
 

 

ABSTRACT 

SPEECH FEATURE COMPUTATIONS FOR VISUAL 
SPEECH ARTICULATION TRAINING 

 
 
 

Stefan Auberg 
Old Dominion University, 1996 

Director: Dr. Stephen A. Zahorian 
 

 

A new version of the Visual Speech Articulation Training 

Aid was implemented which provides real-time visual feedback for 

speech articulation training. This version was migrated  to a 

Windows Multimedia PC from a previous version which used a 

Personal Computer (PC) system and additional specialized and 

expensive custom hardware. This new version will make the system 

more available to schools and private users. A new method was 

developed for computing spectral/temporal features which 

characterize the speech sounds. In addition to the typical 

frame-based spectral analysis parameters, the new method 

represents temporal changes of the spectrum with a small number 

of features. The flexible method implemented can easily be 

adapted to compute features for a wide range of speech 

processing tasks. Linguistically-based distinctive features were 

also investigated as candidate features for the visual display 

system. Some experimental results are given for vowels using the 

new system.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Objectives 

The main objective of this research was to develop a new 

and improved version of the Visual Speech Articulation Training 

Aid. The previous version (Correal, 1994) was limited by the 

need for expensive custom hardware and the use of very 

specialized signal processing for the classification of steady 

state vowels. The newly developed version is able to run on a 

“standard” Windows Multimedia Personal Computer without any 

specialized hardware. Furthermore, the signal processing 

routines incorporate a large amount of flexibility so they can 

process other types of phonemes. A new approach to compute 

temporal/spectral speech features was implemented. In addition, 

the performance of an artificial neural network using these 

temporal/spectral features as inputs was compared to different 

types of neural networks using various kinds of features as 

inputs. In particular, distinctive features were investigated as 

a possibility for a more basic phonetic-based training of 

hearing impaired or foreign speakers. 

A large portion of the work, and the most obvious 

“product,” was the development of software for the improved 
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signal processing algorithms and the incorporation of 

these routines into the new Windows based Visual Speech 

Articulation Training Aid. The next sections of Chapter One give 

an overview of the programs developed during this work. 

1.2 Software Implementation 

From the user point of view, the newly implemented Visual 

Speech Articulation Training Aid system primarily consists of  

one executable program which displays the “correctness” of the 

pronunciation of ten American English vowels graphically on a 

computer screen. This program first computes temporal/spectral 

features from a speech signal in real-time. These features are 

used as inputs to an artificial neural network which classifies 

the speech signal using a measure of the correctness of the 

pronunciation for each of the vowels. The neural network outputs 

are then graphically displayed on the computer screen.  These 

outputs thus inform the user if the intended vowel sound  was 

pronounced correctly. 

The neural network used for classification in the main 

routine mentioned above must first be trained to classify the 

phonemes correctly. This training phase requires a large number 

of speech samples, spoken correctly by native speakers. The 

recording and labeling of sample data is accomplished with a 

separate program. The neural network is trained with another 

program. Therefore, several support programs were also developed 

as described in the following sections. 
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1.2.1 WinBar 

WinBar is the main program of the Visual Speech Display 

under Windows.  It provides visual feedback for the correctness 

of pronunciation of the ten monophthong English vowels in the 

English language, as listed in Table 1.  

 

IPA a i u æ 
g 

I ε  7  

ARPABET aa iy uw ae er ih eh ao ah uh 

ODU ah ee ue ae ur ih eh aw uh oo 

Word bah beet blue had hurt hid head law shut book

Table 1: Ten American English Vowels 

The first row in the table gives the International 

Phonetic Alphabet notation for the vowels used for the visual 

speech display work. In the second row the ARPABET notation for 

these vowels is listed. The third row shows our in-house 

notation, which is used in this work at ODU. This “ODU” 

notation, which has been used  in previous work with the Visual 

Training Aid, was selected for the user interface, since this 

notation corresponds to common usage patterns for these vowels.  

A typical word including the vowel is given in the last row. 

The graphical display for Winbar shows a bar for each of 

the vowels with the height of each bar indicating the “amount” 

of each vowel sound in the vowel articulated. Thus a correctly 

articulated vowel will result in the corresponding bar reaching 
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its maximum height and all other bars remaining at their 

minimum height.  Incorrectly pronounced vowels will result in 

either multiple nonzero bars or the incorrect vowel bar 

activated. Figure 1 shows the screen of the WinBar program.  

This display was obtained when a male speaker correctly 

pronounced the vowel /ee/.  

 

Figure 1: Correct Pronunciation of /ee/ 

 

Figure 2 shows the display of the WinBar program in the 

case of an incorrectly pronounced vowel. For this case, a male 

user wanted to say /ee/ (as in beet) but it sounded somewhat 

like /ih/ (as in hid), at least as judged by the automatic 

scoring of the computer algorithms. 
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Figure 2: Incorrect Pronunciation of /ee/ 

 

Instead of using expensive specialized hardware (for 

example a DSP board) the speech signal is recorded with a 

microphone and a standard sound card. The program performs the 

following three major steps in real-time: First, the signal 

processing routines compute the temporal/spectral features. 

Second, an Artificial Neural Network is used to classify these 

features. Third, the classification results are graphically 

displayed. In addition, by using the Windows standard, the user 

interface is very user friendly. 

1.2.2 WinRec 

WinRec is another Windows Multimedia based program. It is 

used to gather the sample speech data needed to train the neural 
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network which is used in the WinBar program. This 

flexible program prompts the user to speak a certain sound or 

word into the microphone. The program then scans the stream of 

incoming samples from the sound card and automatically begins 

recording to a file when the user begins speaking. Using a 

unique labeling procedure and a header for each file, a large 

number of these files can be created and easily organized for 

later use.   

1.2.3 WinPlay 

This program is used to display and playback the content 

of the speech files recorded with the WinRec program. Since this 

program is also Windows based with a typical windows user 

interface, it is used to rapidly and easily check a large number 

of speech files for quality and correctness of the labeling. 

1.2.4 Tfrontc 

The Tfrontc program uses the same code for computing  

features as does the WinBar program. However, the Tfrontc 

program is designed to work on speech data stored in previously 

recorded files, as opposed to real-time data. After the features 

are calculated with Tfrontc, a feature file is created for each 

vowel, containing all the examples collected for that vowel. 

These files are used as the inputs to the neural network 

training program Neural. 
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1.2.5 Neural 

The training of the neural network is done with the Neural 

program. It reads in the features for each vowel and uses these 

to train the network using the back propagation iterative 

procedure. The network parameters are stored in a weight file. 

This training, which requires a large amount of time, does not 

need to be done in real-time. The neural network in the WinBar 

program uses these values to classify the speech data. 

1.3 Overview of Following Chapters 

This section gives an overview of the contents of the 

following chapters in this thesis. 

Chapter Two describes the motivation and the benefits of 

migrating the Visual Speech Articulation Training Aid to Windows 

based applications. In addition, an overview of the older 

version of the Visual Speech Display is given and its 

limitations are discussed. 

In Chapter Three the improved signal processing is 

described. This is first done from a signal processing point of 

view. The implementation of the signal processing with  flexible 

routines is also explained. Even though the routines are 

currently used only to compute temporal/spectral features for 

vowel classification, they can be used without code changes for 

stop consonant classification and also to compute features for 

other speech processing tasks such as speaker verification. 

Chapter Four contains more detailed information of the 

Windows based version of the bargraph display. This includes the 
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real-time use of the signal processing routines and more 

information about the artificial neural network used. 

In Chapter Five the process of training the overall  

system is described. This includes gathering training data, 

computing features, scaling the features and finally the 

training of the neural network. 

The topic of Chapter Six is an investigation of 

distinctive features versus temporal/spectral features. The 

performance of various kinds of neural network architectures and 

features are compared. One motivation for the work presented in 

this chapter is to justify using temporal/spectral features for 

vowel classification. In addition, the material in this chapter 

provides some new insights in the use of distinctive features 

and the internal representation of features inside a neural 

network. The use of distinctive features is also a possibility 

for a type of training display.   

Chapter Seven closes this thesis with a short summary of 

the achievements of this work and a description of possible 

further improvements. Also the use of the signal processing 

routine with phonemes other than vowels are discussed.
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CHAPTER TWO 

MIGRATION TO WINDOWS 

2.1 Overview of the TMS System 

The previous version of the Visual Speech Display was 

implemented on a Personal Computer (PC) hosting a Digital Signal 

Processing board. This DSP board from Texas Instruments was 

based on the TMS320C25 floating point DSP chip. The microphone 

was connected using a custom built external amplifier to the DSP 

board. All signal processing and neural network computations 

were done on the DSP board. Using complex synchronization and 

data transfer routines, the results were sent to the PC. The PC 

was only required for the user interface and for the graphical 

displays. This system was successfully used for teaching and 

improving the pronunciation of vowels of hearing impaired 

children (Correal, 1994). Using virtually the same processing 

routines on the DSP board, a variety of displays were developed 

using different PC programs. These included a bargraph display, 

a two-dimensional ellipse display, and three games.  

2.2 Limitation of the TMS System 

Although the performance of the system was good, there 

were several limitations. An important factor was the high cost 
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of the specialized hardware of about $1,000 (1994). This 

represented a big obstacle in making the system available to the 

average person. Another limitation was the complex development 

of the software. In particular, two separate programs were 

needed to create one application. The first program, which ran 

on the DSP board, was built using a specialized compiler from 

TI. The second program for the PC was created using a standard C 

compiler. However, great care was needed for reliable 

synchronization and data transfer routines, which enabled both 

programs to work together. In addition the memory model of MS-

DOS and for the DSP board are totally different. This structure 

makes it extremely difficult to debug and to maintain the code. 

A third limitation was that for each PC program a great amount 

of programming time was required to create a friendly user 

interface. 

2.3 Windows Multimedia and Sound Cards 

To overcome the limitations of the TMS system, the Windows 

environment was selected as the platform for a improved version 

of the Visual Speech Display. Windows has become the most 

popular operating system on Personal Computers. One design goal 

for Windows was to provide the user with a standard mouse 

controlled user interface, such that even unknown applications 

would look familiar. Using this interface standard, a large 

amount of development time can be saved for writing the user 

interface. But more importantly, the advancements in technology 

have increased the computation speed of PCs dramatically. 

Instead of using the computer power of a 386 PC and a DSP card 
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with floating point chip together in parallel, a 486 or 

Pentium based PC is able to finish both tasks in the same time 

or faster. This factor allows the use of a commercial sound card 

as the speech input device.  

Consisting mainly of an A/D and D/A converter and some 

secondary chips, the much simpler construction and the large 

number of sound cards sold result in a price about one-tenth 

that of a DSP board (about $100 for a mainstream sound card 

(1996)). In addition, an external amplifier is not required  

since the sound card has a designated microphone input port and 

on-board amplifier. Using Windows Application Programming 

Interface (API) routines, a sound card can easily be controlled. 

Now all functions of a Visual Speech Display application can be 

combined into one program without the need to write specialized 

routines for synchronization or data transfer functions. Using 

the sampled speech data from the sound card, all signal 

processing, the classification with a neural network and the 

graphical display can be done in real-time from within this one 

program. 

2.4 Advantages of 32 bit Windows 

The earlier versions of Windows required the MS-DOS 

operating system. This is a 16 bit real mode operating system 

with limitations on speed and memory management. The newer 

versions of Windows, that is Windows 95 and Windows NT, are  32 

bit operating systems which operate in protected mode. The 

change from 16 bits to 32 bits has increased performance 

approximately twofold with all else equal. A linear memory model 
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is also used, which removes array size limitations and 

other problems for the programmer. In addition, the 32 bit API 

allows easier program development. Newer systems are rapidly 

migrating to the 32 bit platform.  For all of these reasons, 32 

bit Windows was chosen for this work. To receive maximum 

benefits from both Windows multimedia and the advantages of a 32 

bit operating system, Windows NT was chosen as the platform  for 

the new Visual Speech Display.1  

                       

1 However, except for minor graphics problems like slightly wrong 

positioned buttons or labels in the recording program, all developed 

code will also operate using Windows 95. 
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CHAPTER THREE 

IMPROVED SIGNAL PROCESSING 

3.1 Introduction 

The migration of the Visual Speech Display to a Windows 

based System with integrated digital signal processing routines 

in one PC program allowed the implementation of much more 

powerful and flexible algorithms. The signal processing routines 

of the previous system were optimized to process only steady 

state vowels.  In contrast, the new system developed in this 

study is able to process not only steady state vowels but also 

short, coarticulated vowels extracted from words and other 

phonemes such as stop consonants. The new signal processing 

routines are therefore much more flexible, even though the first 

stage of processing is based on the older system. In the first 

stage spectral features are computed based on individual frames 

of speech data. This processing is similar to the cepstral 

analysis computations in many automatic speech recognition 

systems. But, in addition, the new system incorporates a newly-

developed second stage of signal processing. This second stage 

involves the computation of features which represent the time 

history of the spectra of the speech signal. These are called 

temporal/spectral features.  These features were investigated in 
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several previous studies in our lab and found to be 

effective for improving classification rates for both vowels 

(Zahorian and Jagharghi, 1993; Nossair et al., 1995) and stops 

(Nossair and Zahorian, 1991; Correal, 1994). 

3.2 Goals 

The main goal for developing a new set of processing 

routines was to make them flexible enough that they could  be 

used for a broad range of applications by just adjusting a few 

parameters instead of writing similar but specialized routines 

for each problem. The first programs mentioned in Chapter One 

which used these signal processing routines were the WinBar and 

the Tfrontc programs. As described in section 1.2.1, the WinBar 

program uses the features computed by the signal processing 

routines as inputs to a neural network classifier. The outputs 

of the neural network are displayed as bars on the computer 

screen with each bar representing the classification result for 

one particular vowel.  

The features for the training of the neural network are 

computed by the Tfrontc program. The feature computation is done 

by exactly the same routines as used in the WinBar program. The 

WinBar program works with steady state vowels. However, other 

phonemes like stop consonants are much harder to classify and 

require slightly different features. Another application which 

requires similar features, but with different optimizations, is 

speaker identification and verification (Rudasi, 1991  and 

Norton, et al., 1994).  
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The signal processing routines developed in this 

project are able to handle all of these cases without any code 

changes. Instead, the details of the feature computation are 

adjustable by a number of important parameters which are saved 

in a convenient self-documented setup file. However, the most 

important accomplishment of the flexible signal processing 

routines implemented in this study was that they include the new 

ideas and refinements determined over the several years of 

research (for example Nossair and Zahorian, 1991; Nossair et 

al., 1995; Zahorian, Nossair, and Norton, 1993). 

3.3 Signal Processing 

The goal of signal processing for speech recognition is to 

represent the characteristics of speech data with a small number 

of parameters called features. That is, the important properties 

of the signal are represented by the features. These important 

properties depend heavily on the particular problem. For speaker 

verification, the important property of a speech signal is 

information about the person who said these words. This has been 

shown to depend on spectral details (Rudasi, 1991). For speech 

recognition, speaker information is simply an added variability, 

since the primary goal is to compactly represent the phonetic 

information of the speech segment.  These features have been 

shown to depend primarily on the global spectral shape (Zahorian 

and Jagharghi, 1993).  

To extract this information from the time waveform of a 

speech signal a technique known as the short-time spectral 

analysis is used. To achieve high resolution in the spectrum, a 
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long segment of time domain data is needed. However, to 

capture signal changes over time, much shorter segments should 

be used. In typical short-time spectral analysis the signal is 

partitioned into short (typically 20 to 40ms) intervals called 

frames. For each frame the spectrum is computed. These frame 

lengths are long enough to obtain good spectral resolution for 

speech analysis. However, in some cases it is preferable to have 

better time resolution at the expense of frequency resolution. 

This can be done by using shorter frames (on the order of 5 to 

10 ms) which overlap by a large amount.  This leads to frames 

which are long enough to have moderate  spectral resolution but 

spaced close enough together to enable  good time resolution. 

All further spectral computations are based on these frames. 

These processing steps are called the frame level processing. 

 To also include the temporal properties, i.e., parameters 

which characterize how the frequency content changes from frame 

to frame, a number of frames are combined to blocks. In the 

block level processing the temporal properties of the block are 

extracted. Figure 3 shows a block diagram of the more detailed 

steps involved in the signal processing. These steps are 

explained in the following sections.  
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Figure 3: Signal Processing Block Diagram 
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3.3.1 Frame Level Processing 

In the first step of the frame level processing the 

sampled speech data is partitioned into a number of frames. 

Commonly the length of a frame is on the order of 20 ms for 

vowel recognition. Also, these can overlap (typically by 50% or 

less) to enhance the time resolution of the analysis. The next 

step of processing is to remove the DC level of each frame, 

since the DC level is caused by the recording system and carries 

no information. To minimize the effect of signal processing 

artifacts created by partitioning the signal into frames, the 

time waveform for each  frame is multiplied by a Kaiser window. 

The Kaiser window has a single parameter which controls the 

shape ranging from a rectangular window to a very smoothly 

tapered function. For the case of vowel processing, the Kaiser 

window is usually adjusted to be very similar to the more common 

Hamming window (thus the Hamming window notation in Figure 3).   

Next the Fast Fourier Transform (FFT) is computed for each 

frame. Since the length of a frame may be less than the desired 

FFT length, the frame is zero padded to match the FFT length if 

necessary. To increase the speed of the FFT computation an FFT 

routine specialized for real input signals is used (Sorenson, 

1987). The FFT length, although usually 256 or 512 points, could 

also be chosen by setting a variable in the command file. Before 

the magnitude is computed from the  appropriate real and 

imaginary terms, a lower and upper frequency bound is defined 

based on the selected frequency range from the command file.  As 

explained below, since later steps might require a few 
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additional values outside the final range of interest, 

the processing range is slightly larger than the desired range. 

To reduce computation time, the squared magnitude spectrum is 

only computed for frequency values within the processing range. 

Thus, after the steps described in this paragraph, a frame 

consists of the squared magnitude spectrum for the corresponding 

speech data.  

Figure 4 illustrates in stylized form a squared magnitude 

spectrum for a single frame. In this figure the processing range 

and the desired range are shown.  A few additional values 

outside the processing range are also included, in order to show 

that not all values are processed. 

 

|X[k]|²

k

Desired range

Processing range

 

Figure 4: Squared Magnitude Spectrum 

The phase of the spectrum does not carry significant 

information about the speech and is therefore neglected. In 

addition the general shape of the magnitude spectrum is more 

relevant than spectral details. To emphasize the general shape, 
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the squared magnitude spectrum is smoothed over 

frequency. This is achieved with a morphological smoothing 

window, explained as follows. The current frequency sample is 

called the window origin. The window contains additional samples 

previous to the origin and after the origin. The actual 

smoothing operation is done by finding the maximum sample 

amplitude over all samples included in the window. The result is 

stored in a new array at a position corresponding to the 

position of the window origin. The window origin is then moved 

to the next sample. In this way all samples of the desired range 

are smoothed. In Figure 5, the smoothing window includes the 

window origin, |X[j]|2 , one previous value, |X[j-1]|2, and one 

following sample, |X[j+1]|2. The smoothed value of the spectrum  

|Y[j]|2  is found as the maximum value of the samples included in 

the current window, i.e.,     

 

[ ] [ ]( )Y j X l
j l j

2

1 1

2
=

− ≤ ≤ +
max     

 

This smoothing is done over all samples in the desired 

range, i.e., j ∈ desired range. Now it is also clear why the 

processing range includes a few more values than the desired 

range. This allows the correct smoothing of the first and last 

samples in the desired range. Note that the smoothed values, 

|Y[j]|2, are stored in another array, since the smoothing 

procedure must process the original values |X[j]|2 . 
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|X[k]|²

k
j-1   j   j+1

Window origin

Desired
range

Moving
window

 

Figure 5: Morphological Smoothing of the Spectrum 

 

The use of this kind of smoothing results in a broadening 

of the peaks in the spectrum and in a reduction of the depth of 

valleys. Figure 6 illustrates the results of this smoothing 

process for the data from Figure 4. An important theoretical 

reason for using this type of filtering is that that spectral 

peaks, which are thought to be important perceptually are 

emphasized, whereas spectral valleys, which are not thought to 

carry much speech information, are de-emphasized. Furthermore, 

from a signal processing point of view, the morphological 

filtering removes noisy spectral dips between pitch harmonics in 

the spectrum, prior to the log scaling step, as discussed   

next.   

 



 22

|Y[k]|²

k

Desired range

 

Figure 6: Spectrum after Smoothing 

Figure 7 shows two graphs. The lower curve is the log 

scaled spectrum of an actual frame of speech data. This spectrum 

contains many details. As mentioned above, these details are not 

considered to contain significant phonetic information. By using 

frequency smoothing the general shape of the spectrum is 

emphasized. This can be seen in the upper curve, where a 

symmetric smoothing window with a length of seven samples 

including the origin was used. The curves were separated such 

that they don’t overlap. For that reason a constant term (one 

unit on the y axis) was added to the smoothed curve.  
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Figure 7: Original and Frequency Smoothed Spectrum 

 

The log scaling compresses the dynamic range of the sample 

amplitudes. More importantly, however, the human auditory system 

has a logarithmic amplitude resolution. Since the human auditory 

system is presumably biologically optimized for speech 

processing, an increase in performance of the digital signal 

processing algorithms would be expected by modeling the human 

auditory system.  

After the scaling step, each frame consists of log scaled, 

smoothed magnitude spectrum for that frame of speech.   This 

processing is consistent with the well established idea that 

phonetic information is contained in the short time log 

magnitude spectrum.  However, as mentioned previously, not only 

do the “instantaneous” values of the spectrum carry  

information, but also the pattern of spectral changes over time 
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is important. As for the spectrum itself, the general 

trend of these changes is more important than fine details. 

Therefore the spectral frames are smoothed over time using a 

morphological smoothing process similar to the one previously 

described for frequency smoothing within each frame. However, 

the smoothing is now applied to samples at the same frequency 

but over different frames. This is illustrated in Figure 8, 

where the morphological smoothing window origin is at the third 

frequency sample (k) of the fifth frame (j). The window contains 

frequency samples from three previous frames. Typically the 

smoothing over time is done with an asymmetric window. The 

result of the time smoothing of frame j at frequency index k is 

found in this example as: 

 

[ ] [ ]( )Z k j Y k l
j l j
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3
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=
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More generally, the value of l covers all samples included 

in the smoothing window. The resulting values |Z[k,j]|2 are 

stored separately from the original values to ensure correct 

smoothing of all original values. The smoothing is also applied 

to all frequency samples of a frame. The process continues for 

all frames which are contained in the processing buffer (as 

explained in the next section.)  Note that to better understand 

the speech processing described in this thesis, speech 

parameters should be viewed as a two dimensional time-frequency 

matrix. Each row in the matrix is a single time frame. Different 

rows are different times. After the steps described in this 
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paragraph, each frame thus  contains the time-smoothed 

result of the log-scaled frequency-smoothed squared magnitude 

spectrum. 

 

Current frequency index k
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window

Window origin
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Figure 8: Time Smoothing 

 

In Figure 9 the effect of the two smoothing operations is 

shown for some real speech data. The curve in “front” is the  

log scaled squared magnitude spectrum of a 30 ms frame of the 

vowel /ah/. The spectrum was computed with a 512 point FFT. 

Since no smoothing was applied to this data, the details of the 

spectrum can be seen. The second graph shows the spectrum of the 

same frame, after a symmetric smoothing window of width 150 Hz 

was used to smooth the spectrum over frequency. At a sampling 

frequency of 11.025 kHz, this corresponds to a window width of 

seven frequency samples. It can be seen that deep valleys are 

“filled” and peaks are broadened. The last graph shows the 
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spectrum of the frame when smoothing over time is 

applied in addition to the frequency smoothing. For the time 

smoothing an asymmetric window including five previous frames 

was used. 
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Figure 9: The Effect of Smoothing 

 

The next processing step after time smoothing is the 

computation of Discrete Cosine Transform Coefficients (DCTCs). 

These coefficients encode the general shape of the spectrum with 

a small number of values. To compute the DCTCs a discrete cosine 

transform is applied to each frame, using the equation below: 

DCTC i X k i k
k

N

( ) ( ) ( , )=
=

−

∑ φ
0

1
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The i-th DCTC is computed as the sum over all 

frequency samples X(k), in the desired frequency range k, 

multiplied by the basis vectors over frequency N(i,k). The basis 

vectors given in the equation, which, for the most 

straightforward case, are samples of integer multiples of a 

half-cycle of a cosine,  

φ
π

( , ) cos
( . )

i k
i k
N

=
+





5
 

 

are generally modified as discussed below.   

 Since only a small number of DCTCs are needed (typically 

10 to 15), and also because of the frequency range limitations, 

the DCTCs were computed with the straightforward dot-product 

approach rather than a fast transform based method. However, to 

increase the speed of these calculations the required cosine 

basis vectors are precomputed.  

An important theoretical issue that affects the DCTC 

calculations is that a non-linear scaling of the frequency axis 

improves the performance of the whole classification system 

significantly (for example, Nossair et al., 1995). This agrees 

again with biologically motivated considerations in that the 

human ear has a much higher frequency resolution at low 

frequencies than at higher frequencies. To take this non-linear 

scaling of the frequency axis into account, the frequency axis 

of the frame level spectrum should be “warped” before the DCTCs 

are computed. That is, the spectrum could be re-sampled such 

that samples are closer in frequency at low frequencies and 
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farther apart in frequency at high frequencies.  This 

approach, which is used in many current speech systems and in a 

previous version of the Visual Speech Display, is 

computationally inefficient and results in approximate matches 

to desired warping functions. Research in our lab has shown that 

a better approach is to incorporate the warping into the basis 

vectors (Rudasi, 1992). Since the basis vectors are pre-

computed, no additional computations are required to implement 

time frequency warping. Figure 10 and Figure 11 illustrate basis 

vectors computed without and with warping incorporated 

respectively. As can be seen in Figure 11 the warping causes the 

basis vectors to vary more rapidly and to have higher amplitude 

at lower frequencies than at higher frequencies. This results in 

effectively higher resolution of lower frequencies than for high 

frequencies.  More details are given in (Rudasi, 1992) Wang et 

al., (1996). 

Basis vectors over Frequency, no warping

BVF0 BVF1 BVF2
 

Figure 10: Basis Vectors over Frequency, Warping = 0 
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Basis Vectors over Frequency, 0.45 warping

BVF0 BVF1 BVF2

 

Figure 11: Basis Vectors over Frequency, Warping = 0.45 

 

Except for several refinements such as the morphological 

filtering over frequency and method for accomplishing frequency 

warping, the processing in the previous version of the Visual 

Speech Display was similar to that described thus far for the 

new system. That is, the frame level DCTCs just described were 

used as the inputs to the neural network classifier used for the 

actual phonetic recognition. In addition to this much greater 

efficiency, accuracy, and flexibility incorporated into the 

frame level processing, a “block level” processing step was 

incorporated for the present study, as described in the next 

section of this thesis. 

 

3.3.2 Block Level Processing 

As mentioned previously, research (for example Zahorian 

and Jagharghi, 1993) has shown that the performance of phonetic 

classifiers can be improved dramatically if not only the DCTCs 

of the current frame are used but also the change of the DCTCs 
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over time are used as features. Therefore a number of 

frames of DCTCs are combined to form a block. The goal of the 

block level processing is to represent the change of the DCTCs 

from frame to frame with a small number of values. As mentioned 

before only the general trend of the change is important for 

this analysis. This trend can be appropriately encoded using a 

Discrete Cosine Series (DCS) expansion. This calculation is 

performed using the exact same dot product approach previously 

described for the DCTC calculations: 

DCS i j DCTC j k i k
k

M

( , ) ( , ) ( , )=
=

−

∑ Φ
0

1

 

where the i-th DCS of DCTC j is computed as the sum of the 

DCTC j, over all frames k in the current block, multiplied by 

the basis vectors over time M(i,k). The length of the current 

block is denoted with M. 

To save computation time, the required basis vectors are 

pre-computed similarly to the basis vectors for the DCTC 

computation. However, as described Nossair et al. (1995), time 

resolution should generally be non-uniform over the block. For 

the case of vowels, maximum resolution should occur near the 

center of the interval, with decreased resolution at the 

endpoints of the block. This non-uniform resolution can be done 

with a non-linear warping of the time axis before the DCSs are 

computed. Using a similar technique to that used for the 

frequency warping, the warping of the time axis is incorporated 

into the basis vector computations. The DCS terms, which are 

features which incorporate the time-warping effect, are thus 
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efficiently and easily computed by a dot product of the 

history of a certain DCTC and the DCS basis vectors. Figure 12 

and Figure 13 show the basis vectors over time without and with 

warping respectively. Figure 13, which depicts the basis vectors 

with warping, shows that the basis vectors vary more rapidly and 

are larger in the middle of the interval than at the endpoints. 

This results in an increased time resolution of the values in 

the center of a block and a decreased time resolution at both 

ends.  

Basis Vectors over Time, no warping

BVT0 BVT1 BVT2

 

Figure 12: Basis Vectors over Time, Warping = 0 
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Basis Vectors over Time, 5 warping

BVT0 BVT1 BVT2

 

Figure 13: Basis Vectors over Time, Warping = 5 

Yet another consideration taken into account in the 

development of the signal processing software is that, in 

certain cases, for example stop consonants, the speech signal 

changes very rapidly at the onset and then changes more slowly. 

Therefore, the block level processing was written to allow 

blocks with increasing length. The start of the first and 

shortest block is synchronized with the speech onset. The 

following blocks are of increasing length up to the desired 

maximum block length. This results in a very detailed 

representation of the speech onset compared to the normal 

resolution of the block processing. Figure 14 shows how frames 

are combined to form blocks of increasing length. The shaded 

frames contain the speech signal of interest, starting in frame 

five. As can be seen the block length is increased from one 

frame to the maximum block length of five frames. The rate of 

increase (labeled Block_jump) equals two frames in this case. 

The same value is used to advance the blocks after the length of 

a block reaches the maximum block length. This can be seen for 

the last two blocks.  
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Figure 14: Blocks with Increasing Length 

  

3.3.3 Final Features 

The block level processing results in a set of DCS terms 

for each DCTC. However, for some phonetic classification 

applications (for example Zahorian and Jagharghi, 1993), better 

results are obtained with a subset of these terms. Therefore, 

another option was added such that only specific DCS terms are 

used. To save computation time, only these needed terms are 

actually computed. These DCS terms over the DCTCs are the final 

features representing the speech signal for each block. They are 

used as the inputs to a neural network classifier. 

In the remaining section of this chapter, the actual 

software routines used to implement the signal processing just 

summarized are described. Some additional issues concerning 

efficient data management for real-time operation are also 
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described. All of this code was developed using 

Microsoft Visual C/C++, Version 4.0, for Windows NT and Windows 

95.      

3.4 cp_Feat 

All the primary signal processing routines are contained in the 

cp_Feat.c source file. Other routines, such as the routines to 

compute the basis vectors, are located in secondary source 

files. A very detailed description of the routines of cp_Feat 

can be found in (Auberg, 1996). This section provides a relation 

between the signal processing steps and the implementation of 

the C routines. In the comments in the code and in the detailed 

help file (Auberg, 1996) the following notation is used. A 

segment is an array of time domain data. All computations are 

based on the data included in a segment. For real-time use, a 

segment denotes the non-overlapping (i.e., the “new”) portion of 

the data obtained each time the program communicates with the 

sound card. A buffer is an internally used array of time domain 

data which is composed of one frame length of “old” data taken 

from the end of the previous segment and the current segment 

itself. A buffer therefore contains overlapping (the “old” frame 

length of data) and non-overlapping data (the current segment). 

A frame contains a small amount of data taken from the buffer. 

For each frame the FFT is computed. A frame can therefore 

contain time or frequency domain data. Finally, a block consists 

of a group of frames containing frequency domain data. For each 

block a set of the final temporal/spectral features is computed. 

This notation is also  used in Chapter Four. 
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The frame level processing is partitioned into 

three routines. All block level processing is accomplished with 

one routine. The routines were designed to be called only once 

per segment. This meant that a certain amount of data management 

had to be included in the routines.   

Figure 15 shows the signal processing steps which are 

included in the first C routine called ComputeLogSpectrum(). 

These steps are identical to the steps in the upper section of 

Figure 3.  

Log scaling

DC removal

Hamming window

Real-valued FFT

Square magnitude calculation

Frequency smoothing

Partition speech segment into frames

For all frames in the segment

 

Figure 15: ComputeLogSpectrum() 

There are only two differences between the routine and the 

steps in Figure 3. First, the partitioning of the speech signal 

into frames is handled here. Second, the routine computes the 

log scaled spectrum for all frames included in the current 
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segment before the next processing steps take place. 

Therefore, this processing results in a group of frames 

containing log scaled spectra.  

Some additional data management is also included in the 

ComputeLogSpectrum() routine. This data management enables the 

following routine to work continuously on a speech signal which 

is longer than the one segment given to the routine. However, a 

more detailed explanation is delayed until Chapter Four. To 

smooth these log scaled frame level spectra over time, they are 

passed to the time smoothing routine. The block diagram is shown 

in Figure 16. 

 

Time smoothing

For all frames in the segment

 

Figure 16: TimeSmoothing() 

After all frame level spectra have been smoothed over 

time, the DCTCs can be computed for each frame. The routine 

called ComputeDCTCs() uses a set of pre-computed basis vectors 

over frequency. Recall that these basis vectors incorporate the 

warping of the frequency axis if that option is selected. Figure 

17 shows the signal processing steps implemented in the last 

frame level processing routine. 
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Compute DCTCs
using the precomputed  basis vectors over

frequency

For all frames in the segment

 

Figure 17: ComputeDCTCs() 

The next processing routine incorporates all block level 

processing. First, a number of frames are combined to form 

blocks. The routine, called ComputeDCSs(), uses the pre-computed 

basis vectors over time, to compute the DCS terms. These basis 

vectors also incorporate the non-uniform resolution over the 

block, as discussed previously. After the DCS features for a 

given block are computed, the next block is processed. Note that 

the blocks may overlap and that the length of blocks can 

increase with time. Figure 18 shows the processing steps 

implemented in the ComputeDCSs() routine. 

Final features

Compute DCS
using the pre-computed basis vectors over time

Select desired terms

Partition  frames into blocks

For all blocks

 

Figure 18: ComputeDCSs() 
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The next chapter describes how these routines are 

used in real-time. The WinBar program is used as an example of a 

typical program using real-time signal processing. 
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4. THE WinBar PROGRAM 
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CHAPTER FOUR 

THE WinBar PROGRAM 

4.1 Introduction 

Chapter Three described the basics of the signal 

processing. Also the implementation of the signal processing 

ideas into signal processing routines was described. These 

routines are used in two different types of programs for the 

overall system. First, the routines are used to compute features 

from pre-recorded speech data. Thus this program runs off-line 

using data stored in computer files. These features are required 

to train the neural network classifier. Next, the same signal 

processing routines are used in a classification program. In 

this chapter, the WinBar program is used as an example. In 

WinBar, the features are computed from a unknown speech signal 

in real-time. These features are then “processed” by a trained 

neural network classifier and the classification results are 

displayed on the screen. To ensure consistency, the processing 

routines in both application must be the same.  However, real-

time operation requires some additional data management. The 

next section describes this additional data management.  
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4.2 Real-time Signal Processing 

The main difference between real-time and off-line 

processing is that for the real-time case, it is not known what 

the speaker will say and when the sounds will be produced.  

Therefore a classification program such as the WinBar program 

needs to constantly ‘listen’ to the incoming signal to detect a 

possible start of an utterance. The basic approach to processing 

continuous data is a typical double-buffering scheme. That is, 

two arrays of the same length are utilized, as depicted in 

Figure 19. During the time the Collection Array is filling with 

sampled speech data, the data in the Process Array can be 

processed. In using the notation of Chapter Three, the Process 

Array is referred to as the current segment. When the Collection 

Array is filled, the roles of the two arrays are interchanged, 

so that the new data can be processed. This demonstrates the 

real-time requirement of the signal processing. That is, all 

calculations on the Process Array must be completed in the time 

required to fill the Collection Array, in order that no data is 

lost. For example, with a sampling rate of 11.025 kHz, and a 

segment lengths of 1103 points, all processing for the 1103 

points must be completed in less than 100 ms, the time within 

which the next 1103 points would be collected. 

Another important point for processing continuous data is 

that a certain number of samples from the previous segment are 

needed to accommodate overlapping operations required for speech 

processing. Furthermore, for maximum flexibility, the 

relationship between the segment length, i.e., the length of the 
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Collection and Process Array in Figure 19, and the frame 

lengths and frame spacing should be arbitrary. That is, the 

segment length is based on real-time considerations (such as  

time between screen updates) whereas frame length and frame 

spacing should be based on time/frequency resolution 

considerations as mentioned previously. Also, for the best 

performance, the processing should be synchronized with the 

speech onset. This is especially important for many of the 

consonants. The extra data management required to allow this 

flexibility is illustrated as follows. After the onset is found, 

the speech data is partitioned into frames starting a certain 

amount of samples before the detected speech onset. Typically 

the data from the speech onset to the end of the Process Array 

cannot be partitioned into an integer number of frames which 

will use all the data. Therefore, there are a certain number of 

samples at the end section of the Process Array (up to a maximum 

of the frame length minus one) which cannot be processed until 

the next array is filled. To accommodate for this difficulty, a 

number of samples (one frame length) from the end of the 

previous Process Array are saved, as shown in the lower left 

hand corner of Figure 19. Thus a Buffer is defined for the 

actual processing which consists of this overlapping data, i.e., 

data from the previous array, and the current data taken from 

the Process Array. The steps for actual data management are also 

shown in Figure 19.  
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Figure 19: Double-Buffering Scheme 

After the Buffer is formed, as outlined in the previous 

paragraph, the next step is to identify one of the following 

unique cases: (1) a silent Buffer with no speech data, (2) a 

Buffer with speech starting after the beginning of the Buffer, 

(3) a full Buffer, with valid speech data for the entire Buffer, 

or (4) a Buffer with speech data in the beginning but ending 

before the end of the Buffer. An implicit assumption is that 

each valid utterance, and that pauses between utterances, are at 
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least one segment length long.  Therefore, cases such as 

a single utterance beginning and ending within a single segment 

are not allowed. To determine which of the cases above are 

contained in the buffer, an algorithm was developed to locate 

the speech onset. The routine in the WinBar program handling 

this speech detection is called LocateSpeech(). Three variables 

used by this function are now introduced. More details can be 

found in (Auberg, 1996). The first variable is called 

First_frame. This variable points to the start of the first 

frame in the current buffer containing speech. The second 

variable, Next_frame, points to the beginning of the first frame 

which does not fit into the current buffer. The third variable, 

First_call is set to one if a speech signal started in the 

current buffer, and is set to zero otherwise.  

As an initial condition case (1) is assumed. Therefore 

First_call is set to one.  Assume that a speech signal starts 

somewhere in the current buffer and is about two and half 

segments long. In the LocateSpeech() routine First_frame is set 

to point to the first new sample in the buffer, i.e., it is 

pointing to the start of the current segment. Starting from 

First_frame, the data is partitioned into short non-overlapping 

windows. For each window, from left to right, the energy of the 

window is computed. Using a threshold it is decided if the 

current window contains the speech onset. If the energy is below 

the threshold the next window is tested. If the threshold is 

reached, the value of First_frame is updated accordingly to the 

point at the located onset, minus an offset equal to the number 
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of samples defined for a pre-trigger. Using the value of 

First_frame the number of frames fully contained in the buffer 

is computed. The beginning of the first frame not contained in 

the buffer is stored in the Next_frame variable. This is now the 

case (2) mentioned above.  

After the processing is done and the next buffer is 

available, the value of First_frame is calculated based on the 

buffer length, segment length and the value of Next_frame, which 

is relative to the last buffer. Starting at First_frame the 

buffer is partitioned into windows as described above. The 

implicit model now only allows two possible states, case (3) or 

case (4). To determine which case applies to the situation, the 

energy of the windows is checked against the threshold. However, 

the energy value is now checked starting from the end of the 

buffer. This way it can easily determined if the signal lasts 

until the end of the buffer or not. In our example the whole 

buffer contains speech data, therefore case (3) is determined. 

The variable First_call is set to zero, since the data in the 

buffer continues data from the previous buffer. Figure 20 shows 

first two buffers. An index is used to denote the different time 

instances of the arrays and variables. The speech was detected 

to start a little after the beginning of the segment (time n). 

Clearly the overlap between the two buffers (time n and n+1) can 

be seen. The lower section of Figure 20 shows the frames which 

are built in the ComputeLogSpectrum() routine based on the 

values of First_frame, the length of the frame, the frame 
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spacing and the number of frames determined by the 

LocateSpeech() routine.  
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Figure 20: Sequential Buffers (A) 

 

After the next buffer is available, the same two states 

are possible as before, i.e., case (3) or case (4). As assumed 

above the speech signal ends after about two and half segments 

in the third buffer. After the current value of First_frame is 

calculated, the energy of the windows is computed for this 

buffer. By scanning from the end of the buffer, it is found that 

the speech signal stops in the middle of the buffer. Therefore 

case (4) is now given. Now the number of frames containing at 

least some speech is found. Next_frame is set to point to the 

first frame not containing any speech. Figure 21 shows this 

situation. Here the last buffer of Figure 20 is shown again for 

illustration of the continuous nature of the processing. From 

the buffer at time n+2 only five frames are processed, since the 
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next frame (marked with an ‘x’) does not contain any 

speech but would still fit into the buffer. 

After case (4) was detected for a buffer, case (1) 

(initial condition) is assumed for the next buffer. 

 

Buffer[n+1]

0

1

2

3

4

5

0

First_frame[n+2]

Buffer[n+2]

1

2

3

4

Next_frame[n+2]

x

 

Figure 21: Sequential Buffers (B) 

 

After a speech onset was found in a buffer, the frame 

level processing is applied to the data. As the next step, the 

block level processing is done to calculate the final features. 

These features are the inputs to the Artificial Neural Network. 

 

4.3 Artificial Neural Network Classifier 

Artificial Neural Network Classifiers are widely used in 

automatic speech recognition based on their flexibility. The 

type of network used in this thesis is known as a Multi-Layer 

Perceptron (MLP). It consists of a large number of identical 

nodes called neurons. Each neuron has a number of inputs with 

associated weights, an internal offset and one output. The 
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output is computed as the weighted sum of the inputs 

minus the offset, where this sum is passed through a non-linear 

function. Figure 22 shows the structure of a single neuron, 

neuron k. The Xi are the inputs to the neuron, wki are the 

weights and 2k denotes the offset. A sigmoid function ranging 

between zero and one is used as the non-linear function N().  
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Figure 22: Structure of a Neuron 

The output yk of the neuron is computed as follows: 
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The neurons are grouped into layers, where the outputs of 

the previous layer are the inputs to all nodes of the next 

layer. In the case of the WinBar program an MLP with one hidden 

layer was used. Hidden layers are ‘hidden’ between the input 

layer and the output layer. Figure 23 shows a typical MLP with 

one hidden layer. 
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Figure 23: MLP with One Hidden Layer 

 

Since a non-linear function is used to compute the output 

of each neuron, a MLP can create a non-linear mapping of the 

input space to the output space. The complexity of the decision 

region for each class depends on the number of layers and the 

number of nodes in the layers. Previous research by Zahorian and 

Jagharghi (1993) showed that to classify ten vowels a MLP with 

one hidden layer is sufficient. The number of nodes in the 

hidden layer can be between 30 and 50.  

The network used in the WinBar program typically has about 

20 inputs. These are the final features computed by the block 

level processing. The actual number varies with the  way the 

features are computed. The hidden layer has 50 neurons. The 

output layer consists of ten neurons with one neuron for each 

vowel. The values of the weights and offset are computed during 
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the training of the neural network. The training is 

described in section 5.5. 

4.4 Graphical Display 

As mentioned above, the neural network has ten output 

neurons, one for each vowel. The WinBar program displays the 

neural network outputs using bars. The height of each bar 

represents the value of an output neuron and therefore the 

classification result for a particular vowel. The user can see 

the quality of his/her articulation attempt by watching all ten 

bars. For a good pronunciation only the bar associated with the 

desired vowel should reach a maximum height and the height of 

all other bars should be close to zero. The WinBar program works 

in real-time. That means that all processing, the classification 

of the features by the neural network and the graphical display 

of the results are finished in the time needed to fill one array 

used for the double-buffering.  

4.5 WinBar Program Structure 

This section gives a short introduction to the structure 

of the WinBar program. Detailed information can be found in 

(Auberg, 1996). Right after the WinBar program is started, two 

initialization files are read. The primary information in the 

first file consists of the names of the neural network weight 

files. The second file contains the parameters which control the 

signal processing. A typical parameter file is shown below. The 

values of the more than twenty parameters can be adjusted to 

make the signal processing extremely flexible.  
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ID 
FeatureComputation_SpecFile[cp_Fea1300] 
 
// Basic parameters 
Sample_rate:        11025     // Hz               8000  - 22050 Hz       long 
Segment_time:         100     // ms                 50  -   500 ms       long 
Frame_time:            20     // ms                  5  -    40 ms       long 
Frame_space:           10     // ms                  2  -   100 ms       long 
FFT_length:           256     // points             64  -  1024 points   long 
Kaiser_Window_beta:     6     // without unit        0  -     6          float  
Num_DCTC:              14     // without unit        8  -    25          long 
DCTC_warp_fact:         0.45  // without unit        0  -     1          float 
BVF_norm_flag:          0     // without unit        0  or    1          long 
Low_freq:             100     // Hz                  0  -   300 Hz       long 
High_freq:           5000     // Hz               3000  -  8000 Hz       long 
 
// Morphological filter parameters 
Freq_kernel_before:     0     // Hz                  0  -   100 Hz       long 
Freq_kernel_after:      0     // Hz                  0  -   100 Hz       long 
Time_kernel_before:     0     // frames              0  -     5 frames   long 
Time_kernel_after:      0     // frames        currently fixed to 0      long 
 
// Block parameters 
Block_length_min:       1     // frames              1  -    20 frames   long 
Block_length_max:       5     // frames              1  -    20 frames   long 
Block_jump:             2     // frames              1  -    20 frames   long 
Num_DCS:                1     // without unit        1  -     5          long 
Time_warp_fact:         0     // without unit        0  -    10          float 
BVT_norm_flag:          0     // without unit        0  or    1          long 
 
Use_term: 
 
//      DCS0 DCS1 DCS2 DCS3 DCS4 DCS5 DCS6 DCS7 
DCTC00    0    1    1    1    1    0    0    0 
DCTC01    0    1    1    1    1    1    0    0 
DCTC02    1    1    1    1    1    1    1    1 
DCTC03    1    1    1    1    1    1    1    1 
DCTC04    1    1    1    1    1    1    1    0 
DCTC05    1    1    1    1    1    1    0    0 
DCTC06    1    1    1    1    1    0    0    0 
DCTC07    1    1    1    1    1    0    0    0 
DCTC08    1    1    1    0    0    0    0    0 
DCTC09    1    1    1    0    0    0    0    0 
DCTC10    1    1    0    0    0    0    0    0 
DCTC11    1    1    0    0    0    0    0    0 
DCTC12    1    1    1    1    1    1    1    1 
DCTC13    1    1    1    1    1    1    1    1 
DCTC14    1    1    1    1    1    1    1    1 
DCTC15    1    1    1    1    1    1    1    1 

 

 

After these files are read, the basis vectors over 

frequency are computed. These are needed to compute the DCTCs 

which incorporate the warping over frequency. In the following 

step the basis vectors over time are computed, which are needed 

to compute the DCSs. These basis vectors over time can also 

incorporate a warping of the time axis if desired. If an 
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increasing block length is desired, a set of basis 

vectors over time for each possible block length is needed.  

In the next step the neural network classifier is 

initialized with the weights and offsets read from a neural 

network weight file. Recall that this file was created during 

the training phase of the neural network. In addition a file 

containing scale factors is read. This file was also created 

during the training phase of the network. These scale factors 

are needed later on to scale the final features to the same 

ranges as those used for training the neural network. This step 

completes the initialization phase of the WinBar program.  

The next operation of the program is the processing phase 

which starts with data received from the sound card using the 

double-buffering scheme described above. If a speech signal is 

detected, the frame and block level processing is applied to the 

speech segment. The resulting features are scaled using the 

scale factors mentioned above. The scaled features are then 

input to the neural network. The classification results are 

passed to the graphics routine, which controls the heights of 

the bars on the screen. Next new speech data can be processed by 

looping continuously through the processing phase. If the user 

quits the program, certain clean up operations such as freeing 

memory are done before the end of the program.  

The program structure is shown in Figure 24. However, this 

structure is greatly simplified relative to the actual program. 

For example the user can switch between different neural 

networks. This is done to optimize the classification 
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performance with male, female or child speakers. 

Typically speech samples of speakers of age 12 and under are 

used for the child group. Speakers 18 years and older are used 

for both adult groups. Speaker between 13 and 17 will be used in 

the child or the adult groups depending on the sound of their 

pronunciation. These speaker groups have very different speech 

characteristics. Therefore a male speaker should chose the 

network trained with male speakers for optimal performance. This 

is especially important, if the program is used for 

pronunciation training for hearing impaired or foreign speakers. 

For example a child cannot expect to learn the correct 

pronunciation of adult male French vowels. Another feature of 

the WinBar program not shown here is the possibility to display 

not only the final classification result but also intermediate 

results such as the log scaled spectrum or the DCTCs of a frame.  

In the case of the WinBar program, where currently only 

steady state vowels are processed, it should be noted that some 

of the newly implemented options of the signal processing are 

not used. For example the time smoothing is disabled, all blocks 

have the same length and the basis vectors over time are not 

warped. Preliminary experiments showed that for steady state 

vowels the use of these advanced techniques does not improve the 

classification performance. However, since the routines can be 

used with other phonemes than steady state vowels these options 

of the signal processing will be used to process stop consonants 

or other phonemes.  
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Display

Get speech data from sound card

Locate speech onset

Frame level processing

Block level processing

Neural Network classifier

Initialize Neural Network

As long as desired

Compute basis vectors over time

Compute basis vectors over frequency

Read Feature Computation Specification File

Read  ‘WinBar.ini’ file

Clean up and end program
 

Figure 24: WinBar Program Structure 
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5. TRAINING OF THE WHOLE SYSTEM 
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CHAPTER FIVE 

TRAINING OF THE WHOLE SYSTEM 

 

5.1 Overview 

In this chapter the steps required to train the neural 

network used in the WinBar program are explained. The network in 

the WinBar program operates using fixed weights and offsets, and 

propagating the features through the network. This of course 

requires that the weights and offsets are correctly pre-computed 

for the specific classification task. The values for the weights 

and offsets are determined in the training phase of the neural 

network. This chapter describes all steps needed before the 

WinBar program can be used. These are the same steps required if 

the neural network needs to be retrained to incorporate more 

training speakers or to classify a different set of phonemes. 

5.2 Recording of Speech Files 

The first step in the training procedure is to collect 

training data. The training data is collected by the WinRec 

program. This program was implemented for this thesis to enable 

a convenient, reliable and fast way to collect a large amount of 

speech samples under a large number of conditions. A detailed 
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description of this program can be found in (Auberg, 

1995). The program first prompts the user to correctly pronounce 

a certain phoneme — vowels for the data actually collected in 

this study. The steady state section of this vowel is located 

and written to a file. The data files are labeled uniquely and 

stored in a certain directory structure organized according to 

gender and speaker. The filename specifies which vowel is 

contained in the file. In addition, a secondary file containing 

labeling information is created. Both files follow the TIMIT 

standard for speech files (Lamel et al., 1986). Typically five 

to ten repetitions of each of the ten vowels are saved per 

recording session for each speaker.  

5.3 Feature Computation with Tfrontc 

The Tfrontc program is used to compute the features from 

the training data files. A certain group of speakers can be 

selected, such as, for example, male speakers, to train a 

specialized neural network. The training data files are then 

read for all these speakers. For each file the final features 

are computed using the signal processing routines described in 

Chapter Three. The features are stored in files using a  

flexible format developed in the speech lab at ODU for speech 

processing applications. One feature file is created for each 

vowel. Each file then contains all selected training tokens for 

that vowel, thus encompassing a broad range of pronunciations of 

the vowel independently of a particular speaker.   
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5.4 Scaling of the Features 

The features for one particular phoneme vary with speaker 

to speaker and even with different utterances spoken by the same 

speaker. Therefore statistics such as the mean and standard 

deviation can be computed for each feature. It has been shown 

(for example, Haykin, 1994) that neural networks work best if 

the features are scaled to have zero mean and a standard 

deviation of about 0.2 . If a Gaussian distribution of the 

features is assumed, which is generally valid according to the 

Central Limit Theorem, the scaled values will then be between -1 

and +1 in more than 99% of all cases. Thus the Scale program 

reads the feature files and computes the mean and standard 

deviation of each feature over all phonemes. These statistics, 

which are used as scale factors, are written to a “scale” file. 

The actual scaling is done with the Transfor program. This 

program reads the scale file and creates a new set of feature 

files which now contain the scaled version of the original 

features. The scale file is also needed later on in the real-

time system. After the features are scaled, the neural network 

can be trained. 

5.5 Neural Network Training 

The Back-propagation (Lippmann, 1987) learning algorithm 

was used to train the neural network. For experiments done with 

the Visual Speech Display, typically the initial learning rate 

was .25. This rate was gradually reduced during training by 

multiplying the previous learning rate by .96 after each 5,000 

iterations. In our case, where 250,000 iterations were used, the 
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minimum rate was therefore .032. The momentum term was 

.65, and uni-polar sigmoid non-linearities were used.  Networks 

were typically trained with 250,000 updates, although 

performance of the network changed relatively little after the 

first 25,000 updates. Of course, the same network topology was 

used in the WinBar program. For experimental testing of the 

WinBar program, an MLP with one input node for each feature, 50 

hidden nodes and ten outputs (one for each vowel) was used.  

The network described and the Back-Propagation training 

algorithm were found to perform quite well for vowel 

classification, using the features computed in this study. A 

very important consideration is generalization, that is the 

ability of a trained neural network to correctly classify speech 

data from a speaker who was not included in the training set. 

This generalization is the most important characteristic of the 

neural network, since it is impossible to include all possible 

speakers in the training set. Typically 15 to 20 speaker per 

gender group were found to be enough to achieve a good 

performance with unknown speakers.  

To achieve higher accuracy, typically four neural networks 

were trained - one for male speaker, one for female speakers, 

one for children and one using all groups of speakers. These 

networks were all the same size and structure. These specialized 

networks allow the user of the WinBar program to select the 

optimal network for his/her pronunciation. The current version 

of the system (April 1996) contains only three neural networks. 

The first was trained with four male speakers, the second 
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network was trained with two female speakers, and the 

third network was trained with all six speakers. The performance 

of the system was then informally tested with a small group of 

speaker including the training speakers. Even though there were 

insufficient training speakers, good performance was obtained. 

That is, there were very few noted instances of discrepancy 

between vowel sounds (as judged by the testers of the system), 

and the observed displays. To give an approximation to the 

potential performance of the system, Table 2 shows the training 

classification results of these networks. 

 

 Male Female All 

Training 99.27% 96.46% 96.78% 

Table 2: Neural Network Training Results 

The reason that only this small amount of training data 

was used is that the data collection is still an ongoing 

process. From previous experience, better generalization 

performance is expected after the networks are trained with a 

sufficient amount of data.  

 

(Stefan—some place in this section might be a good place 

for the data I can give you) 

5.6 Setting up WinBar 

The WinBar program requires the names of the weight and 

scale files for the different speaker groups which were created 
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during the training phase. These names are specified in 

a setup file. Storing the filenames in a setup file allows great 

flexibility since the names can be changed without recompiling 

the program. For the same reason the parameters, which control 

the feature computation, are also stored in a file. This is the 

same file which is used by the Tfrontc program to control the 

feature computation during the training phase. To ensure that 

the WinBar program works correctly, the values of the parameters 

for the feature computations inside WinBar must be the same as 

for the Tfrontc program. Otherwise there will be a discrepancy 

between the features the neural network was training with and 

the features given to the network for classification. This would 

presumably result in more classification errors. After neural 

network training is complete, the WinBar program can be started 

and the newly trained networks are used to classify the unknown 

speech signal of a speaker in real-time. The block diagram in 

Figure 25 summarizes the steps needed to train the networks for 

use in the WinBar program. 
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Train the  Neural Network

Scale the features

Compute scaling factors

Compute features

Record speech files

Setup and run the WinBar program
 

Figure 25: Training of the Whole System 
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6. INVESTIGATION OF DISTINCTIVE FEATURES 
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CHAPTER SIX 

INVESTIGATION OF DISTINCTIVE FEATURES 

6.1 Introduction 

Researchers from the signal processing area generally use  

frequency domain features to represent phonemes, such as those 

discussed in the preceding chapters of this thesis. The 

frequency domain features favored by speech scientists are 

formants, which denote the location of the largest peaks in the 

frequency spectrum. In our work we use the temporal/spectral 

features as described in Chapter Three. Linguists usually refer 

to focus on perceptual or production features rather than  

acoustic features. One group of such features, which are 

commonly discussed in the speech science literature, are called 

distinctive features (for example Chomsky and Halle, 1968). 

These features attempt to characterize phonemes in the way they 

are actually produced in the human vocal tract. Vowels are 

usually represented by six distinctive features. These features 

are usually viewed as binary attributes.  That is, according to 

the theory, each vowel can be represented by a six bit binary 

code indicating the presence or absence of each of the features.     

In the area of vowel pronunciation training, one 

reasonable hypothesis is that displays which focus on 
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distinctive features could be beneficial to the user. 

That is, rather than only vowel classification based displays, 

it might be helpful to show the trainee whether a particular 

distinctive feature is contained in a production. For example, 

one important feature which hearing impaired speakers often have 

difficulty with over the entire vowel space is called “TENSE.”  

The work reported in this chapter describes attempts to 

investigate the viability of distinctive features for use in the 

vowel training system. 

Another important point to note, before discussing more 

specifics of this part of this study, is that automatic 

determination of distinctive features must still be based on  

acoustic features, since the acoustic speech signal is the only 

easily measurable signal. Neural networks are also a “natural” 

method to convert acoustic features to distinctive features 

since they are good universal function approximators, and since 

they are also typically trained for binary target outputs.  

Therefore, in this chapter, we present an experimental 

investigation of the use of neural networks to convert acoustic 

spectral/temporal features to distinctive features. 

In our first set of experiments we attempt to replicate  

results from (Meng, 1991), using a two stage classifier. The 

first stage consists of a group of independent MLPs, each one 

trained to extract a distinctive feature from the acoustic input 

features. The outputs of these feature networks are then 

processed with a secondary MLP stage which performs vowel 

classification task using the six distinctive features as 
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determined by the networks in the first stage. By 

comparing the classification results of this two stage 

classifier with those obtained with a single network, the degree 

to which vowel information is preserved in the distinctive 

features can be assessed. 

Another classifier structure which bears some similarities 

to the two stage method described in the previous paragraph, is 

the Binary Pair Partition Neural Network (BPPNN) approach. This 

partitioned approach was shown to be very effective for 

automatic speaker identification (Norton, 1994) and is now also 

used in our vowel classification research (Zahorian, 1993). For 

the BPPNN, a group of independent MLPs is used with each one 

discriminating only two vowels. The final result is computed by 

a method described in (Zahorian, 1993). Thus the BPPNN is 

similar to the distinctive feature approach in that multiple 

networks are trained, and a second stage is also needed. 

Therefore, in this chapter, BPPNN results and the results of 

several different sets of distinctive features are compared to 

the performance of a standard single MLP. 

For this portion of the work we used 13 American English 

vowels extracted from the TIMIT database. To make our results 

comparable with the previous study cited (Meng, 1991), we used 

the same vowels extracted from the identical subset of the TIMIT 

data base. The set which includes 500 training speakers and 49 

test speakers was used to compare the performance of the above 

mentioned classifiers. The set spans all dialect regions 

included in the TIMIT data base. The distribution of female and 
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male speakers also matches the distribution of the 

entire TIMIT data base. The following table shows the phonetic 

and the ARPABET labels for the set of the 13 vowels 

investigated:   

 

IPA I I e ε æ a  o 7 u 
g 

 ü 

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

Table 3: Experimental Set of 13 American English Vowels 

 

In this experiments three additional vowels are used in 

addition to the ten phonemes used in the WinBar program. These 

three are (using the ARPABET notation) /ey/, /ow/ and /ux/. 

6.2 Acoustic Features  

To compute acoustic (temporal/spectral) features the 

speech data was extracted from the TIMIT database using the 

provided labeling information. These temporal features were 

computed with the same signal processing routines as described 

in Chapter Three of this thesis. In this case a frame length of 

10 ms and a frame spacing of 2 ms were used. For each frame 12 

DCTCs were calculated. The trajectory over the last 150 frames 

of each of these 12 DCTCs were represented by four DCS terms. 

This resulted in a compact representation of a vowel with 48 

features. These features were used as inputs of the single MLP 

and the BPPNN. In addition, these features were also the inputs 
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of each of the networks which extracted the desired 

distinctive feature in the two stage classifier.  

6.3 Distinctive Features  

Instead of being directly related to the frequency 

spectrum of the vowels, the idea behind distinctive features is 

based on linguistics. They describe the way in which phonemes 

are actually produced in the human vocal tract. For example the 

position of the tongue hump is used to classify /i/ as a typical 

front vowel and /o/ as a typical back vowel (Rabiner, 1993). For 

this work we use the notation of previous work (Meng, 1991) and 

the common distinctive features [HIGH], [TENSE], [LOW], [BACK], 

[ROUND] and [RETROFLEX]. Each vowel was characterized to either 

have a particular feature, denoted with , or not to have it, 

symbolized with . This gave a unique but redundant binary 

representation of each vowel. This representation is summarized 

in Table 4: 

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

HIGH              

TENSE              

LOW              

BACK              

ROUND              

RETROFLEX              

Table 4: The Representation of the Vowels with Distinctive 

Features 
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For each distinctive feature a MLP with one output 

node was trained to give a output value close to one if the 

vowel had the specific feature (i.e., a black circle in Table 4) 

or an output of nearly zero otherwise. The six feature networks 

comprised the first stage of the distinctive feature classifier. 

The second stage consisted of one MLP with six inputs. These 

were connected to the outputs of the six feature networks. This 

MLP had one hidden layer with 50 nodes and  13 outputs and 

classified the vowels. 

 

6.4 Experiments 

In our first group of experiments the performance of the 

two stage classifier with the original set of six distinctive 

features mentioned in Table 3 was compared to the performance of 

a BPPNN approach and the result of a single MLP. All network 

configurations, i.e., the number of hidden nodes, amount of 

training, etc. were optimized in pilot experiments with another 

set of training data mentioned in (Meng, 1991). The first stage 

of the two stage classifier consisted of a group of memoryless 

fully interconnected feed-forward MLPs with 48 input nodes, one 

hidden layer with 50 nodes and one output node.  The output of 

each of these MLPs represented one distinctive feature. The 

networks were trained with the back propagation algorithm with 

200,000 iterations. For the network in the second stage, the 

same type of one hidden layer MLP was used, but with 300,000 

iterations. The number of inputs is the number of distinctive 

features, i.e. the outputs of the networks in the first layer.  
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For a different set of distinctive features, the 

structure of the two stage classifier was modified such that 13 

feature networks were used in the first stage. These are shown 

in Table 5. Each of these was trained to distinguish one 

particular vowel from all the other 12. 

 

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

Feature a)              

Feature b)              

Feature c)              

Feature d)              

Feature e)              

Feature f)              

Feature g)              

Feature h)              

Feature i)              

Feature j)              

Feature k)              

Feature l)              

Feature m)              

Table 5: Thirteen Features 

 

The Binary Pair Partitioned Neural Network approach used 

(13 * 12) / 2 (78 ) networks to distinguish the 13 vowels. That 

is, for each group of two vowels, one network was trained  to 

discriminate them. Each of these 78 networks had 48 inputs, one 
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hidden layer with 25 nodes and one output node. 100,000 

iterations were used for training. The final result was obtained 

using a method described in (Nossair, 1995). The fourth 

classifier was a single MLP. This network had 48 inputs and 100 

nodes in the hidden layer. This network was trained with 300,000 

iterations. 

In the second group of experiments we wanted to 

investigate whether the original set of six distinctive features 

was “optimum,” or whether other definitions of features were 

significantly better or worse. To create different sets of six 

features we circularly rotated the feature patterns for each 

vowel but left the vowel labels in place. That means that the 

features which characterized the vowel /iy/ are now used as the 

features for /ih/, and the features originally used for /ux/ are 

the new features for /iy/, and so on. This rotation of the 

features by one vowel to the left was done several times. Also 

another independent set of six features was developed as shown 

in Table 6. 
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ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

Feature a)              

Feature b)              

Feature c)              

Feature d)              

Feature e)              

Feature f)              

Table 6: An Independent Set of Six Features 

 

In a third group of experiments we observed that to encode 

13 categories only four bits are necessary. So we determined two 

sets of four features which are shown in Table 7 and Table 8. 

Note a feature labeled ‘Feature a)’ in one table is totally 

independent from another ‘Feature a)’ in a different table. 

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

Feature a)              

Feature b)              

Feature c)              

Feature d)              

Table 7: Four Strictly Binary Features 
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ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

Feature a)              

Feature b)              

Feature c)              

Feature d)              

Table 8: Four Scrambled Binary Features 

  

A general theoretical issue underlying all of this work is 

the dimensionality required for this vowel classification 

problem. The distinctive features, for example, can be viewed as 

six dimensions representing vowels. To investigate this issue 

with a different method, we trained a special MLP. The inputs 

were the same 48 acoustic features. We used 100 nodes for the 

first of three hidden layers such that the MLP was able to 

perform complex mappings. The second layer was of particular 

interest. We varied the number of nodes from 1 to 20 to create 

an ‘information bottleneck’. The third hidden layer again 

consisted of 100 nodes and the output layer had 13 nodes, with 

each node corresponding to one vowel. By varying the number of 

nodes (N) in the second hidden layer in this 48-100-N-100-13 

structure we wanted to find the smallest number of nodes 

required to achieve a peak performance of the overall MLP. The 

assumption was that this value of N is an estimate of the 

dimensionality needed to represent the 13 vowels. 
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6.5 Results and Comparison 

In the first group of experiments, which compared the 

original set of six distinctive features with a set of 13 

features and the BPPNN and single MLP classifiers, we found that 

the BPPNN approach gave the highest result with 84.48% / 71.99% 

(training / evaluation result). This classifier structure had 

however the most complex structure, requiring the most weights. 

The single MLP, which used far less weights than the BPPNN, gave 

a very close evaluation result with 76.19% / 71.34%. The two 

stage classifier with 13 feature networks in the first stage 

gave 73.36% / 70.56% which is about 2.3% better than the 

original set of six distinctive features. This use of six 

distinctive features yielded results of 71.13% / 68.16%.  

Although the results summarized in the previous paragraph 

indicated that the six distinctive features did not perform as 

well as other network configurations tested, results from the 

second group of experiments did show that the original set of 

six distinctive features were superior to all other six feature 

configurations tested. The rotated set gave on average two to 

three percent less than the original set. The other independent 

set resulted in 68.12% / 65.41%, i.e., about 3% less.  

In the third group of experiments only four features were 

used. The strict binary set (Table 7) gave 65.76% / 64.99% and 

the scrambled set (Table 8) resulted in  63.02% / 58.17%.  Thus 

four features did perform more poorly than six features.  

The fourth group of experiments showed that with an 

increasing number of hidden nodes in the second layer (N) the 
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classification performance reached at maximum at  N = 6 

and remained approximately constant with increasing N. For N = 4 

we achieved evaluation result of 66.13%, whereas N = 6 gave a 

result of 69.66%. Figure 26 shows the evaluation results of this 

experiment where N, the number of hidden nodes in the second 

hidden layer, varies from one to 12. 

Evaluation Results over N
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Figure 26: Evaluation Results over N 

 

The result for N = 6 in the preceding paragraph was very 

close to the result using the six distinctive features. To find 

out how the network represents the phonemes internally in the 

second hidden layer, we extracted the outputs of these six 

neurons. The mean of the output over each vowel was computed. We 

can view the six mean values for a particular vowel as internal 

features. These features were not strictly binary as for the 

distinctive features. However, using a threshold, we determined 

a modified set of features based on these mean values. These 
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features were sorted and if necessary were inverted. 

They are shown in Table 9. 

ARPABET iy ih ey eh ae aa ao ow ah uw er uh ux 

Feature a)              

Feature b)              

Feature c)              

Feature d)              

Feature e)              

Feature f)              

Table 9: Six Modified Internal Features 

 

It is interesting to note that these modified internal 

features, which were created unsupervised by the neural network, 

are extremely similar to the six distinctive features shown in 

Table 4. 

In a new experiment we trained a set of feature networks 

to create the six modified internal features. As in the 

experiment with the six distinctive features a second neural 

network was used to classify the 13 vowels based on theses six 

modified internal features. The results of this experiment were 

71.16% / 68.28%, which is slightly less than for the original 

set of six features. 

6.6 Conclusion 

Keeping the performance of the classifiers in the first 

group of experiments in mind, it can be said that for strict 

automatic vowel classification there is no gain in first 
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creating distinctive features in a first stage and then 

combining these with a second MLP. A better result can be 

obtained by a much less complex single MLP. Slightly better 

results were obtained by the more complex BPPNN approach. 

However, if one wants to use six intermediate features the 

original set of six distinctive features listed in Table 4 work 

best. It is interesting to note that our result with the same 

set of distinctive features, based on 48 acoustic input 

features, is about 5% higher than the result in (Meng, 1991), 

where 120 input features based on an auditory model were used; 

the BPPNN gave about 8% higher evaluation results.  

Combining the results from group three and four, we can 

conclude that four features are not enough and that the 

dimensionality of the 13 vowel space is about six. Comparing the 

N = 6 case which resulted in 69.66% (evaluation data) with the 

68.16% from the original six distinctive feature set, we can say 

that these distinctive features are a reasonably  good 

representation of the vowels. 

However, by comparing the four different structures of the 

first group of experiments  it can be said that for strict 

automatic vowel classification the use of distinctive features 

has no advantage over a direct use of frequency based features.  

Nevertheless, for the purposes of pronunciation training, 

distinctive features could be used, and might be beneficial.  

The results of the experiments reported in this chapter show 

that at least most of the information in the vowels is contained 

in six features.  Additional work would be  required to 
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determine whether or not these distinctive features 

would help in vowel articulation training.  
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CHAPTER SEVEN 

ACHIEVEMENTS AND FUTURE IMPROVEMENTS 

7.1 Achievements 

In this section the achievements in implementing this new 

and improved version of the signal processing are summarized.  

The developed signal processing routines are an 

implementation of the newest research about temporal/spectral 

features for automatic speech recognition. Without code changes 

all relevant parameters (more than 20) can be specified in a 

self-explaining setup file. The routines have a clear interface 

and clearly separated tasks. This very structured and modular 

approach allows easy integration of additional routines and easy 

modification of single routines if necessary in the future. 

All essential data management was included in these 

routines for compactness and processing speed. Based on the 

modular approach, additional data management functions, as the 

LocateSpeech() routine to detect the speech onset in the real-

time system, can easily be integrated in the existing code. 

Another important consideration was that the signal 

processing routines are very portable. This allows the use of 

these advanced routines in many situations, like in MS-DOS 

programs, combined C/FORTRAN code and Windows (16 and 32bit) 
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applications. In addition, the routines can even run a 

totally different environment like the ELF DSP board from ASPI 

which is based on the TMS320C3X chips from TI. Even though for 

the Visual Speech Articulation Training Aid there is no need to 

use a DSP board, other application might require a DSP board or 

a stand alone operation on a dedicated DSP system. 

This leads to another big advantage over the previous 

system. Since the signal processing routines were speed 

optimized to run on a DSP board the training features could not 

be computed off-line on a PC. Each time a variation in signal 

processing was investigated, thus requiring that another neural 

network be trained, a group of speaker was needed. The features 

were then computed in real-time on the DSP board and saved to a 

file. This approach made algorithmic refinements extremely 

difficult to explore. By using the WinRec recording program, the 

speech samples are only collected once and the time waveform is 

saved to a file. Since the signal processing routines are 

portable, they were integrated to an off-line program (Tfrontc). 

Using this program it is easy to compute new features for the 

neural network. In particular, this technique allows the 

optimization of the signal processing parameters. The 

classification results of the different experiments are now 

directly comparable since the features are based on the same 

speech files.  

7.2 Working with phonemes other than Vowels 

The main reason to integrate such a large amount of 

flexibility into the signal processing routines was to be able 
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to work with other phonemes than steady-state vowels. 

From a speech recognition point of view the steady state vowels 

are the convenient to classify, since they don’t change their 

characteristics significantly over time and the length of the 

vowel is typically sufficient. In addition the onset detection 

is not critical and no coarticulation occurs. This is different 

if the vowels are extracted from short words. Here the length of 

the vowel is limited and coarticulation with the previous and 

following phoneme occurs.  

For the real-time system some additional logic needs to be 

implemented to located the vowel inside the word and to extract 

the useful section of the vowel, i.e., where the least 

coarticulation occurs. In addition, the signal processing 

parameters need to be adjusted. For example, the length of a 

frame should be shorter (about 5 to 10 ms). Also the trajectory 

features computed with block level processing is advantageous to 

determine the spectral/temporal pattern of the vowel in the 

word.  

For work with stop consonants the detection of the onset 

is critical (Correal, 1994). Therefore logic to find this onset 

with great accuracy is needed. It was shown in the above 

mentioned work that the Teager energy operator (Kaiser, 1990) 

can be used for a reliable onset detection. The signal 

processing parameters need to be adjusted for optimal feature 

computation. The technique of the increasing block length can be 

used to increase the time resolution in the critical onset 

section of the consonant. 
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7.3 Other Display Types 

The WinBar program is only one of many possible ways to 

display the classification result. Here a bar for each vowel is 

displayed. The height of a bar is proportional to the 

correctness of the pronunciation. This display can be used to 

improve the pronunciation of hearing impaired persons or of 

foreign speakers (Correal, 1994). A correct pronunciation is 

achieved when the bar of the desired vowel reaches its maximum 

height and all others bar have a height of zero. Another type of 

an analytic display is the so called ellipse display. Here 

elliptic target regions are shown on the screen. The two 

dimensional display is based on the common f1/f2 dimensional 

plot of vowel positions in this two-dimensional formant space. 

In this case, the neural network has an additional layer which 

maps the ten-dimensional output space to the two-dimensional 

f1/f2 space. A program to implement this kind of display to run 

on a Windows Multimedia PC is currently under development. 

However, Figure 27 shows the current implementation of the 

ellipse display in the WinBall program. Here the green ball must 

be moved by the pronunciation to the labeled target ellipse. 

This in shown for a correct pronunciation of /ee/. 
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Figure 27: Current WinBall Program 

 

Even though the two computer displays described can help 

improve the pronunciation of the target phonemes, a more game 

oriented approach could also be used. This can range from a game 

teaching only one vowel to more involved games using two, four 

or more vowels. In a game to teach the pronunciation of one 

vowel, the correctness of the pronunciation can be mapped to a 

number of levels, where a higher level leads to more points or 

to a ‘friendlier’ reaction of the computer. Games teaching two 

vowels can include a voice controlled pinball machine or any 

other type of game where a player moves up and down or left and 

right. The correctness of the pronunciation would then control 

how far or how fast the player moves. Any game based on a 

joystick control can be modeled as a four vowel game. For 
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example a voice controlled PAC-man game is possible. 

Some ideas, like the PAC-man game, were implemented in the old 

system. However the Windows based approach of the new system can 

lead to user friendlier and more interesting graphics in the 

games with more accuracy in the signal processing. 

The actual implementation of a game type display would be 

closely based on the existing WinBar program. This program 

already handles the real-time signal processing and a 

classification through a neural network. After the game graphics 

are developed, the outputs of the neural network can directly 

used to control the movements of the player. 
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