIEVEMENTS AND FUTURE IMPROVEMENTS

Take this page out and adjust page numbers !

 74

CHAPTER SEVEN

ACHIEVEMENTS AND FUTURE IMPROVEMENTS

7.1 Achievements

In this section the achievements in implementing this new

and improved version of the signal processing are summarized.

The developed signal processing routines are an

implementation of the newest research about temporal/spectral

features for automatic speech recognition. Without code changes

all relevant parameters (more than 20) can be specified in a

self-explaining setup file. The routines have a clear interface

and clearly separated tasks. This very structured and modular

approach allows easy integration of additional routines and easy

modification of single routines if necessary in the future.

All essential data management was included in these

routines for compactness and processing speed. Based on the

modular approach, additional data management functions, as the

LocateSpeech() routine to detect the speech onset in the real-

time system, can easily be integrated in the existing code.

Another important consideration was that the signal

processing routines are very portable. This allows the use of

these advanced routines in many situations, like in MS-DOS

programs, combined C/FORTRAN code and Windows (16 and 32bit)

 75

applications. In addition, the routines can even run a

totally different environment like the ELF DSP board from ASPI

which is based on the TMS320C3X chips from TI. Even though for

the Visual Speech Articulation Training Aid there is no need to

use a DSP board, other application might require a DSP board or

a stand alone operation on a dedicated DSP system.

This leads to another big advantage over the previous

system. Since the signal processing routines were speed

optimized to run on a DSP board the training features could not

be computed off-line on a PC. Each time a variation in signal

processing was investigated, thus requiring that another neural

network be trained, a group of speaker was needed. The features

were then computed in real-time on the DSP board and saved to a

file. This approach made algorithmic refinements extremely

difficult to explore. By using the WinRec recording program, the

speech samples are only collected once and the time waveform is

saved to a file. Since the signal processing routines are

portable, they were integrated to an off-line program (Tfrontc).

Using this program it is easy to compute new features for the

neural network. In particular, this technique allows the

optimization of the signal processing parameters. The

classification results of the different experiments are now

directly comparable since the features are based on the same

speech files.

7.2 Working with phonemes other than Vowels

The main reason to integrate such a large amount of

flexibility into the signal processing routines was to be able

 76

to work with other phonemes than steady-state vowels.

From a speech recognition point of view the steady state vowels

are the convenient to classify, since they don’t change their

characteristics significantly over time and the length of the

vowel is typically sufficient. In addition the onset detection

is not critical and no coarticulation occurs. This is different

if the vowels are extracted from short words. Here the length of

the vowel is limited and coarticulation with the previous and

following phoneme occurs.

For the real-time system some additional logic needs to be

implemented to located the vowel inside the word and to extract

the useful section of the vowel, i.e., where the least

coarticulation occurs. In addition, the signal processing

parameters need to be adjusted. For example, the length of a

frame should be shorter (about 5 to 10 ms). Also the trajectory

features computed with block level processing is advantageous to

determine the spectral/temporal pattern of the vowel in the

word.

For work with stop consonants the detection of the onset

is critical (Correal, 1994). Therefore logic to find this onset

with great accuracy is needed. It was shown in the above

mentioned work that the Teager energy operator (Kaiser, 1990)

can be used for a reliable onset detection. The signal

processing parameters need to be adjusted for optimal feature

computation. The technique of the increasing block length can be

used to increase the time resolution in the critical onset

section of the consonant.

 77

7.3 Other Display Types

The WinBar program is only one of many possible ways to

display the classification result. Here a bar for each vowel is

displayed. The height of a bar is proportional to the

correctness of the pronunciation. This display can be used to

improve the pronunciation of hearing impaired persons or of

foreign speakers (Correal, 1994). A correct pronunciation is

achieved when the bar of the desired vowel reaches its maximum

height and all others bar have a height of zero. Another type of

an analytic display is the so called ellipse display. Here

elliptic target regions are shown on the screen. The two

dimensional display is based on the common f1/f2 dimensional

plot of vowel positions in this two-dimensional formant space.

In this case, the neural network has an additional layer which

maps the ten-dimensional output space to the two-dimensional

f1/f2 space. A program to implement this kind of display to run

on a Windows Multimedia PC is currently under development.

However, Figure 27 shows the current implementation of the

ellipse display in the WinBall program. Here the green ball must

be moved by the pronunciation to the labeled target ellipse.

This in shown for a correct pronunciation of /ee/.

 78

Figure 27: Current WinBall Program

Even though the two computer displays described can help

improve the pronunciation of the target phonemes, a more game

oriented approach could also be used. This can range from a game

teaching only one vowel to more involved games using two, four

or more vowels. In a game to teach the pronunciation of one

vowel, the correctness of the pronunciation can be mapped to a

number of levels, where a higher level leads to more points or

to a ‘friendlier’ reaction of the computer. Games teaching two

vowels can include a voice controlled pinball machine or any

other type of game where a player moves up and down or left and

right. The correctness of the pronunciation would then control

how far or how fast the player moves. Any game based on a

joystick control can be modeled as a four vowel game. For

 79

example a voice controlled PAC-man game is possible.

Some ideas, like the PAC-man game, were implemented in the old

system. However the Windows based approach of the new system can

lead to user friendlier and more interesting graphics in the

games with more accuracy in the signal processing.

The actual implementation of a game type display would be

closely based on the existing WinBar program. This program

already handles the real-time signal processing and a

classification through a neural network. After the game graphics

are developed, the outputs of the neural network can directly

used to control the movements of the player.

 80

BIBLIOGRAPHY

Auberg, S. (1995), "Help file for WinBar", Speech Lab
Documentation, Old Dominion University.

Auberg, S. (1996), "Help file for Feature Computation", Speech

Lab Documentation, Old Dominion University.

Chomsky, N., and Halle, M., (1968), "Sound Pattern of English,"

(Harper & Row)

Correal, N., (1994), "Real-time Visual Speech Articulation

Training Aid," Masters Thesis, Old Dominion University.

Haykin, S., (1993), "Neural Networks, A Comprehensive

Foundation," (Macmillan, New York)

Kaiser, J., (1990), "On a simple algorithm to calculate the

‘energy of a signal’," ICASSP-90, pp. 381-384.

Lamel, L., Kassel, R., and Seneff, S., (1986), "Speech Database

Development: Design and Analysis of the Acoustic-Phonetic
Corpus," DARPA Speech Recognition Workshop, Report No.
SAIC-86/1546, pp. 100-109

Leung, H. and Zue, V., (1988), "Some Phonetic Recognition

Experiments Using Artificial Neural Nets," ICASSP-88,
pp. I: 422-425.

Leung, H. and Zue, V., (1990), "Phonetic Classification Using

Multi-Layer Perceptrons," ICASSP-90, pp. I: 525-528.

Lippmann, R., (1987), "An introduction to computing with neural

nets," IEEE ASSP magazine, April, 4-22.

Meng, H., and Zue, V., (1991), "Signal representation Comparison

for Phonetic Classification," ICASSP-91, pp. 285-288.

Meng, H., and Zue, V., (1990), "A Comparative study of Acoustic

Representation of Speech for Vowel Classification Using
Multi-Layer Perceptrons", ICSLP-90, pp. 1053-1056

Norton, C., Zahorian, S., and Nossair, Z., (1994), "The

Application of Binary-pair Partitioned Neural Networks to
the Speaker Verification Task," ANNIE-94, pp. 441-446

81

Nossair, Z., and Zahorian, S., (1991), "Dynamic Spectral
Shape Features as Acoustic correlates for Initial Stop
Consonants," J. Acoust. Soc. Amer. 89-6, pp. 2978-2991.

Nossair, Z., Silsbee, P., and Zahorian, S.,(1995), "Signal

modeling enhancements for automatic speech recognition,"
ICASSP-95, pp. 824-827.

Rabiner, L. and Juang, B., (1993) "Fundamentals of Speech

Recognition," (Prentice Hall, New Jersey)

Rudasi, L. and Zahorian, S., (1991) "Text-independent talker

identification with neural networks," ICASSP-91, pp. 389-
392.

Rudasi, L., (1992) "Text-independent automatic speaker

identification using partitioned neural networks," Ph.D.
Dissertation, Old Dominion University.

Sorensen, H., et. al., (1987) "Real-valued Fast Fourier

Transform Algorithms," IEEE ASSP magazine, June, pp. 849-
863.

Wang, X., Zahorian, S., and Auberg, S., (1996) "Analysis of

Speech Segments using Variable Spectral\temporal
Resolution," ICSLP-96, pp. (TBA).

Zahorian, S., and Jagharghi, A., (1993) "Spectral-shape features

versus formants as acoustic correlates for vowels," J.
Acoust. Soc. Amer. 94-4, pp. 1966-1982.

Zahorian, S., Nossair, Z., and Norton, C., (1993) "A partitioned

neural network approach for vowel classification using
smoothed time/frequency features," Eurospeech-93, pp. II:
1225-1228

	INTRODUCTION
	Objectives
	Software Implementation
	WinBar
	WinRec
	WinPlay
	Tfrontc
	Neural

	Overview of Following Chapters

	MIGRATION TO WINDOWS
	Overview of the TMS System
	Limitation of the TMS System
	Windows Multimedia and Sound Cards
	Advantages of 32 bit Windows

	IMPROVED SIGNAL PROCESSING
	Introduction
	Goals
	Signal Processing
	Frame Level Processing
	Block Level Processing
	Final Features

	cp_Feat

	THE WinBar PROGRAM
	Introduction
	Real-time Signal Processing
	Artificial Neural Network Classifier
	Graphical Display
	WinBar Program Structure

	TRAINING OF THE WHOLE SYSTEM
	Overview
	Recording of Speech Files
	Feature Computation with Tfrontc
	Scaling of the Features
	Neural Network Training
	Setting up WinBar

	INVESTIGATION OF DISTINCTIVE FEATURES
	Introduction
	Acoustic Features
	Distinctive Features
	Experiments
	Results and Comparison
	Conclusion

	ACHIEVEMENTS AND FUTURE IMPROVEMENTS
	Achievements
	Working with phonemes other than Vowels
	Other Display Types

