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 ABSTRACT 
 
 A novel signal modeling technique is described to compute smoothed time-frequency features for encoding 
speech information.  These time-frequency features compactly and accurately model phonetic information, while 
accounting for the main effects of contextual variations.  These segment-level features are computed such that more 
emphasis is given to the center of the segment and less to the end regions.  For phonetic classification, the features are 
relatively insensitive to both time and frequency resolution, as least insofar as changes in window length and frame 
spacing are concerned.  A 60-dimensional feature space based on this modeling technique resulted in 70.9 % accuracy 
for classification of 16 vowels extracted from the TIMIT data base in speaker-independent experiments.  These results 
are higher than any other results reported in the literature for the same task. 
 
 
 Introduction 
 
 One of the fundamental issues in feature selection for automatic speech recognition is the representation of 
spectral/temporal information which best captures the phonetic content of the speech signal.  Since time and frequency 
resolution are inversely related, in practice a tradeoff must be made between these two resolutions.  Ideally these 
resolutions should also depend on frequency.  Another important consideration, at least for any statistically-based 
recognizer, is the desirability of using as few features as possible.  In this paper signal processing strategies are 
described to compute smoothed time-frequency features for encoding speech information of speech segments in a 
compact form.   
 
 There are at least two primary techniques which appear in the literature for modeling phonemes extracted from 
continuous speech.  In one of these, each phoneme is represented by a sequence of feature vectors that are extracted 
from equally spaced frames of speech.  Typically an HMM is used for modeling this sequence of feature vectors [1].  In 
the second method each phoneme is represented by three feature vectors extracted at the beginning, the middle, and the 
end of the labeled acoustic signal [2,3,4].  These feature vectors are then concatenated to form one longer fixed-length 
vector and then used as the input to a classifier such as a neural network.  Neither of these methods is particularly 
effective at capturing the temporal history of the underlying features.  Although the basic features are often augmented 
with some type of delta terms, the temporal modeling deficiency is only partially overcome.   
 
 In the present technique each acoustic segment is initially represented with multiple feature vectors which are 
extracted from equally spaced frames of speech.  Then each feature trajectory across these multiple frames is 
represented by a low-order time-warped cosine basis vector expansion.  The coefficients of these cosine expansions are 
then used as a representation for the underlying phonetic information.  The use of this low-order cosine expansion over 
time enables modeling the temporal or dynamic information as well as the contextual information in a compact and 
integrated form.  Using a weighted basis vector expansion over a sufficiently long acoustic segment, we are able to 
emphasize the center of the segment, which contains most of the information about the underlying phone, but also 
include contextual information from the neighboring phonemes.  The use of only a few low-order terms in the 
expansion over time also smoothes out noise due to signal processing artifacts such as window length and frame 
spacing. 
 
 In the remaining sections of this paper we provide a detailed explanation for the feature computation 
procedures, the classification technique, experimental procedures and experimental results.  
 
 COMPUTATION OF TIME/FREQUENCY FEATURES 



 
 The features are computed in a multi-stage process as follows. The first step is to high-frequency 
preemphasize the speech signal using a second order FIR filter given by 
 
    y[n] = 0.3426 x[n] + 0.4945 x[n-1] - 0.64 x[n-2], 
 
where the coefficients are for a 16 kHz sampling rate.  This pre-emphasis, which has a broad peak near 3 kHz, and 
which approximates the inverse of the equal-loudness contour, results in slightly better performance (about 1%) than 
does a first order pre-emphasis, (y[n] = x[n] - .95 x[n-1] ).  The next step of processing is to compute a 1024 point FFT 
from each Kaiser-windowed (coefficient of 5.33) frame of speech data.  The magnitude spectrum is then determined, 
logarithmically amplitude scaled, and frequency warped with a bilinear transformation with a warping coefficient of 
.45.  The scaled FFT spectrum is then reduced (or smoothed) using a cosine transform, computed over a frequency 
range of 75 Hz to 6000 Hz.  These coefficients which we call discrete cosine transform coefficients (DCTCs), are 
essentially cepstral coefficients.  Each DCTC trajectory is then represented by the coefficients in a modified cosine 
expansion over the segment interval as follows: 
 
                    k=M-1 
    DCTCi(n) = Σ DCSik BVk(n) 
                    k=0 
 
where DCTCi(n) is the ith cosine coefficient of the magnitude spectrum of the nth frame, 
      BVk(n) is the nth value of the kth basis vector, 
      M is the number of basis vectors used, 
  and DCSik is kth coefficient of the modified cosine expansion of DCTCi. 
The basis vectors are computed as "time-warped" cosine basis vectors, using a Kaiser-window weighting function, such 
that the data are more accurately represented in the center of the interval than near the endpoints, using 
 
  BVk(n) =  KW(n) cos(Wk/L). 
 
where KW(n) is the Kaiser-window weighting function, 
      L is the length of each trajectory (number of frames), 
 
                             j=n-1 
      W = (0.5 π /L) + Σ DW(j), 
                             j=1 
                                                  m=L-1 
  and DW(j) = (KW(j)+KW(j+1))π(L-1)/L(Σ(KW(m)+KW(m+1))). 
                                                  m=1 
 
Figure 1 depicts the first three basis vectors, using a coefficient of 5 for the Kaiser warping function. 
 The methodology described above allows considerable flexibility for examining tradeoffs between time and 
frequency resolution.  For example to increase frequency resolution, the frame length should be increased and the 
number of DCTC terms should be increased, whereas the number of DCS terms can be reduced.  To increase time 
resolution, the frame length and frame spacing and number of DCTC terms should be reduced, but the number of DCS 
terms should be increased.  The tradeoff between the resolution of the representation at the center of the segment 
relative to the endpoints can be examined by varying the coefficient in the time-warping function.  Also very 
importantly, the procedure results in considerable data reduction relative to the original features.  For example, 15 
features sampled at 30 frames (450 total features) can be reduced to 75 features if 5 basis vectors are used for each 
expansion.  We conducted  several experiments designed to evaluate the usefulness of these features for automatic 
vowel classification and to investigate the tradeoffs mentioned above. 
 
 



 

 

Figure 1 First three basis vectors used to encode 
trajectories of spectral features 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CLASSIFIER 
 
The pattern classification approach used in this study is called a binary paired partitioning (BPP) neural network [5,6].  
This classification approach partitions an N-way classification task into N*(N-1)/2 two-way classification tasks.  Each 
two-way classification task is performed using a neural network classifier which is trained to discriminate one pair of 
categories.  The two-way classification decisions are then combined to form the N-way decisions.  For all experiments 
reported in this paper each pair-wise network was a memoryless, feed-forward, multi-layer perceptron and was 
configured to have one hidden layer of 5 nodes, unless otherwise stated, and one output node.  Back-propagation was 
used for training these networks with 160,000 network updates using an initial learning rate of .45 and momentum term 
of .6.  The learning rate was reduced by a factor of .96 every 5000 network updates. 
 
 
 
 
 
 Experiments 
 The experiments were performed with vowel data from the DARPA/TIMIT data base (October 1990 version). 
 The vowels used were /iy,ih,eh,ey,ae,aa,aw,ay,ah,ao,oy,ow,uh,ux,er,uw/.  In this paper we give only test results based 
on the SX sentences using 499 speakers (356 male and 143 females) for training and 50 speakers for testing (33 male  
17 females).  The vowels and speakers used in these tests were the same as those used in previously reported tests with 
the TIMIT vowels ([2], [3]), in order to facilitate comparisons of our experimental results with previously published 
results.  
 
Experiment 1--Control 
 
 This experiment was conducted to determine the extent to which temporal information for vowels can be 
captured using only 1, 3, or 5 frames extracted at uniformly spaced time points with respect to the  labeled section of 
each vowel.  This method is very similar to that used in previous studies of vowel classification using TIMIT data.  Ten 
 DCTCs were computed for each frame (since, as described in the following experiment, this number was found to be 
sufficient).  The vowel classification results for these three cases were 53.9%, 63.8%, and 65.4%.  These results are 
similar to those obtained in previous studies for similar conditions. 
 
Experiment 2--Time/Frequency Resolution. 
  
 This experiment was designed to examine tradeoffs in time/frequency resolution.  That is, we wanted to 
examine classification performance as a function of the number of DCTCs used and the number of DCSs used to 



encode each DCTC.  For this experiment we used a fixed time interval of 300 msec centered at the labeled midpoint of 
each vowel and a time warping of 10.  Figure 2 shows the evaluation results of this experiment in bargraph form.  The 
results show that to some extent time and frequency resolution can be traded off in the sense that as more DCTCs are 
used (better frequency resolution), fewer DCSs are needed (poorer time resolution).  For optimum results, 10 or more 
DCTCs are required.  The overall best result of 70.9% s was obtained with 12 DCTCs and 5 DCSs (60 features), 
corresponding to a relatively smooth resolution in both time and frequency.   
 

 

Figure 2 Vowel classification rate as a function of the 
number of DCTCs used and the number of DCSs used to 
encode each DCTC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Experiment 3 -- A More Detailed Examination of Temporal Resolution 
 
 In this experiment we examined the effects of segment length and temporal resolution within the segment 
(midpoint versus endpoints) for vowel classification.  We varied the segment duration from 50 msec up to 300 msec 
and the amount of time warping from 0 to 12.  Except for the 50 msec segment, we also used a fixed number of features 
(10 DCTCs * 5 DCSs, or 50 features).  For the case of the 50 msec time window we used 30 features (10 DCTCs * 3 
DCSs), since there is very little temporal variation over this short interval.  Table 1 shows performance as a function of 
amount of time warping for different window lengths.  Note that for each duration, as the warping factor increases, the 
basis vectors increasingly emphasize the center of the interval, thus reducing the effective time duration of the window.  
 
Table 1.  Classification rates for 16 vowels as a function of the amount of time warping for different time window 
lengths. 
 
         warping        Time Duration(ms) 
         Factor       50    100    200    300 
 
           0         63.7   67.1   69.6   66.2 
           2         64.4   65.8   70.3   69.0 
           4         62.9   66.9   69.3   69.3 
           6         61.5   65.5   68.7   69.8 
           8         61.0   64.4   67.9   70.5 
          10         61.1   63.6   68.5   70.4 
          12         61.4   63.8   67.8   69.3 
 
 
 The results in Table 1 clearly show that performance improves as the segment interval increases from 50 ms to 



100 ms to 200 ms.  There is only a slight improvement resulting from increasing the interval to 300 ms from 200 ms 
(70.5% versus 70.3%).  However, as expected, as the segment becomes longer, the best results are obtained with a 
larger warping factor.  The absolute best results were obtained using a warping factor of 8 and segment length of 
300ms. 
 
 Summary 
 
 A spectral/temporal feature set has been described for speech analysis and has been evaluated with vowel 
classification experiments.  The spectral/temporal features result in substantially higher classification rates for vowels 
than can be obtained by simply concatenating multiple frames of static features.  This new feature set has been used to 
obtain vowel classification results of 70.9% for 16 vowels of the DARPA/TIMIT data base, higher than any other 
previously reported results ([1], [4], [5]).   
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Figure 1. First three basis vectors used to encode trajectories of spectral features.   
 
 
 
 
Figure 2. Vowel classification rate as a function of the number of DCTCs used and the number of DCSs used to encode 
each DCTC. 
 
                       


