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ABSTRACT 

SIGNAL MODELING WITH NON-UNIFORM TIME SAMPLING OF 

 FEATURES FOR AUTOMATIC SPEECH RECOGNITION 

 

Montri Karnjanadecha 

Old Dominion University, 2000 

Director: Dr. Stephen A. Zahorian 

 

 

 This dissertation presents an investigation of non-

uniform time sampling methods for spectral/temporal feature 

extraction in speech. Frame-based features were computed 

based on an encoding of the global spectral shape using a 

Discrete Cosine Transform. In most current “standard” 

methods, trajectory (dynamic) features are determined from 

frame-based parameters using a fixed time sampling, i.e., 

fixed block length and fixed block spacing. In this 

research, new methods are proposed and investigated in which 

block length and/or block spacing are variable. The idea was 

initially tested with HMM-based isolated word recognition, 

and a significant performance improvement resulted when a 

variable block length and variable block method were 

applied. An accuracy of 97.9% was obtained with an alphabet 

recognition task using the ISOLET database. This result is 

by far the highest reported in the literature. The variable 

block length method was then adapted to accommodate the 

complexity of continuous speech. Three methods were proposed 

and each was tested with the TIMIT and NTIMIT databases 

using HMM recognizers. Phone recognition experiments were 

conducted using the standard 39 phone set. Tuning of 

parameters was achieved with monophone models using a simple 
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HMM configuration. The methods were also evaluated with more 

complex models, such as models with more mixture components, 

models with a full covariance matrix and right-context 

biphone models. Experimental results indicated that none of 

the proposed methods perform significantly better than the 

standard method. However, the absolute best result obtained 

with the proposed front end is comparable to those obtained 

with current state-of-the-art systems. Also, the performance 

achieved with monophone models is favorable to many context-

dependent systems which are more complex. 
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CHAPTER I  
INTRODUCTION 

 

 The ultimate automatic speech recognition (ASR) system 

should be a system that transcribes any input utterance as 

well or better than humans under the same conditions. At the 

present time, such an ASR system does not yet exist. 

Although, speech scientists and engineers have been working 

on ASR problems for almost half a century with great 

success, there remain many issues for researchers to still 

explore. 

 Many ASR systems available today are, nevertheless, 

capable of achieving a useful level of performance. Several 

of them are integral components of computer software 

products for general computer users. Speech dictation 

software is a popular application for ASR that can be 

purchased at a reasonable cost. A user can create and edit a 

text document using his/her speech with the aid of ASR [1]-

[4]1. ASR can also be used to help non-native speakers to 

speak a language [5] or to teach hearing-impaired people to 

speak [6]. 

 Speech recognition is accomplished in two main steps: 

front-end processing and recognition. The front-end analyzer 

takes samples of speech as the input and computes a sequence 

of feature vectors that represent important characteristics 

of the speech data. In the recognition step, the sequence of 

feature vectors is segmented and each segment is classified. 

                     

1 The journal model used for this dissertation is IEEE Transactions on 
Speech and Audio Processing. 
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The outcome of this step is called a hypothesis 

transcription of the input speech. 

1.1 Importance of Front-end Analysis 

 Front-end analysis is the first step in the speech 

recognition process whereby the digitized speech signal is 

analyzed and a sequence of multidimensional feature vectors 

is created.  Ideally, these features are extracted such that 

all information needed for speech recognition is preserved 

while irrelevant information, such as background noise, 

loudness, speaker-specific characteristics, etc., are 

suppressed. This goal should be accomplished using as few 

parameters as possible. 

Currently, Mel-frequency Cepstral Coefficients (MFCC) 

are regarded as the de facto standard acoustic features for 

ASR. Most high-performance automatic speech recognizers 

employ MFCC or a close variation. 

 Feature extraction is a crucial part of a high-

performance speech recognition system. It has been a 

research topic since the beginning attempts to automatically 

recognize speech. It is impossible to construct a state-of-

the-art recognizer using low quality features, no matter how 

well the recognizer performs. On the other hand, if speech 

features were able to capture all necessary speech 

characteristics such that each speech unit can be correctly 

classified, a sophisticated statistical model would be 

unnecessary for the recognizer. In reality, speech is not 

pronounced very clearly and the environment may not be 

quiet. Also some distortions may be introduced during the 

process. Furthermore, there are no perfect feature 

extraction methods. Hence good higher-level speech modeling 

is still necessary. The other point that should be noted is 
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that, for non-clearly uttered speech, even human listeners 

have difficulties in recognizing the speech. Humans heavily 

rely on higher-level modeling in the form of contextual 

information to identify the most likely word sequence they 

are listening to.  

 In summary, speech recognition cannot totally rely on 

1.2 Related Work 

ly focuses on the issue of 

spect

 though adding dynamic terms to the feature set 

does 

acoustic features because there are no features that fully 

separate every category of speech. A powerful statistical 

classifier is required for a high performance system. In 

some way, contextual information should be included in the 

signal modeling and should be efficiently incorporated 

within the framework. Task grammar is another major 

constraint that limits the search space and can be used to 

improve recognition accuracy. 

This work main

ral/temporal information encoding for speech. Since the 

introduction of the combination of static and dynamic 

spectral features for speech recognition by Furui [7] and 

[8], there has been a tremendous amount of work in speech 

recognition that utilizes such techniques. Basically, 

“dynamic” features are extracted from static features using 

a linear regression formula over a time interval on the 

order of 50 to 200 ms. This basic technique is widely used 

today.  

Even

increase the dimensionality of the feature space, and 

thus requires more training data, most speech recognition 

systems gain recognition accuracy with this method. Several 

feature transformations, such as Linear Discriminant 

Analysis (LDA) and Principal Components Analysis (PCA), can 
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be applied to reduce the dimensionality without significant 

performance degradation. 

Ever since the early 1980s, Hidden Markov Model (HMM) 

[9] b

fulness of 

tempo

ased recognizers have become popular due to the elegant 

mathematical foundation of the HMM and its power to model 

the variability in speech durations. However, an HMM has a 

well-known problem in that it lacks the ability to model 

temporal information within each state. Also, an HMM is 

based on an independence assumption which means the 

probability of a certain symbol being generated does not 

depend on any previously generated symbols but rather on the 

current state. This assumption is invalid. Explicit 

inclusion of temporal information into the feature set, 

e.g., to combine static and dynamic features, has proven to 

greatly improve recognition performance of HMM-based speech 

recognition [8],[10],[11] and [12], at least partially 

because dynamic features violate the independence assumption 

to a lesser extent than do the static features. 

Researchers have long realized the use

ral information. Thus, a significant amount of effort 

has been spent trying to improve ASR with the use of such 

knowledge. So far, research has been conducted in three 

different directions. The first direction has been to modify 

the front-end analyzer to better capture the speech 

information and incorporate the temporal characteristics in 

the feature set. The second approach has been to improve the 

HMM foundation to take the temporal information of the 

observation into consideration and to relax the independence 

assumption. The third method has been to avoid using HMMs by 

creating a new framework that corrects the HMM’s flaws.  The 

next part of this section briefly discusses these three 

approaches. 
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Furui [7] successfully applied dynamic spectral 

features to speaker-independent isolated word recognition. 

The task was to recognize 100 Japanese city names using a 

Dynamic Programming (DP) matching technique. Dynamic 

features were computed from intervals of 56 ms of Linear 

Prediction Cepstral Coefficient (LPCC) parameters using 

linear regression methods. The combination of static and 

dynamic terms was reported to be robust and superior to 

using static features alone. Dynamic terms computed directly 

from static terms are usually referred to as delta (or 

velocity) coefficients. In fact, even higher order 

coefficients can be obtained from the delta coefficients by 

applying the linear regression formula to the delta 

coefficients. These are called delta-delta (or acceleration) 

coefficients. The combination of static, delta and delta-

delta terms resulted in performance improvements in ASR with 

normal speech [8] and with Lombard speech [13]. 

If computational efficiency is a major concern of a 

system, linear regression techniques can be replaced by a 

spectral difference method where a difference coefficient is 

obtained from the subtraction of the features of the two 

frames around a center frame. Difference coefficients are 

beneficial in speech recognition [13],[14]. 

Milner [12] tested and compared several methods for 

temporal transformations. A formula to compute 

spectral/temporal coefficients is generalized, where the 

transformation matrix can be determined in various ways. 

Experiments were conducted to compare the performance among 

the transformations based on the Discrete Cosine Transform 

(DCT), the Discrete Legendre Transform (DLT), the Discrete 

Rectangle Transform (DRT), the Karhunen-Loeve Transform 

(KLT), the Linear Discriminant Transform (LDT) and also 

using identity transforms and regression analysis. LDA, DCT, 
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DLT, DRT and KLT gave excellent results, but with best 

performance obtained with the KLT. In contrast, 

spectral/temporal features computed using regression 

analysis were not as well suited for ASR. 

Much of the work done at the Old Dominion University 

Speech Communication Lab uses the DCT as a way to include 

temporal information into speech features with great 

success. Zahorian and Jaghaghi [16] and Zahorian and Nossair 

[17], successfully applied a DCS expansion over time 

(“dynamic” features) to spectral shape features for speaker-

independent stop consonant recognition and for vowel 

classification.  

Multi-resolution cepstral features have been proposed 

as an alternative to MFCC features for a speech 

representation [18]-[21]. Coefficients obtained from a DCT 

of the spectrum over the full bandwidth of speech were 

combined with coefficients obtained from the DCT of subbands 

of several levels. The proposed features were shown to 

perform better than MFCCs. Although the main purpose of the 

works was to explore the multi-resolution features, it also 

emphasized the inclusion of temporal information into the 

feature set.  

Some researchers [22]-[24] have made attempts to extend 

the HMM framework to account for temporal modeling and to 

overcome the inherent poor within-state temporal modeling of 

the “standard” HMM. New training formulas and recognition 

algorithms were derived to accommodate the new acoustic 

models. Incorporating a neural network framework into the 

HMM has been a topic of interest for many researchers [25]-

[27]. 

The acoustic segment model, an alternative to the HMM, 

is a technique that models speech at the segmental level.  
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This contrasts with an HMM which models speech on a frame-

by-frame basis. These segment models have a capability to 

capture the temporal information of speech better than a 

conventional HMM. Many studies were focused on the same 

concept in which speech segments were explicitly determined 

and a statistical framework was used to model each segment 

[28]-[34]. The independence assumption was relaxed and 

temporal information was incorporated in the segment model. 

However, this framework has two major problems. First, 

segment boundaries need to be explicitly determined and 

second--because the length of each segment may be different-

-scoring must be done properly. Searching for segment 

boundaries is the most difficult and time-consuming part of 

the segment modeling technique. Hence, an efficient search 

technique is required to allow the recognition to run in 

real time [35],[36]. There are some Neural Networks-based 

and Wavelet Transform-based speech segmentation techniques 

that would fit in such segment model frameworks [37]-[39]. 

In summary, at the present time, none of these acoustic 

segment models perform as well overall as the HMM methods, 

and thus the segment models remain at a research stage. 

1.3 Scope of Dissertation 

The main objective of this dissertation is to 

investigate several approaches for computing 

spectral/temporal features using various approaches to 

implement a variable segment length (referred to as a 

“block” in this work). Discrete Cosine Transform 

Coefficients (DCTCs) extracted from a Discrete Cosine 

Transform (DCT) of the log magnitude spectrum are used as 

the “starting” static features.  The “standard” HMM 

framework with standard training and recognition algorithms 

was used throughout to statistically model the speech. To 
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test our proposed methods, one series of experiments was 

conducted with isolated words using the ISOLET database. 

However, the main investigation was performed with 

continuous speech recognition using the TIMIT and NTIMIT 

databases.  

The real objective of this work is to investigate 

variable length segments and segment spacings (i.e., non-

uniform time samplings and time resolutions of speech 

features) for the purpose of improving ASR. This should be 

placed in a mathematical framework to help find segments 

which minimize a global mean square representation error. 

However, this general case is too difficult to tackle unless 

sufficiently supported by knowledge in the general area. For 

example, determination of segments so as to minimize a mean 

square error reconstruction may or may not be helpful in 

improving ASR accuracy. In the end, it is system performance 

in the actual environment that counts. The goal of this 

dissertation was to contribute some basic knowledge in the 

field which could later be augmented in order to achieve the 

real objective. 

The specific objectives of this work were to: 

1) Study variable block length techniques for feature 

extraction. The length of the block was determined 

from local Mean Squared Error (MSE) to measure 

differences between an original frame-based feature 

matrix and a matrix reconstructed from block 

features. 

2) Investigate a variable block spacing technique, 

where the spectral derivative of frame-based 

parameters was used to determine optimum block 

spacing. 
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3) Investigate a technique based on combining blocks of 

different lengths using PCA. 

Note that the standard method is a method whereby 

features are computed using a fixed block length and fixed 

block spacing. This served as a control method in this work. 

1.4 Outline of Dissertation 

 Chapter 2 briefly describes several speech 

representations including DCTC. Computation of higher order 

features and feature transformations are explained. The 

basic concepts of HMMs, and the HTK toolkit used to 

implement HMMs, which was used for the speech recognition 

reported in this work, are also summarized. Chapter 3 

discusses isolated word recognition with the ISOLET database 

using Discrete Cosine Series Coefficients (DCSCs). The 

feature computation techniques based on variable block 

length are presented. The task and database used for 

continuous speech recognition experiments are described in 

chapter 4. Chapter 5 is concerned with various signal 

modeling methods proposed in this dissertation. Chapter 6 

discusses experiments conducted using proposed signal 

modeling methods. Finally, Chapter 7 presents conclusions of 

the research and suggestions for future work. 
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CHAPTER II  
BACKGROUND 

 

2.1 Representation of the Speech Signal 

It would be impractical for a speech recognizer to 

directly model samples of the speech signal. Much of the 

detail of the speech signal is not relevant or only 

marginally relevant to speech message information. For 

example, the speech waveform samples are highly dependent on 

overall amplitude and short-time phase. Speech information 

has been shown to depend mainly on short-time spectral 

characteristics, primarily independent of overall gain and 

phase. Thus, the first step in representing the speech 

signal invariably consists of a short-term spectral 

magnitude computation, approximating the analysis of the 

human ear.  However, even the spectral magnitude contains 

much redundancy and seemingly irrelevant information, and 

therefore this spectrum is generally reduced to a small 

number of parameters or “features.”  There are two kinds of 

approaches which guide the feature calculations of speech: 

articulation based and perceptual based. Articulation-based 

feature extraction attempts to model the transfer function 

of the human vocal tract using a method such as linear 

prediction. Perceptual based methods attempt to model that 

part of the human ear which is used to perceive speech.  

A very good introductory paper that discusses many 

aspects of signal modeling of speech signals is authored by 

Picone [40]. In the paper, an overview of many techniques 

involved in signal modeling which have been developed over 
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the last 30-40 years are summarized. Interested readers are 

also directed to read a textbook by Rabiner and Juang [9]. 

2.1.1 Linear Prediction Analysis 

 Linear prediction (LP) is a least mean squared error 

algorithm that can be applied to and has been successfully 

used in many areas, including speech processing. There are 

several discussions of LP theory in the literature 

[41],[42],[43]. In linear prediction analysis of human 

speech, an all-pole filter is used to model the vocal tract. 

In other words, the vocal tract is considered as a filter 

and the goal is to determine the transfer function of the 

vocal tract. The transfer function of the filter is defined 

as 

 

∑
=

−

= p

i

i
iza

G
)z(H

0

  (2.1) 

 In the equation, G is the overall gain, p is the number 

of poles and a0 = 1. The {ai} are filter coefficients that 

are selected to minimize the overall mean squared error over 

the analysis frame.  The transfer function of the vocal 

tract is not unique, but rather is slowly time varying 

depending on the vocal tract “positions” during the course 

of the utterance.  Thus, the LP coefficients, or more 

commonly some transformation of these coefficients, can be 

used for ASR features.  

 There are three ways to determine LP coefficients 

[41],[43]: the covariance method, the harmonic method and 

the autocorrelation method. The autocorrelation method is 

mostly used in speech recognition because it yields stable 

filters and is very computationally efficient. Note that in 

all of these methods, the mean square error minimization is 
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with respect to time-domain waveforms, as opposed to the 

frequency domain features, as considered in this work. 

2.1.2 Digital Filter Bank Analysis 

 Filter bank analysis is the first method of spectral 

analysis which was used (and still is to some extent) for 

speech processing. In the past, the filters were implemented 

with analog circuits but now filters are implemented 

digitally with software running on a digital computer. 

Digital filter bank analysis is an alternative to LP 

analysis. Its purpose is to simulate the perceptual 

properties of the human ear. Filter bank analysis uses a set 

of band-pass filters whose center frequencies spread non-

linearly across the frequency range of speech (typically 

approximately 100 Hz to 5 KHz). Each filter has a triangular 

shape frequency response and overlaps adjacent filters. The 

center frequencies of the filters are chosen to distribute 

non-linearly because the human ear does not resolve 

frequencies in a linear fashion. 

 There are two well-known perceptual frequency scales, 

the Bark scale and the Mel scale, used to determine filter 

spacings. The two scales are quite similar in that the 

filters are closely spaced in the low frequency area and 

coarsely spaced at high frequencies. The Mel scale is more 

commonly used for automatic speech recognition. It is 

approximated as a linear scale from 0 to 1,000 Hz and a 

logarithmic scale beyond 1,000 Hz. 

 FFT-based filter bank analysis is the most popular 

technique used to implement the Mel-scaled filter bank. The 

magnitude of the spectrum of a frame of speech is computed 

with an FFT and then summed appropriately to obtain each 

filter output. Each filter gives one parameter indicating 
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the magnitude of the spectrum in that particular filter 

channel. The filter outputs (typically 15 to 30) can be 

directly used to form a feature vector for each speech 

frame, simply called Mel Frequency Coefficients (MFC), or 

further transformed to MFCC parameters as described below. 

2.1.3 Cepstral Coefficients 

 Cepstral coefficients, defined as the Inverse Fourier 

Transform (IFT) of the log-spectrum [44], can be computed 

using the Discrete Cosine Transform (DCT). Generally, 

cepstral coefficients are preferable to LPC or digital 

filter bank parameters. MFCCs can be obtained by applying 

the DCT to the log energy of each filter [45]. Not only is 

the number of parameters reduced by this transformation but 

also the resulting features are less correlated. The data 

reduction helps to reduce modeling complexity. Uncorrelated 

features are also beneficial for an HMM recognizer. Linear 

Prediction Cepstral Coefficients (LPCCs) can also be 

determined, by first performing an LP analysis followed by a 

cosine transform operation.   

2.1.4 “Dynamic” Features 

 A great deal of research has shown that inclusion of 

spectral/temporal information, in addition to static (frame 

based) features, improves overall recognition performance of 

the system [7],[8],[10]-[13],[46]. These “dynamic” features, 

as they are often called, are determined from a collection 

of features of several adjacent frames. The purpose is to 

capture the change of each feature from frame to frame. This 

whole approach is motivated by the observation that humans 

recognize speech not only by its short-time spectrum but 

also by the change of its spectrum over time [46].  
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 The standard method of computing dynamic features is to 

use a simple regression formula: 

 

∑

∑

−=

−=
+

= W

Wi

W

Wi
it

t

i

iC
D

2

  (2.2) 

where Dt is a delta coefficient at time t, Ct is a static 

coefficient at time t and W is the time span (in number of 

frames) in each direction around the center time t. 

 Acceleration coefficients (or delta-delta coefficients) 

can be obtained by applying (2.2) to the delta coefficients. 

Note, however, that the window size may be set differently. 

As discussed in [40], many systems use a window size of 3 

(W=1) [14],[47],[48], and many systems use a much longer 

window size [8],[49]. 

 Usually, the static features are augmented by these 

delta and/or acceleration terms. These augmented parameters 

are sometimes called spectral/temporal features. Notice that 

the dimensionality of the resulting feature vectors will be 

doubled or tripled. Further feature transformation may be 

required for dimensionality reduction. 

2.1.5 Acoustic Representation based on the Encoding of 

Global Spectrum Shape 

 Though LP analysis for spectral analysis was used 

widely in the 1970’s and early 1980’s [40], most current 

systems rely on FFT-based spectral analysis. Filter bank 

analysis is usually later applied to compute MFCs and MFCCs. 

At the Old Dominion University Speech Communication Lab, a 

technique for feature extraction based on the encoding of 

global spectral shape has been used for many years 
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[10],[11],[16],[50]. While MFCC analysis applies the DCT to 

the energy of the spectrum across all filter bands, our 

method applies the DCT directly to the log-scaled spectrum. 

The resulting features are called DCTCs (Discrete Cosine 

Transform Coefficients). To account for the non-linearity of 

the human ear in speech perception, a modified DCT is used. 

The basis vectors of the standard DCT were modified by a 

bilinear warping function [16]. Use of warped basis vectors 

results in an operation that gives more resolution at low 

frequency and less resolution at high frequency. This 

concept is similar to a non-uniform distribution of the 

filters in a Mel-scale filter bank analysis.  

 We have also proposed a technique to compute 

spectral/temporal features by again using a Discrete Cosine 

Series Expansion but applying it to feature trajectories 

over time. The resulting parameters are called DCSCs 

(Discrete Cosine Series Coefficients). Instead of using the 

regression formula, this technique applies the DCT over a 

block or stack of frame features. One fundamental difference 

between DCSCs and MFCCs with delta and delta-delta terms is 

that the first DCSC is the smoothed version of the 

corresponding DCTC. Smoothing can cause loss of fine detail 

but it makes the features less noisy and more robust. 

 The following equations were presented by Zahorian and 

Nossair [16] to show the derivation of DCTC and DCSC 

parameters. They are provided here for the convenience of 

interested readers. 

 First, let X(f) be the magnitude squared spectrum 

represented with linear amplitude and frequency scales and 

let X′(f’) be the magnitude spectrum as represented with 

perceptual amplitude and frequency scales.  Let the relations 
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between linear frequency and perceptual frequency, and linear 

amplitude and perceptual amplitude, be given by: 

 f′ = g(f), X′ = a(X). (2.3) 

 For convenience of notation in later equations, f and f′ 

are also normalized, using an offset and scaling, to the 

range [0,1].  The acoustic features for encoding the 

perceptual spectrum are computed using a cosine transform, 

  (2.4) ,f)dfi(πcos) f(X DCTC(i) = 
o

′′′′∫
1

where DCTC(i) is the ith feature as computed from a single 

spectral frame. Making the substitutions 

 , a(X(f)) = )f(X g(f), = f ′′′ and 

 ,df 
df

dg
 = fd ′  (2.5) 

the equation can be rewritten as 

 .df 
df

dg
 ig(f)]cos[ a(X(f))  = DCTC(i)

1

o

π∫  (2.6) 

We therefore define modified basis vectors as 

 
df

dg
 ig(f)]cos[ = (f)i πφ , (2.7) 

and rewrite the equation as 

  (2.8) .df (f) a(X(f))  = DCTC(i) i

1

o

φ∫

 Thus, using the modified basis vectors, all 

integrations are with respect to linear frequency.  In 

practice, (2.8) can be implemented as a sum, directly using 

spectral magnitude squared values obtained from an FFT.  Any 

differentiable warping function can be precisely implemented, 



 17

with no need for the triangular filter bank typically used to 

implement warping. 

 The terms computed with (2.8) (DCTC(i)) are equivalent 

to cepstral coefficients.  However, to emphasize the 

underlying cosine basis vectors and the calculation 

differences relative to most cepstral coefficient 

computations, we call them DCTCs, consistent with terminology 

in previous related work [16],[51]. 

 In this dissertation, DCTC parameters were computed 

with (2.8) using a logarithmic amplitude scale (i.e., a() is 

the log function) and bilinear warping with a coefficient α 

= .45. 

 






′

f)cos(2 -1

f)sin(2 
tan 

1
 + f = f 1-

πα
πα

π
. (2.9) 

 The first three basis vectors, incorporating the 

bilinear warping, are shown in Fig. 2.1.  
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Fig. 2.1.  The first three DCTC basis vectors, with a 

warping factor of 0.45 (after Zahorian and Nossair [16]) 

 

 DCSC features were computed so as to encode the 

trajectory of the short-time spectra.  Using the processing 

as described above, P DCTCs (typically 10 to 15) were 

computed for equally-spaced frames of data spanning a segment 

of each token.  Each DCTC trajectory was then represented by 

the coefficients in a modified cosine expansion over the 

segment interval.  The equations for this expansion, which 

are of the same form as for (2.7), allow non-uniform time 

resolution as follows. 
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 Let the relation between linear time and "perceptual 

time" (i.e., with resolution over a segment interval 

proportional to estimated perceptual importance) be given by 

 t′ = h(t).  (2.10) 

 For convenience, t and t′ are again normalized to the 

range [0,1].  The spectral feature trajectories are encoded 

as a cosine transform over time using 

  (2.11) .td )tjcos( )t(i,CDCT  = j)DCSC(i,
1

o

′′′′∫ π

 The DCSC(i,j) terms in this equation are thus the new 

features which represent both spectral and temporal 

information ("dynamic") over a speech segment.  Making the 

substitutions 

 ,t)DCTC(i, = )t(i,CDCT h(t), = t ′′′  

and 

 ,dt 
dt

dh
 = td ′  (2.12) 

the equation can be rewritten as 

 .dt 
dt

dh
 jh(t)]cos[ t)DCTC(i,  = j)DCSC(i,

1

o

π∫  (2.13) 

We again define modified basis vectors as 

 
dt

dh
 jh(t)]cos[ = (t)j πθ  (2.14) 

and rewrite the equation as 

  (2.15) .dt (t) t)DCTC(i,  = j)DCSC(i, j

1

o

θ∫

 Using these modified basis vectors, feature 

trajectories can be represented using the static feature 
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values for each frame, but with varying resolution over a 

segment consisting of several frames.  The terms computed in 

(2.15) are referred to as DCSCs to emphasize the underlying 

cosine basis vectors and to differentiate between expansions 

over time (DCSC) versus DCTC expansions over frequency.  In 

general, each DCTC (index i in (2.15)) was represented by a 

multi-term DCSC (index j in (2.15)) expansion. 

 The function h(t) was chosen such that its derivative, 

dh/dt, which determines the resolution for t′, was a Kaiser 

window.  By varying the Kaiser beta parameter, the resolution 

can be changed from uniform over the entire interval (beta = 

0), to much higher resolution at the center of the interval 

than the endpoints (beta values of 5 to 15).  Fig. 2.2 

depicts the first three DCSC basis vectors, using a 

coefficient of 5 for the Kaiser warping function.  The 

motivation for these features is to compactly represent both 

spectral and temporal information with considerable data 

reduction relative to the original features.  For example, 12 

DCTCs computed for each of 50 frames (600 total features) can 

be reduced to 48 features if 4 DCSC basis vectors are used 

for each expansion. 



 21

-0 .25

-0 .20

-0 .15

-0 .10

-0 .05

0 .00

0 .05

0 .10

0 .15

0 .20

-150 -100 -50 0 50 100 150
tim e  (m s)

am
pl

itu
de B V 0

B V 2

B V 1

 

Fig. 2.2.  The first three DCSC basis vectors, with a 

coefficient of 5 for the Kaiser warping function (After 

Zahorian and Nossair [16]). 

2.2 Transformations of Speech Features 

 Two main reasons that motivate researchers to perform a 

feature transformation as a post-processing step in front-

end analysis are: 1) to reduce dimensionality of the feature 

set and 2) to improve separability (classification power) of 

the features. There are several techniques for feature 

transformations, but only the two most popular methods will 

be discussed in this dissertation. 

 The transformations discussed here are linear. Let X = 
[x1, x2, x3, … xN] be an M x N feature matrix of an 

utterance, where M is the number of features per frame, N is 

the number of frames in the utterance and xi = [x1, x2, x3, 
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…, xM]T is the feature vector of the ith frame. Let A be an M 
x P transformation matrix. The transformed feature matrix Y 
can be determined from 

 Y = ATX, (2.16) 

where Y = [y1, y2, y3, …, yN] is a P x N matrix containing 
the features after transformation, and yi = [y1, y2, y3, …, 
yP]T is the transformed feature vector of the ith frame. If P 

is less than M, then the transformed feature vectors have 

lower dimensionality. In other words, dimensionality 

reduction is obtained when P is less than M. 

The way the DCSCs are computed can be regarded as a 

feature transformation, where the A matrix is constructed 
from DCT basis vectors. Milner [12] has generalized this 

idea to work with many transformations. 

2.2.1 Principal Components Analysis 

 PCA is a well-known technique for dimensionality 

reduction and feature decorrelation. Its objective is to 

find a lower-dimensional representation that accounts for 

the variance of the features. PCA reduces feature 

dimensionality by forming linear combinations of the 

features, as discussed above. To compute a PCA 

transformation matrix (A matrix as in equation 2.3), first a 
covariance matrix of the features must be estimated. The 

eigenvectors are then determined from the covariance matrix. 

Large eigenvalues correspond to features with large variance 

(more important features) and small eigenvalues correspond 

to features with small variance (less important features). 

If we sort the eigenvalues in descending order and sort the 

eigenvectors accordingly, we can use only the first P 

vectors (P < M, where M is the dimension of the original 
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feature vectors) for the transformation. Hence, 

dimensionality reduction results. The columns of the 

transformation matrix, A, are the eigenvectors. 

 Prior to applying PCA, there is some degree of 

correlation among features. Since a PCA transformation 

effectively removes highly correlated features (by combining 

or grouping them), the resulting features will be less 

correlated. This, in turn, results in performance 

improvements in speech recognition, especially with HMM 

based recognizers [12]. Sometimes the only advantage is that 

no degradation occurs even with a reduced dimensionality 

space.  

2.2.2 Linear Discriminant Analysis 

 LDA can be regarded as an extension of PCA. Not only 

can dimensionality reduction and feature decorrelation be 

achieved with LDA, but also better separation between 

classes is achieved (or at least is an explicit goal). 

Unlike PCA, a covariance matrix of each class must also be 

estimated.  The objective of the LDA is to maximize the 

ratio of between-class covariance to within-class 

covariance. In other words, LDA attempts to transform the 

features into a new feature space such that “within-class” 

tokens are well clustered but tokens from separate classes 

are well separated. 

 As mentioned previously, a PCA transformation is simply 

a matrix multiplication. Thus, there is no significant loss 

of computing speed in the recognition phase. However, there 

is more additional computational overhead in the training 

phase.  For the case of LDA, the training overhead is even 

more, but the recognition phase again requires only one 

additional matrix multiply for each frame of features.  Let 
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B be a between-class covariance matrix which is estimated 
across features of all classes (the same as in PCA). Let W 
be a within-class covariance matrix which is an average 

covariance obtained by averaging all of the covariance 

matrices, each of which is individually computed for a 

single class (typically a class is a phone1 for the case of 

speech). A simple method to compute the LDA transformation 

matrix (A) is to determine the eigenvectors of W-1B, and 

then form an A matrix such that its columns consist of those 
eigenvectors. The eigenvectors are sorted according to the 

magnitude of their corresponding eigenvalues. By putting 

eigenvectors associated with large eivenvalues in low-

indexed columns, dimensionality reduction can be achieved 

simply by ignoring the last columns of the transformation 

matrix. This transformation rotates the feature space such 

that the features are ordered in terms of discriminability 

with respect to the defined classes. 

 The other method to compute A is an extension of the 
simple method discussed above. A whitening step is included 

in this step. The input feature matrix, X, is first rotated 
and scaled using 

 Z = EX, (2.17) 

where 

 E = CD-1/2. (2.18) 

 The columns of C are the eigenvectors of W, the within-
class covariance matrix. C is a rotation which results in a 
diagonal within-class covariance matrix. D is a diagonal 

                     

1 A phone is a distinct unit of spoken sound while a phoneme is a 
distinct linguistic unit of a given language. 
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matrix with the ith diagonal element equal to the ith 

eigenvalue of W. Therefore, the within-class covariance 

matrix for Z is an identity matrix, i.e., this is a 

whitening transformation. This step is followed by another 

rotation 

 Y = FZ. (2.19) 

 The columns of F are the eigenvectors of the rotated B 
matrix, i.e., the eigenvectors of D-1/2ETBED-1/2. The second 
transformation assigns the axes of the whitened space with 

maximum discriminability. Because of the whitening step, 

Euclidian distance should be a better measure of distance 

between classes than for the first LDA method explained 

above. This method has also been used in the IMELDA 

transform [52]-[54]. Note that AT in (2.3) is equivalent to 
FE in this case. 

 LDA has been successfully used in many speech 

classification/recognition problems [10],[11],[55]-[59] Our 

previous work has shown that LDA improves recognition under 

noisy condition [10],[11]. However, we found that use of LDA 

is not beneficial when the original features are already 

quite good. We also found that dimensionality can be reduced 

without a significant performance degradation. This is a 

valuable technique if high recognition speed is of concern. 

 LDA was used for some of the experiments reported in 

Chapter 3 for isolated word recognition. The main issues for 

LDA are the details for computing the W and B matrices. In 
our implementation, the between class covariance B is 

estimated as the grand covariance matrix of all the training 

data (the same as for a principal components analysis). The 

estimate of W is more complex and is explained as follows. 
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The within-class covariance W is estimated by computing the 
average covariance of time-aligned frames of data which 

belongs to the same class. Time alignment is accomplished 

using Dynamic Time Warping (DTW), [60], to first determine a 

“target” for each word by successively aligning and 

averaging all tokens of that word in pairs until only one 

token remains. Covariance contributions are then computed as 

variations about the target, after another time alignment to 

that target. These two matrices are then used to create an 

LDA transformation which maximizes the ratio of between-to-

within class covariance. 

2.3 Statistical Acoustic Modeling 

 After speech has been encoded with a small number of 

parameters called features, a speech model has to be 

established in order to model characteristics and variations 

of speech and to further reduce the number of parameters. 

There are currently three popular acoustical modeling 

methods used in ASR: HMM, Neural Networks (NNs) [61] and 

Acoustic Segment Modeling (ASM) (or trajectory model). 

Experiments conducted in this dissertation were obtained 

using only HMM based recognizers. Thus, only a brief 

discussion of an HMM and its application to speech 

recognition will be presented.  

2.3.1 Hidden Markov Model 

 A Hidden Markov Model is a statistical signal model 

that has been widely and successfully used in many ASR 

applications. One of the features that make HMMs popular is 

the existence of efficient and powerful training and 

recognition algorithms [62]. This section briefly discusses 

fundamentals of HMMs and the application of HMMs to ASR. 
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Interested readers are recommended to read further in [9] 

and [63]. 

An HMM is a finite state machine that is governed by 

two stochastic processes. An HMM consists of a collection of 

states connected with transitions. There are two kinds of 

transitions: self-transitions and transitions to other 

states. Both types of transitions are random. Transitions 

among states are controlled by a transitional probability 

matrix. Each time a state is visited, a symbol is emitted. A 

symbol or an observation is an outcome of the stochastic 

process within each state.  

For the speech recognition application, a left-to-right 

HMM is usually used. A left-to-right model has transitions 

that never go back to preceding states. In other words, only 

self-transitions and transitions to the next states are 

permitted. This configuration is consistent with speech 

production. In most HMM based systems today, symbols are 

modeled as mixtures of a Gaussian probability density 

function (PDF) in each state. This type of model is called 

continuous-density HMM. Fig. 2.3 shows an example of a 3-

state, left-to-right HMM. 

 
a11 a22 a33 

b3()b2()b1()

a23 a12 
3 2 1 

 

 

 

 

 

Fig. 2.3.  A 3-state left-to-right HMM. 
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As illustrated in Fig. 2.3, each transition is 

associated with a probability aij. Practically, these 

probabilities are organized in matrix form, A, as depicted 
below 

 , 










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
=

33

2322

1211

00
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where aij is the probability of the transition from state i 

to state j. 

Note from Fig. 2.3 that each state j has an associated 

observation probability distribution bj(ot). This 

probability distribution determines the probability of 

generating symbol ot at time t. 

For continuous density HMMs, which were used in this 

work, the observation probability is modeled by a mixture of 

Gaussian densities. Thus, the probability bj(ot) of the 

symbol ot is given by 

 , (2.20) ∑
=

=
M

m
jmjmtjmtj Ncb

1

);;()( Σµoo

where Mj is the number of mixture components in state j, cjm 

is the mixture weight of the mth component and N() is a 

multivariate Gaussian with mean vector µ and covariance 

matrix Σ. Either a full covariance or diagonal covariance 
matrix can be used. 

Choice of the covariance matrix depends on the statistics of 

the observations (features). Usually, there is correlation 

among features. However, the degree of correlation varies 

depending on the type of front end analysis and in many 
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cases, uncorrelated features have been assumed to allow the 

use of a diagonal covariance matrix to model the data 

distributions. Although this is inaccurate, the 

computational overhead is greatly reduced. For better 

modeling of the speech data within a state, a full 

covariance matrix should be applied. However, for this case,  

much more storage and computing power are required. 

An HMM can be used to model a unit of speech where the 

unit of speech could be a phone, a syllable or a word. 

Therefore, the number of HMMs needed has to be sufficient to 

model all the realizations of all the utterances in the 

vocabulary. For example, 39 HMMs are needed to model all 

realizations of the American English language. 

Theoretically, each state of an HMM represents the 

statistics of an acoustically similar (by means of a 

spectral distance measurement) sub-unit of speech. For an 

HMM of N states, the unit of speech being modeled is divided 

into N segments. Each segment is characterized by its 

corresponding state. 

In the recognition phase, we need to find among 

competing models the most likely word sequence W’ that best 
represents a given acoustic evidence, or 

 )( OWW
W

|Pmaxarg' = , (2.21) 

where P(W|O) denotes the probability that the word string 
was spoken given that the acoustic evidence O was observed. 
The term P(W|O) is not directly determinable but it can be 
rearranged with Bayes’s rule as follow 

 
)(

)()(
)(

O
WWOOW

P
P|P

|P = , (2.22) 
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where P(O|W) is the probability that the observation O will 
be  generated when the word sequence W is pronounced. P(W) 
is the probability that the word string will be uttered. 

This can be determined from the statistics of training data. 

P(O) is the probability that the observation sequence O will 
be observed. This term can be ignored if equi-probable 

symbols are assumed. Thus, the most likely word string can 

be determined from 

 )()( WOWW
W

|PPmaxarg' = . (2.23) 

There are three main problems associated with the 

implementation of the HMM [9]. The first problem is to 

determine the P(O|W) as described above. This is the 

evaluation problem that can be solved effectively with the 

“forward” algorithm. The second problem is to find an 

optimum state sequence given an observation sequence. The 

solution to this problem is useful for transcribing 

continuous speech. The Viterbi decoding algorithm is a 

standard method used to determine the optimum state 

sequence. The last problem is to compute the model 

parameters that maximize P(O|W). This is known as the 

training problem. The Baum-Welch or forward-backward 

algorithm is an extremely efficient method that has been 

widely used for HMM training [62],[63].  

For phonetic-based continuous speech recognition, 

several phone models are connected to form a word model and 

several word models are connected to form a sentence. In the 

recognition process, a hypothesized phone transcription is 

determined given an unknown utterance. Word sequences are 

determined from the phone transcription. Thus, a sentence is 

constructed. 
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A language model can be easily integrated into the HMM 

framework. That is probabilities of word pairs or word 

trigrams can be incorporated as part of the P(W) term in 
(2.23). This is another reason why HMMs are so popular. 

 

2.3.2 Hidden Markov Model Toolkit 

 The Hidden Markov Model Toolkit (HTK) [64] is a 

software package for building automatic speech recognition 

systems using HMMs. HTK provides several tools that support 

speech processing, HMM initialization, HMM training and 

recognition and data management. HTK tools are flexible in 

that users are allowed to configure functionality of each 

tool as desired. Also, many standard file formats are 

recognized, thus making it possible to interface to other 

software packages. Although the HTK is primarily designed 

for continuous speech recognition, it can also be adapted to 

work with isolated word recognition. 

 The HTK was chosen for this work because it is a 

powerful and a widely used software package. Using mostly 

default parameters provided with the HTK to build a speech 

recognizer, one can easily achieve a high performance 

system. The HTK allows researchers to substitute HTK’s tools 

with their own ones. For example, in this work, we 

substituted HTK front-end analysis tool with our program but 

we did use the HTK front-end for comparison purposes. Use of 

the HTK toolkit permits us to concentrate more on feature 

extraction issues which are the main concern of this 

dissertation. 
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CHAPTER III  
ISOLATED WORD RECOGNITION 

 

3.1 Introduction 

 Continuous speech recognition systems have been 

developed for many applications, with low-cost PCs now 

having sufficient computing power for speech recognition 

software.  However, high performance and robust isolated 

word recognition is still useful for many applications such 

as recognizing telephone numbers, spelled names and 

addresses, ZIP codes, and as a spelling mode for use with 

difficult words and out of vocabulary items in a continuous 

speech recognizer. 

Because of the potential applications, as mentioned 

above, many isolated word recognizers are optimized for the 

digits or alphabet or both (alpha-digit).  The alphabet 

recognition task is particularly difficult because there are 

many highly confusable letters in the alphabet set, for 

example the letters of the E-set (B, C, D, E, G, P, T, V, Z) 

and the (M, N) pair.  Also, since language models cannot 

generally be used, the alphabet recognition task is a small, 

challenging and potentially useful problem for evaluating 

acoustic signal modeling and word recognition methods.  

 This chapter discusses feature extraction techniques 

for a high performance, HMM based alphabet recognition 

system using DCTC and DCSC parameters obtained as described 

in Chapter 2. A series of experiments were conducted to test 

the techniques.  The experiments and results are reported.  
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3.2 ISOLET Database 

 The Oregon Graduate Institute (OGI) ISOLET database 

[66] was used for all experiments reported in this 

dissertation for the alphabet recognition task. This 

database contains 26 English alphabet letters pronounced in 

isolation by 75 male and 75 female speakers. Each speaker 

uttered the same letter twice. The database is divided into 

5 equal groups: ISOLET1 - ISOLET5. Thus, each group 

comprises the speech utterances spoken by 15 males and 15 

females. Speech was digitized under a controlled environment 

at a sampling rate of 16 KHz with 16-bit quality. The speech 

signal-to-noise ratio (SNR) reported by OGI is 31.5 dB with 

a standard deviation of 5.6 dB. In some experiments, 

Gaussian noise of various levels was added to the speech 

signal to test the robustness of our recognizer. 

The ISOLET database was intended for evaluation of 

isolated word recognizers, and it has therefore been used in 

several studies [10],[11],[67],[68]. Thus, it is possible to 

directly compare results. All of the alphabet recognition 

experiments reported were performed in a speaker-independent 

fashion using all files from the database.  

The original speech was endpoint detected with 50 ms of 

silence added to both ends. However, we found that the 

endpoints provided are not sufficiently accurate. Therefore, 

we applied another endpoint detection algorithm to refine 

the endpoints. After this additional endpoint detection, 30 

ms of silence was included at each end. We found that the 

error rate was reduced by half with use of the new endpoint-

refined data. 

The endpoint detection algorithm was adapted from the 

one given in [69]. Endpoints were extended 30 ms in each 



 34

direction (i.e., backward in time for the onset and forward 

in time for the offset) to allow for some inaccuracies in 

the original detection, and also to include a small amount 

of silence at the beginning and end of each utterance.  The 

primary difference between the method given in [69] and our 

implementation was that we used 20 ms frames for the first 

pass of endpoint detection and 10 ms frames for the second 

pass, as opposed to the longer frames used in the original 

method.  This endpoint detection method resulted in 

approximately a 34% decrease in errors for an analysis 

condition corresponding to the best case reported here. 

However, use of the endpoint algorithm but without the 30 ms 

silence added at each end resulted in over a doubling of the 

error rate under the same analysis condition. 

3.3 Recognizer Architecture 

 Our task is to accurately recognize all 26 letters of 

the English alphabet. We could employ a sub-word based 

topology for this task but it would be very complex to 

implement. For example, if we find all phones that build up 

all words in the vocabulary, then we could use the training 

data to estimate each phone model. In the recognition phase, 

a hypothesis phone sequence would be compared against all 

possible phone sequences in the vocabulary. The major 

problem is that in the training process time labeling of 

each letter is required to accurately initialize the phone 

models. This time labeling is not commonly provided with 

speech databases. If needed, it must be determined manually. 

 In this work, we chose a word-based approach in which 

each alphabet was modeled by one HMM. Continuous density 

HMMs with Gaussian PDFs were used throughout. More 

specifically, there were 26 continuous density HMM models, 
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each of which has 6 states with 3 Gaussian mixtures per 

state. For state transitions, only a self-transition and 

transition-to-the-next-state were allowed. A full covariance 

matrix was used for each Gaussian mixture. 

In the training phase for each letter of the alphabet, 

every training utterance was segmented into equal lengths 

and then initial model parameters were estimated.  Next, the 

Viterbi decoding algorithm was applied to determine an 

optimum state sequence for each training token. Every token 

was re-segmented based on its corresponding optimum state 

sequence. Model parameters were re-estimated repeatedly 

until the estimates were unchanged or the maximum number of 

iterations was reached.  Note that no Baum-Welch iterations 

were performed, as they were not found to improve accuracy 

on test data. 

 Once all models are trained, the recognition step is 

carried out using the Viterbi algorithm to determine the 

most likely model that best matched each test utterance. We 

evaluate system performance by its percentage of accuracy in 

recognizing the test data. Accuracy can be determined as 

follows: 

 %
N

NN
Accuracy

tot

errtot 100×
−

= , (3.1) 

where Ntot is the total number of test tokens and Nerr is 

number of tokens that are mis-recognized. 

3.4 Experimental Verifications 

Several speaker–independent recognition experiments 

were conducted with the alphabet set to evaluate our 

algorithms and also to determine the effects of variations 

in some of the parameter values.  Except were noted 
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differently, all experiments used ISOLET-1 through ISOLET-4 

for training and ISOLET-5 for testing. 

3.4.1 Baseline Experiments 

 Recognition results were carried out using DCTC and 

MFCC coefficients. DCTC coefficients were computed using the 

method described in Chapter 2 with the following basic 

parameters: Frame size = 25 ms, Frame spacing = 10 ms, 

Kaiser window beta = 6, Bilinear warping factor = 0.45, 512-

point FFT, 10 DCTC terms extracted from each frame. 

The standard features--MFCC coefficients--were used as 

a control. Thirteen MFCC terms (12 + 1 energy term) were 

extracted from each 25-ms frame.  The frame spacing was 10 

ms, and 24 filter channels were used. The speech signal was 

pre-emphasized with a high pass filter whose transfer 

function was H(z) = 1-0.95z-1. Note that these MFCC 

parameters were supplied by HTK’s front end. 

 The first baseline experiment was based on single frame 

features (“static” features) for both DCTCs and MFCCs.  

Typical test results in terms of percent accuracy were 82.3% 

for DCTC terms and 82.6% for 13 MFCC terms.  In general, for 

all conditions tested (various frame lengths, numbers of 

terms, etc.) results for these two static feature sets were 

quite similar. 

The next baseline experiment was to use a fixed block 

length for both DCSC features (as explained in Chapter 2) 

and MFCC features.  Typical results were 94.6% for the DCSC 

features and 95.8% for the MFCC features.  These results 

were based on 50 terms for the DCSC features (10 DCTCs, each 

represented with 5 terms, and computed over a block length 

of 115 ms), and 39 MFCC terms, with delta and delta-delta 

parameters computed using 5 frames (65 ms).  Although 
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several other parameter settings were tried (block length, 

total number of terms, etc.), the conditions mentioned were 

the best (by a small amount) of the ones tried for both the 

DCSC terms and the MFCC terms.  

3.4.2 Variable Block Length Experiments 

ry the block size 

                    

 The technique explored was to va

depending on the location of the block in the speech signal. 

Frame level features (DCTCs) were computed as described in 

Section 3.4.1, except a frame spacing of 5 ms was chosen.  

Then, at the beginning of an analyzed token, a block size of 

6 frames (i.e., 45 ms total duration, including end effects 

of the analysis frames) was used.  As the analysis window 

moved forward, the block size increased until a maximum of 

40 frames (215 ms) was reached.  The block size was then 

fixed at this maximum until the end region of the utterance 

was reached.   At this point the block length was again 

gradually reduced until, for the very final block, it again 

reached 6 frames. Time "warping" was also applied to each 

block, with the amount of warping controlled by the beta 

value for a Kaiser window, and with this beta value linearly 

interpolated from 0, for the shortest length windows, up to 

a maximum value of 5 (approximately a Hanning window), for 

the longest length blocks.1 Thus, the features gave better 

time resolution for the onset and offset portions of each 

word and less time resolution in the central portions of 

each word.  The block features were re-computed every 2 

frames (10 ms). No manual segmentation or phonetic labeling 

was required or used.  The primary modification, relative to 

[11], is that the block length was varied at both ends of 

 

1 The values for minimum and maximum block length, and degree of time 
warping, were varied and tested.  The values mentioned were the ones 
used for our experimental results. 
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each analyzed utterance, rather than only for the beginning 

section.  See Fig. 3.1 for an illustration of this variable 

block length method. 

 

 

 

 

 

 

e 

ndpoint detection program 

Sequence of frame based features 

 

 

 

Fig. 3.1.  An illustration of variable block length 

from Fig. 3.1 that each grayed rectangl

repre

(a) 

(b)

(c) 

 

method. 

Note 

sents a block from which spectral/temporal features are 

computed. In region (a) the block length is increasing (6 to 

40 frames), in region (b), the block length is fixed at the 

maximum (40 frames), and in region (c), the block length is 

decreasing (from 40 to 6 frames.) 

 As mentioned previously, the e

included 30 ms of silence at both ends of each utterance in 

the database. However, as noted in the next section, the 

best recognition accuracy on test data (ISOLET-5) of 97.9% 

was achieved using the 30 ms of initial silence, and 25 ms 
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of silence at the final endpoint.  Therefore, unless 

otherwise noted, this configuration (30 ms initial silence, 

25 ms final silence) was used in this experiment and all the 

following experiments.  

The variable block length method was evaluated, using 

10 DCTCs, each represented with 5 terms in the DCSC 

 Recognition accuracy (%) 

expansion (50 features), with the block length varied from 6 

frames (45 ms) at the beginning and end of each utterance up 

to 40 frames (215 ms) at the center of each utterance.  As a 

verification, this test was repeated in round robin fashion, 

using ISOLET-1 through ISOLET-5 as test data, one at a time 

(and the remaining four sets for training in each case).  

Results of the round robin test were then averaged.  Similar 

testing was done with the 39 MFCC parameters mentioned 

above.  Results for the four cases are given in Table 3.1. 

Note that the DCSC and results obtained from the robin tests 

are very close to those obtained with ISOTLET-5 tests, thus 

implying that the parameters are not overly “tuned” to 

ISOLET-5.  

 

Feature type ISOLET-  test 5 for test Round robin

DCSC 97.9 97.7 

MFCC 95.8 95.9 

Table 3.1.  Alphabet test recognition rates for “best” 

DCSC and MCFF parameters. 
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3.4.3 Endpoint Examination Experiment 

 Since the block length in the variable block length 

method depends on the position of the block relative to the 

determined starting and final endpoints of each word, we 

hypothesized that performance might depend heavily on the 

accuracy of the endpoint algorithm.  This notion was 

reinforced when we repeated the test mentioned above with 

the variable block length using the data as distributed 

without the benefit of the refined endpoint algorithm and 

found that accuracy dropped from 97.9% to 96.8% (about a 52% 

increase in errors). To test our hypothesis more 

systematically, we independently varied the starting and 

final endpoints over a range of ±30 ms from the 

automatically computed location, with the other endpoint 

fixed (30 ms for starting endpoint and 25 ms for final 

endpoint.)  A negative amount of silence means that a 

portion of speech is discarded. Except for these variations 

in endpoints, all other signal processing was identical to 

that used above in the variable block length experiment.  

The recognition results for these tests are depicted in Fig. 

3.2. 

The results clearly illustrate that, at least for this 

data, the beginning endpoint is much more critical than the 

final endpoint.  It also appears that adding even more than 

30 ms of silence before the onset of each word would have 

been beneficial; however, this could not be done since the 

original tokens did not include sufficient silence.  The 

absolute best result of 97.9% was obtained with 30 ms of 

initial silence and 25 ms of ending silence.  These values 

of silence were thus used in the other experiments reported 

in this chapter. 



 41

 

88
89
90
91
92
93
94
95
96
97
98
99

100

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

Amount of silence (ms)

A
c
c
u
r
a
c
y
 
(
%
)

Varying final endpoint

Varying initial endpoint

 

Fig. 3.2.  Effects of variations in endpoint locations 

on recognition accuracy. 

 

3.4.4 Signal-to-Noise Ratio Experiment with and without LDA 

with and without Band Limiting 

 To test the robustness of the signal features more 

thoroughly, experiments were done with additive Gaussian 

white noise over a range of SNRs from –10dB to +30 dB. These 

tests were done both with the 50 DCSC features as used above 

and the 39 MFCC features also previously mentioned. All 

conditions were identical to those reported for Section 

3.4.2, except for the additive noise.  In addition, tests 

were made using LDA for each noise level, with the 

hypothesis that the effects of LDA might depend on noise 

level.  Based on pilot experiments, we extracted 30 LDA 

terms for the DCSC case and 25 LDA terms for the MFCC case  
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(about 60% of the size of the original feature vector in 

each case). Results are given in Fig. 3.3. 
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Note that for all cases except SNRs of –10 and –5 dB, 

the 50 DCSCs perform better than the 39 MFCC parameters.  

For both features sets, LDA is beneficial with SNRs of 0 dB 

or worse.  For higher SNR values, the effect of LDA is quite 

small for both feature sets, sometimes slightly degrading 

performance and sometimes slightly improving performance.  

For “clean” speech, SNRs of 25 dB or higher, LDA degrades 

the DCSC features--but only by a small amount--whereas LDA 

improves the MFCC features nearly to the level of DCSC 

features. 

As one final “robustness” test, tests were made with 

band-limited speech (300 Hz to 3,200 Hz) to simulate 

telephone bandwidth for each noise level. Results are shown 

in Fig. 3.4. 

In every case without the use of LDA, the DCSCs 

resulted in higher accuracy than the MFCCs. Except at an SNR 

of 30 dB for the DCSCs, the performance of DCSCs and MFCCs 

were improved somewhat with LDA.  In general the performance 

increase due to LDA was higher at lower values of SNR. 

The effects of LDA applied to features extracted from 

band-limited speech are quite different depending on DCSC 

versus MFCC parameters.  For almost all noise levels, the 

LDA results in very little change for the DCSC case, whereas 

the LDA results in larger improvements with the MFCC 

parameters.  The performance obtained with LDA transformed 

MFCCs very closely matches that obtained with the DCSCs, 

with or without LDA. 
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Note that for the full bandwidth speech, the rates 

based on DCSC signal modeling are typically about 1.5% 

higher than the rates based on MFCC signal modeling.  For 

the telephone bandwidth case, the DCSC method averages about 

3.4% higher than for the MFCC method.  Additionally, the 

typical degradation between full bandwidth and telephone 

bandwidth is also less for the DCSC case versus the MFCC 

case (average degradation of 5.3% versus 7.3%). 

3.4.5 Error Analysis 

Fig. 3.5 shows the confusion matrix of the best case 

(97.9% accuracy on clean and full bandwidth test data with 

50 DCSCs). The confusion matrix indicates that there are 33 

errors and that the (M,N) pair is the most confusable set 

and contributes approximately 25% of all the errors. 

 The number of errors was small enough to be inspected 

visually as plots of time waveforms and spectrograms on a 

computer, and by listening.  Of these 33 errors, 18 were due 

to confusions within the E set, eight were due to confusions 

between letters M and N and only seven confusions were for 

the remaining letters.  After listening to all of the error 

tokens, we concluded there are four situations for which 

tokens were misrecognized. Six tokens appeared to have a 

severe endpoint detection problem.  There were nine tokens 

pronounced in an unusual way, mostly by a single speaker.  

Also there were four tokens misrecognized because they are 

so similar to other letters, that, even with careful 

listening, they were difficult to recognize.  Finally, 

fourteen tokens sounded intelligible and distinct with no 

obvious reasons for the errors in machine performance, 

although some of these may have had endpoint detection 

inaccuracies. 
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 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A 59       1                   

B  59                    1     

C   59                       1

D    58   1             1       

E  1   59                      

F      60                     

G       56   2          2       

H        60                   

I         60                  

J          60                 

K           60                

L            60               

M             58 2             

N             6 53         1    

O            1   59            

P    1            59           

Q                 60          

R                  60         

S      1             59        

T       2   1 1         56       

U                     59  1    

V                      59    1

W                       60    

X                        60   

Y         1                59  

Z   3                   1    56

 

Fig. 3.5.  Confusion matrix corresponding to the best 

test conditions. 

To test the hypothesis that several of the errors were 

due to endpoint problems, we manually corrected the 

endpoints for all the error tokens.  A recognition test 

performed on this corrected test data results in 19 fewer 

errors, or 99.1% correct.  Although this result does not 

really “count,” since it was not done fully automatically, 

it does help to illustrate the importance of good endpoint 

detection. 
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3.5 Comparison of Results 

The highest recognition accuracy (97.9%) obtained with 

the variable block length method is favorable to that 

obtained with other systems under the same test data. For 

example, in [68], a recognition accuracy of 97.37% resulted 

with a two-tier, phoneme-based HMM recognizer. Another 

system used a Neural Network-based system with 617 inputs 

[67] and was able to achieve 96.0% accuracy. 

3.6 Chapter Conclusions 

The variable block length signal analysis method with 

50 DCSC terms and a “standard” HMM recognizer results in 

97.9% accuracy for the alphabet set.  This represents a 19% 

reduction in errors when compared with the previously 

reported best result in the literature for the same 

database.  More importantly, the method introduced in this 

study is straightforward to implement and extend to other 

speech recognition tasks.  Also, the signal modeling used is 

generally more robust to noise and band limiting than MFCC 

terms augmented by delta and delta-delta terms.  

The best recognition rate (97.9%) obtained with our 

methods corresponds to 19% fewer errors than the best result 

reported in the literature for this task from other labs 

[68], and 47% fewer errors than the next best reported 

result [67].  More importantly, the method introduced here 

is easier to implement and duplicate than these previous 

state-of-the-art systems. Some of work on this task has been 

reported in Karnjanadecha and Zahorian [10],[11]. 

The primary contribution of this chapter is the 

demonstration that the calculation of signal trajectories 

over intervals with lengths dependent on position within the 
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utterance can improve performance.  The advantage of this 

method is that it is able to capture rapid transients at the 

beginning and ending of each word, while simultaneously 

using longer, more noise resistant averaging intervals in 

the center of each word. We also showed that the benefit of 

using LDA for automatic speech recognition depends heavily 

on the features and noise level.  The improvements in ASR 

performance due to LDA tend to be the largest under noisy 

conditions, and with signal parameters which are sub optimal 

in terms of recognizer performance. The only real benefit of 

LDA for “good” parameters, such as the DCSC used in this 

study, is that a reduction in dimensionality by about a 

factor of two is possible with very little change in 

performance.  

An extension of this method, in order to apply it to 

continuous speech recognition, would be to base the block 

length on a measure of spectral derivative rather than 

simply position with respect to endpoints of an utterance.  

An extension of this method, in order to apply it to 

continuous speech recognition, would be to base the block 

length on an optimization criterion, such as minimum 

reconstruction error, rather than simply position with 

respect to endpoints of an utterance. A spectral transition 

measurement (e.g., spectral derivative) of frame level 

observations could also be used to identify the temporal 

characteristics in a particular area of the utterance. Thus, 

an appropriate block length can be applied.  

The results from this chapter have confirmed the 

importance of temporal information for speech recognition. 

Although different characteristics over time are captured 

using different block sizes, a similar effect could be 

achieved with different block spacing. For example, the 
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advancing rate of the processing block could be determined 

form the amplitudes of the spectral derivative in the 

interval around the block’s center. 
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CHAPTER IV  
CONTINUOUS SPEECH RECOGNITION: TASK AND 

DATABASE 

 

4.1 Introduction 

The previous chapter has shown an application of our 

spectral/temporal signal processing methods to isolated word 

recognition. In this chapter, these techniques are extended 

to the more difficult problem of continuous speech 

recognition. The basic technique presently in the last 

chapter is modified to suit the task. The TIMIT database 

[70] (and also the telephone version called NTIMIT [71]) was 

used for experimental verification, focusing on phonetic 

recognition. The underlying assumption for the experimental 

work is that a high recognition accuracy at the phonetic 

level will also lead to high word accuracy. As in the 

previous chapter, the HTK toolkit was used to implement the 

recognizer. 

4.2 TIMIT Database 

TIMIT [70] is a well-known speech corpus that has been 

used by many researchers to evaluate their phonetic 

classification/recognition techniques. The database contains 

6300 sentences of speech recorded from 630 male and female 

speakers from 8 major dialect regions of the United States. 

Each speaker uttered 10 sentences in a citation form in a 

quiet environment. TIMIT is a phonetically rich database 

that is suitable for phonetic classification/recognition 

tasks.    



 52

Speech was sampled at 16,000 samples per second with 

16-bit resolution and stored using a NIST Sphere format. 

Each sentence on the database CD-ROM has 4 associated files: 

1) .wav file—speech waveform file in NIST format, 

2) .txt file—associated orthographic transcription of 

the words the person said, 

3) .wrd file—time-aligned word transcription, 

4) .phn file—time-aligned phonetic transcription. 

Only .wav and .phn files were used in this work. 

Labeling information given in the .phn files were used to 

estimate initial HMM models for each phone and to compute 

recognition accuracy. 

4.3 NTIMIT Database 

The NTIMIT database [71] was obtained by playing all 

TIMIT waveform files through telephone channels and then re-

digitizing them. All transcriptions and filenames are 

identical to TIMIT’s.  However, the speech waveform in 

NTIMIT is band limited by the telephone channel and also has 

channel distortion and noise due to the overall process.   

Thus, NTIMIT is useful to examine ASR robustness with 

respect to noise and signal degradation. NTIMIT was used for 

this purpose in this work.   Note that NTIMIT was created in 

a controlled systematic way as a research project and is 

available through the Linguistic Data Consortium (LDC). 

4.4 Phonetic Model 

There are a total of 61 phone categories defined in 

TIMIT.  Since many of these phones are not phonemically 

significant in English, generally not all phones are used. 

Some phones can be removed without loss of information for 
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higher level recognition such as words. Some phones can be 

collapsed to a group of similar phones. A 39-phone set 

designated by Lee [14] has become the de facto standard set 

for ASR work.  For approximately the past twenty years, many 

ASR researchers have used this phone set to evaluate their 

systems. In this arrangement, all glottal stops (‘q’) are 

removed and 15 allophones are folded into the corresponding 

phone resulting in the list in Table 4.1. 

 

Phone Folded Phone Folded 
iy  en  
ih  ng eng 
eh  ch  
ae  jh  
ix  dh  
ax  b  
ah  d  
uw ux dx  
uh  g  
ao  p  
aa  t  
ey  k  
ay  z  
oy  zh  
aw  v  
ow  f  
l  th  
el  s  
r  sh  
y  hh hv 
w  cl pcl,tcl,kcl,qcl 
er axr vcl bcl,dcl,gcl 
m em epi  
n nx si h#,pau 

Table 4.1.  List of the TIMIT phones. 

The folding results in 48 different phone categories. 

As described by Lee [14],[15] that there are 7 phone groups 

where confusions are not counted as errors, i.e. {ah,ax}, 

{aa,ao}, {ih,ix}, {en,n}, {el,l}, {sh,zh}, {si,cl,vcl,epi}. 
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Hence, only 39 effective phones remain in different 

categories. 

In this dissertation, one HMM model was created for 

each phone category. As a result, there were 48 HMM models. 

These 48 phone models were trained and recognized but the 

final evaluation was performed using only 39 phones as 

mentioned before. Since confusions primarily occur within 

groups, we found that evaluating the system with 39 phones 

yields higher accuracy than with 48 phones. By measuring our 

system performance this way, we can directly compare our 

results with current systems developed by other researchers 

in the field. Although, some systems try to model all 61 

TIMIT phones separately [29], usually they eventually 

collapse phones and evaluate them with 39 phones. 

4.5 Use of HTK Toolkit 

 Although it can be used for isolated word recognition, 

the HTK toolkit was mainly designed for continuous speech 

recognition. Since the TIMIT database provides a phonetic 

transcription with time labeling, the HTK can employ this 

information to increase performance of the system. 

 Initially, 48 prototypes of continuous density HMMs 

(one model for each phone) with a Gaussian PDF were created. 

The next step was to estimate the initial parameters of each 

model. Basically, these parameters (means, covariances, 

mixture weights, and transitional probabilities) can be 

estimated from global statistics of all the training data 

regardless of category. This could result in a fair estimate 

of initial models for a task in which the phonetic labeling 

is absent. However, the HTK can make use of time labels 

provided with the TIMIT database to estimate initial model 

parameters. For most experiments reported in this 
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dissertation, the time labels were used for training, since 

performance was typically substantially higher with this 

method (see experiments Chapter). Note that time labels were 

not used in the recognition phase. 

 To initialize the model of a phone, the HTK scans all 

occurrences of the phones from training data and then 

extracts the features of the phone using the time labeling 

provided. After all occurrences of the phone are collected, 

Viterbi training is used to estimate the model parameters. 

This process is repeated for all phones. 

 The next phase of the initialization process is to 

apply the Baum-Welch formula (forward-backward algorithm) to 

train each phone in an isolated word mode. This is similar 

to the previous step where time labeling is used. 

 The next step of training is to apply the Baum-Welch 

algorithm to train the initial models in the embedded mode. 

The sequence of feature vectors and the phonetic 

transcription (ignoring the time labels) of each sentence 

are read. Then a lattice of HMM models is constructed given 

the phone transcriptions of the sentence. The Baum-Welch 

algorithm is then applied and the statistics obtained are 

accumulated. After all sentences have been processed, the 

accumulated statistics are used to update the models. The 

whole process is repeated for several iterations. 

 For the HTK, the Viterbi algorithm is used in the test 

phase to generate the hypothesis phone sequence for each 

test sentence. Percent accuracy can then be determined. 

 In this dissertation, a 3-state continuous density HMM 

was used to model each phone. Only self-transitions and 

transitions to the next state were allowed in the model. A 
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Gaussian PDF was used throughout. The covariance matrix used 

was diagonal, unless otherwise stated. Specific details of 

the HMM configuration used are explained in the experimental 

chapter. 

 See Appendix A for more information on the use of HTK 

toolkit for this task. 

4.6 Training and Test Data 

 The training data used in this work were the 3696 SX 

and SI sentences. There are 462 (326 males, 136 females) 

speakers in this set. This training set is recommended by 

NIST as training data.  

192 SX and SI sentences were used as test data. This 

set is recommended by NIST and is known as the NIST core 

test set. It contains sentences pronounced by 16 male and 8 

female speakers.  Many researchers using the TIMIT database 

did use this recommended test set, thus making it easier to 

compare results. 

The above training and test set are identical for the 

TIMIT and NTIMIT databases, since the only different between 

both databases is the quality of the speech signal. 
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CHAPTER V  
CONTINUOUS SPEECH RECOGNITION: SIGNAL 

MODELING METHODS 

 

5.1 Introduction 

 This chapter discusses all proposed segment-based 

signal modeling methods that are applicable for the phonetic 

recognition task described in the previous chapter. By 

“signal modeling” we refer to the calculation of 

spectral/temporal features using DCTC based spectral 

features as a starting point. The basic idea is to compute 

higher order terms of each feature by observing the change 

of the feature values within a time window. Note that the 

time is measured in discrete units indexed by frame number. 

For example, if a block of K adjacent frames is formed, then 

changes of each feature in these frames over time can be 

observed. The value of K (an integer) represents the size of 

the time window. Other block can be formed in the same 

manner. Usually, blocks are overlapped and advanced forward 

in time. In this work, block spacing (in number of frames), 

L, is used to represent the block advancing rate. In this 

study, K and/or L were chosen to be fixed or variable. 

 The first method presented in this chapter is a control 

method where K and L are fixed--as is used in nearly all ASR 

systems.  The focus of this dissertation is to examine 

methods for varying K and L: K is varied, and L is fixed; K 

varies and L is fixed. The goal is to investigate methods 

for non-uniform time sampling of speech features.  We also 

examined another method in which spectral/temporal features 
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of short and long blocks are first computed and then 

combined using PCA. 

5.2 Control Method 

This method uses a fixed block length (K) and fixed 

block spacing (L) scheme which is similar to the standard 

method used by most researchers. It was noted previously 

that the time labels, provided with the TIMIT database, were 

used to estimate initial parameters of each phone model. 

Furthermore, our pilot experiments have shown that the DCTC 

based DCSC parameters yielded excellent results when a large 

block size was used. If each block is formed with respect to 

a center frame, then a problem will arise for the first few 

frames and for the last few frames of each analysis token 

because of “end” effects.  We can avoid this problem by 

shifting the center of the block forward and ending the 

processing before reaching the last frame. The amount of 

shifting must equal half of the block length.  Consequently, 

the resulting number of blocks will be less than the number 

of frames when the block length is greater than one frame. 

This causes feature vectors to be out of synchronization 

with time labeling, which is done in terms of frame indices. 

Thus, this “artifact” results in performance degradation. 

The synchronization problem can be solved in three 

ways: 1) to ignore time labeling for training, 2) to add 

some extra blocks after the block processing and 3) to add 

some extra frames before the block processing. The first 

option—although technically an option for HMM methods—in 

practice causes substantial performance degradations. The 

addition of extra blocks in the second method is achieved by 

replicating the feature vector for the first and the last 

block a number of times equal to half of the block length. 



 59

If the block length is odd, this method will yield a total 

number of blocks equal to the number of frames in the 

utterance. This method is viable to restore synchronization, 

but the beginning and ending features vectors for each 

utterance do not reflect the temporal characteristics of the 

beginning and end of each utterance.  The third method is 

similar to the second method in a way that it adds some 

extra feature vectors at both ends of the sequence except 

that this method functions at the frame level. If the block 

length is known to be K, then K/2 occurrences of the 

features of the first frame are added. Similarly at the 

final frame, K/2 feature vectors identical to the last 

feature vector are added. Fig. 5.1 illustrates this concept 

for the case of K=5 and block spacing L=1. 

 
Replicates 

of frame N 

 

 

1 2 3 N N N 

Phone 1 Phone 2 

4 5 6 7 8 9 101 1 

Replicates 

of frame 1 

Block 1 

Block 2 

 
Block 3 

 
Block N 

 

Fig. 5.1.  Illustration of the fixed block length and 

fixed block spacing method. 

 

 Fig. 5.1 shows an example of the fixed block length and 

fixed block spacing method with block length, K = 5 frames. 

The feature vector of each frame is indicated by a rectangle 

with its corresponding frame index marked inside. The figure 

also indicates the boundaries of phone 1 and phone 2. The 

original data has N frames, but, with our method, two extra 
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frames are added at both ends prior to the block processing. 

The first block consists of the first two extra frames and 

frames 1 to 3. The second block consists of the second extra 

frame and frame 1 to 4. Extra frames are not in use from 

block 3 and beyond. The same logic applies to the processing 

at the end of the utterance. 

As seen in Fig. 5.1, phone 1 starts at frame 1, and 

ends at frame 7. After block processing with this method, 

the boundaries of phone 1 will begin at block 1 and end at 

block 7. Hence, the out-of-synchronization problem is 

solved. However, block 7 and 8 contain the initial portion 

of phone 2 which is potentially a problem. This effect is 

negligible since: 1) phone boundaries may be off by a small 

amount and 2) phonetic context is modeled with partial 

inclusion of the information of adjacent phones. This effect 

also occurs at the first 2 blocks of phones 2 where part of 

phone 1 is included. 

For the same scenario, if no extra frames were added, 

the first block would comprise frame 1 to frame 5, where the 

center of the block would be frame 3. Since the duration of 

phone 1 is 7 frames, after block processing the boundaries 

of phone 1 would be from the block centered at frame 3 and 

the block centered at frame 10. Obviously, there would be 

two problems with this scheme. First the last block of phone 

1 would be entirely in phone 2. This is significant when the 

block size is large. The second problem is that there would 

be insufficient data (too few blocks) for the last phone 

because the number of blocks is always less than the number 

of frames when the block length is greater than 1. Extra 

blocks can be appended at both ends after the block 

processing is completed to regain synchronization.  However, 

our pilot experiments indicated that the method based on 
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adding extra frames performed better, so this method was 

generally used. 

Once the boundaries of each block are known, we can 

apply the DCT to the feature vectors in the block using a 

pre-computed set of DCT basis vectors. The length of each 

basis vector must match the length of the block. Thus, in 

this case, where the block size is fixed, only one set of 

basis vectors are required.  There are just two free 

parameters to tune in this control method--block size and 

block spacing. 

5.3 Variable Block Length Method 

This method is similar to the control method in terms 

of block encoding and maintaining synchronization of the 

time labels of each phone and the block indices. The major 

difference is that the block length is not fixed. Block 

length depends on the temporal characteristics of the 

features around the center of the block. 

Let I and J be two integers representing the minimum 

and maximum number of frames to extend about the block’s 

center, respectively.  Therefore, the minimum block length 

is 2I+1 and maximum block length is 2J+1. Suppose the block 

centered at frame M is to be encoded. The following 

pseudocode was used to determine the block length: 

 

Loop n = I to J 

  BLOCK = Resampling (block of frame M-n to frame M+n) 

  RECONSTRUCTEDBLOCK = EncodeDecode (BLOCK) 

  MSE = ComputeMSE(BLOCK, RECONSTRUCTEDBLOCK) 

  If MSE > THRESHOLD 
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    Half_width = Maximum(I,n-1) 

    Exit Loop 

  End IF 

End Loop 

Half_width = Minimum (J,n) 

 

Resampling() is a function to linearly interpolate a 

block of 2n+1 frames to a block of fixed size. This step 

normalizes the size of each block to ensure that the 

features extracted from each block belong to the same 

feature space. 

EncodeDecode() is a function that takes the resampled 

block and encodes it using a DCT. The encoded output, a 

matrix of DCSC coefficients, is obtained. Then block 

decoding begins by applying the Inverse Discrete Cosine 

Transform (IDCT) to the coefficients. The reconstructed 

block, RECONSTRUCTEDBLOCK, obtained with this function is 

then compared to against the original block, BLOCK, using 

the ComputeMSE() function from which a normalized mean-

squared error (MSE) is computed. This error is returned by 

this function to MSE. The following shows how MSE is 

computed: 

∑ ∑
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′−=
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mnmn XX

MN
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1 1

2)(
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where Xmn is the mth feature of the nth frame of the original 

block X and X’mn is the mth feature of the nth frame of the 

reconstructed block X’. Note that the error is normalized 

with respect to the total number of features (MN). 

The MSE of each selected block size is compared against 

a predefined threshold value, THRESHOLD. If MSE is greater 
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than the threshold, the implication is that the 

reconstructed signal is considerably different from the 

original signal. Thus, the block length is too long for an 

accurate representation. In the code, the loop is broken and 

the block size is reduced by two for signal modeling. 

However, if MSE is less than the threshold, the block size 

is increased by two (expanded at both sides) and the process 

is repeated. 

Minimum() and Maximum() are functions to limit minimum 

and maximum length of the block. 

Fig. 5.2 illustrates block length candidates when the 

block is centered at frame 6 (M=6, I=1, J=5). 
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spectrum changes rapidly and a longer block will be used in 

the area where the spectrum changes slowly. 

In order to speedup the computations for the 

processing, DCT basis vector sets are pre-computed for each 

set of basis vectors that could be used. Knowing I and J, 

one can determine the number of sets of basis vectors needed 

and length of each set. 

Once a block has been processed, the center of the 

block moves forward and the whole process repeats. Note that 

the number of frames that the center of the block has to be 

moved is a free parameter. 

Altogether, there are four free parameters associated 

with this method: minimum and maximum block length (I and 

J), MSE threshold, and block spacing. Again, for 

synchronization purposes, J replicates of the first frame 

are added at the beginning and J replicates of the last 

frames are added at the end of the utterance. J is equal to 

half of the maximum block length. 

Fig. 5.3 illustrates the algorithm using real speech 

data. Horizontal dark bars, overlaid on the spectrogram, 

represent the optimum block length at each position. The 

time is given in terms of frame indices. The figure clearly 

shows that block size is small in transitional areas and 

large in steady areas. 
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Fig. 5.3.  Variable block length technique applied to an 

utterance of the letter “b,” Threshold = 2, Block length 

= 11-31 frames, block spacing = 5 frames, frame size = 

25 ms, frame spacing = 2 ms. 

 

5.4 Variable Block Spacing Method 

 This method uses a variable block spacing scheme to 

capture characteristics of a fast changing spectrum. It 

relies on the fact that a finer sampling is needed for a 

higher bandwidth signal. In this case we sample the signal 

closely when its spectrum changes rapidly. Basically, frame- 

based features have to be extracted with a small frame 

spacing (fast frame rate) so that most information will be 

preserved.  Conversely, in slowly changing areas of the 
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spectrum, redundancy can be reduced, by using a large block 

spacing. 

Note that for this method, only the block spacing is 

variable---block length is fixed for all blocks. From a 

sequence of frame-based features, we compute a spectral 

transition measure (spectral derivative) using the method 

described in [72] 
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 In this equation, Di(t) is the delta coefficient of the 

ith feature at time t computed using Equation (2.2) and p is 

the number of coefficients used to compute the spectrum 

transition measure. Hence, the spectral derivative at time t 

is equal to the mean of the square of all p coefficients. 

Notice that the summation index starts at 1, which means the 

0th coefficient is not used, since, for cepstral 

coefficients, it represents the overall level of the 

spectrum of the frame. 

 As indicated in Equation (2.2), the window size used to 

compute delta terms is controlled by the variable W. In this 

case, use of a large window results in a smooth spectral 

derivative while use of small window results in a noisy one.  

 Fig. 5.4 and Fig. 5.5 show the spectrogram and spectral 

derivative plots of the utterance “Even then, if she took.” 

The spectral derivative was computed with a window size of 7 

frames (W=3) for Fig. 5.4 and 21 frames (W=10) for Fig. 5.5. 

The frame spacing was 2 ms. 
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Fig. 5.4.  Spectrogram and spectral derivative plot 

(W=3). 

 Notice that the peaks of spectral derivative are a good 

match to the acoustic transitional regions indicated in the 

corresponding spectrogram. The peaks are broader and overall 

the spectral derivative plot is smoother with a larger 

window in Fig. 5.5 as compared to those in Fig. 5.4. 

 The block processing requires a sequence of frame-based 

feature vectors and the corresponding spectral derivative to 

begin with. The length of each block and also the minimum 

and maximum allowable block spacing must be specified. Extra 

frames are added to both ends of the sequence as for the 

other methods. The number of frames that need to be added is 

equal to half of the block length.  
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Fig. 5.5.  Spectrogram and spectral derivative plot 

(W=10). 

 The method can be further explained as follows.  

Suppose the center of block M is located at frame M. A set 

of DCT basis vectors is used to encode the block. To further 

process block M+1, we need to find an appropriate block 

spacing. In other words, we need to determine how far block 

M+1 has to be from block M in order to properly capture a 

rapidly changing signal in transitional areas and ignore 

redundant signals in steady state areas. To do so, first the 

spectral derivative value at frame M (center of the block) 

is computed and examined.  The basic idea is that a small 

block spacing will be used when the spectral derivative 

amplitude is high and a large block spacing will be used 

when the amplitude is low. The amplitude of the spectral 
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derivative of frame M is uniformly divided into a number of 

levels that equals to the number of possible block spacings. 

For example, if the block spacing can range from 3 to 5 

frames, then the spectral derivative will be divided into 

(5-3 + 1) = 3 levels. Each frame spacing candidate is 

assigned to one level. A frame spacing is picked according 

to the level of the spectral derivative of frame M. 

 Once the block spacing is found, the center of block 

M+1 can be determined and the block is encoded and so on. 

Fig. 5.6 illustrates the idea of how the block spacing is 

determined. 

 From Fig. 5.6, the spectral derivative is divided into 

3 levels. Block spacing is minimal when the spectral 

derivative falls in Level 3, moderate in Level 2 and maximal 

in Level 1. Clearly, the blocks are closely spaced in the 

region where the spectral derivative is large. 
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Fig. 5.6.  Illustration of variable block spacing 

method. A small spacing is used when the spectral 

derivative is high and vice versa. 
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 There are some refinements applied to the basic 

algorithm of the variable block spacing method described 

above. First, the spectral derivative can be normalized to 

the range of 0-1 by dividing every element by the maximum 

value of the sequence or by limiting the maximum value to 

not exceed a threshold value. In the latter case, the 

spectral derivative is normalized to the range from 0 to the 

threshold value. Note that the spectral derivative is always 

positive. 

 The second refinement is to consider the neighboring 

spectral derivative amplitude around the center of the 

block. In this work, we chose to search for the maximum 

value of the spectral derivative of frame M to frame M+S, 

where S is maximum block spacing. The maximum value in the 

range is used to determine the block spacing. This ensures 

that the algorithm reliably captures the transition regions 

because the peak may not exactly occur at frame M but rather 

a nearby frame. If the look-ahead method is not used, the 

block spacing may be too large and the rapid transitional 

area may be missed 

 As stated previously, the HTK-based HMM recognizer is 

expecting input features at a constant frame rate. However, 

the method presented here results in observation sequences 

of a variable data rate.  Thus, we will “pretend” that the 

data rate is fixed so that it will comply with the HMM 

concept. Unfortunately, the synchronization problem will 

occur because the duration of a phone may have changed. For 

example, phones with steady spectral characteristics will 

become shorter in length and phones with rapidly changing 

spectra will become longer.  In this context, longer or 

shorter is based on a comparison of the number of blocks for 

each phone versus the number of blocks for that phone using 

the standard method of block processing (fixed block length 
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and fixed block spacing). A phone that is 5 blocks longs 

when computed with the standard method may become 3 blocks 

long when computed with the variable block spacing method.  

The phone length depends on the characteristics of the 

phone. 

 To solve this synchronization problem, the time 

labeling of each phone was modified to match the boundaries 

of the phone after block processing. 

 This method has spectral derivative window size, 

minimum and maximum block spacing, block length and spectral 

derivative threshold as free parameters (5 parameters). 

 Fig. 5.7 depicts an implementation of the variable 

block spacing method on real speech data. The horizontal 

dark bars were placed on top of the spectrogram plot to 

illustrate how block spacing is varied. Note that blocks 

stay close together in the area where the spectrum is 

rapidly changing. 

5.5 Combined Block Length Method 

The idea behind this method is to try to capture fast 

changing and steady spectrum at the same time by combining 

the results of block encoding with a short block and a long 

block. Similar to the variable block length method, block 

spacing is constant. This work only examined a combination 

of two blocks of different size.  The two blocks are 

linearly adjusted by interpolation to have the same size. 

This is to ensure that the dynamic features obtained from 

both blocks are in the same feature space. 
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Fig. 5.7.  Variable block spacing for the letter “b,” 

block size = 31, spacing = 1-8 frames, SpcDrv window = 

10. 

 

The combination process is simply a feature vector 

concatenation. Note that, in block encoding process, having 

N DCT basis vectors results in N times more coefficients. In 

other words, the dimensionality of the final feature vector 

becomes N times of that of the input vector. For example, if 

frame-based features have a dimensionality of P, and N DCT 

basis vectors over time are used, then the feature matrix 

extracted from each block will be an N-by-P matrix or a NP 

dimensional vector1. 

                     

1 Usually such a matrix will be arranged into a vector form. 
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 Since this method combines or concatenates the block 

level features of two blocks together, then the resulting 

feature vector has a doubled dimensionality. Even though 

having high dimensionality features may result in an 

acoustic model that is well matched with training data, it 

does not guarantee that the recognition performance on 

unseen utterances will be improved. In other words, the 

model trained with too many features trends to lack 

generalization or suffers from the “curse of dimensionality” 

(see Duda and Hart [73]). This method uses PCA for 

dimensionality reduction. We have no knowledge of whether 

features from small or large blocks are more important.  

However, PCA tends to automatically select the more 

important features.  

 Minimum and maximum block length, resampling length and 

block spacing are the free parameters for this method. 

5.6 Chapter Summary 

 This chapter explained several techniques that will be 

investigated in this dissertation. A fixed block length and 

fixed block spacing technique serves as a control method for 

comparisons.  

A variable block size technique, where the size of a 

block is chosen depending on local MSE measurements, was 

proposed. Short blocks are used to capture rapidly changing 

spectra and longer blocks are used to capture slowly 

changing spectra.  

A technique called variable block spacing was proposed 

to capture temporal information by non-linearly adjusting 

the spacing between blocks. Block spacing is determined 

using a spectral derivative measure.  
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The last technique proposed was to use a combination of 

short and long blocks. For one output feature vector, this 

method concatenates the feature vectors extracted from a 

short block and a long block and reduces the dimensionality 

with PCA. 
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CHAPTER VI  
CONTINUOUS SPEECH RECOGNITION: EXPERIMENTS 

 

6.1 Frame Based Features 

 The aim of this study is to investigate alternative 

methods of inclusion of temporal information into the 

feature set. There are two major steps involved in this 

process. Initially, spectral characteristics of each frame 

in the utterance are extracted. This results in a sequence 

of frame-based feature vectors or a frame-based observation 

sequence. Then block processing, which incorporates the 

temporal characteristics of speech segments, is performed. 

In this section, the parameters used to compute frame-based 

observations are described. 

 A second order highpass IIR filter, with cutoff 

frequency at 3,200 Hz, was used to pre-emphasize the 

digitized speech input (16-bit resolution, 16 KHz sampling 

rate). The filtered signal was then divided into frames of 

25 ms with a frame spacing of 2 ms (e.g., 23 ms 

overlapping). Each frame was windowed with a Kaiser window 

with beta=6 and width=400. The windowed signal was analyzed 

with a 512-point FFT, and the squared magnitude of the FFT 

spectrum in the range of 70 Hz to 7,000 Hz was selected for 

further processing. The spectrum floor was set to 60 dB 

below the spectrum peak. Thirteen DCT basis vectors, 

computed with bilinear warping (with warp factor =.45) were 

computed with respect to the  selected frequency range. The 

selected spectrum was encoded with these basis vectors 

resulting in 13 DCTC features for each frame. Note that no 

spectrum smoothing was performed and no orthornormalization 
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was applied to the basis vectors, i.e., the method given in 

Zahorian and Nossair [17] was used partially track spectral 

peaks. 

 Unless otherwise stated, the above parameters were used 

to obtain frame-based observations of all TIMIT data. The 

parameters were slightly different for NTIMIT data in that  

the frequency range was limited to 70 Hz – 4,000 Hz and the 

spectrum of each frame were floored at 35 dB below the peak. 

Frame-based parameters were computed once, and then used for 

all block processing methods reported in this dissertation. 

Thus, performance can be fairly compared among block 

processing techniques. 

6.2 Context-Independent Phone Model 

 As explained in Chapter 4, the 61 TIMIT phones were 

collapsed to 48 and used for context-independent phone 

modeling. Each phone was modeled with a 3-state, 3-gaussian 

mixture diagonal covariance matrix, left-to-right HMM model. 

Only self transitions and transitions to the next state were 

allowed.  

The training process began with model initialization 

where each model was initialized for 20 iterations using the 

Viterbi algorithm. The time labeling of each phone was used. 

The parameters of each model were estimated from the data 

that belong to its class. Each initialized model was then 

re-estimated with the Baum-Welch algorithm for another 20 

iterations. These two steps are similar to the training used 

for the isolated word recognizer. Next, all models were 

trained with the Baum-Welch algorithm in the embedded mode 

for 5 iterations. Note that the time labeling was not used 

in the embedded mode. 
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 Bigram statistics of the phones were estimated from the 

training data. These were used in the Viterbi recognition 

process. Accuracy evaluation was done after the 48 phone 

sets had been collapsed to 39 phone sets. Results are 

reported in terms of percent accuracy on the test data. 

Accuracy was determined as follow: 

 %
N

IH
Accuracy 100×

−
= , (6.1) 

where H is the number of correct phones, I is the number of 

insertion errors and N is the total number of phones 

available in the test data. If insertion errors are ignored 

(an insertion is not counted as an error), i.e., I is 

removed from (6.1), then the result becomes percent correct. 

6.3 Control Experiments 

Experimental results reported in this section serve as 

baseline information. Experiments were conducted either with 

MFCCs or DCTCs as basic features. 

 All experiments conducted in this section, except those 

with MFCC parameters, employed segment-based (block-based) 

features computed with fixed block length and fixed block 

spacing method. Each block was decomposed with 3 DCT basis 

vectors over time resulting in 39 spectral/temporal 

coefficients. No orthornormalization was applied to the 

basis vectors. 

 For each utterance, spectral/temporal features were 

computed from frame-based features of the utterance. Frame 

based parameters were obtained as described in Section 6.1. 
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6.3.1 Determining Best Block Length and Block Spacing 

 Some of our preliminary investigation has shown that 

the reasonable block length for the DCTC features is between 

50 ms to 100 ms and a block spacing of around 10 ms should 

be used. The experiments conducted in this section were 

based around these parameters. Table 6.1 shows experimental 

results when the block size was varied from 20, 25, 30, 35, 

and 40 frames and block spacing was varied from 6, 8, 10, 

and 12 ms. 

 

 Accuracy (%) 

Block length 

(frames) 

Blk. Spc. 

6 ms 

Blk. Spc. 

8 ms 

Blk. Spc. 

10 ms 

Blk. Spc.

12 ms 

20 61.7 62.8 63.1 62.7 

25 62.5 63.3 63.5 63.4 

30 62.6 63.5 63.4 63.5 

35 62.5 62.6 63.1 63.1 

40 62.0 62.5 62.6 62.4 

 

Table 6.1.  Test results with fixed block length and 

fixed block spacing method at various block lengths and 

various block spacings. 

 

 The shaded area in Table 6.1 indicates optimum 

parameters for high performance. Best recognition results 

were obtained when the block size was between 25 to 35 

frames (e.g. 73 ms to 93 ms) and block spacing was in the 

range of 8 ms to 12 ms. Highest accuracy of 63.5% was 
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obtained with a block length of 25 frames and block spacing 

of 10 ms. By careful examination of the results in terms of 

deletion, insertion and substitution error, a conclusion can 

be drawn that use of a short block spacing introduced more 

insertion and substitution errors, but the number of 

deletion errors was reduced. On the other hand, use of a 

long block spacing caused less insertion and substitution 

errors, but deletion errors were increased. 

6.3.2 Investigation of Very Short and Very Long Blocks with 

urther conducted to demonstrate 

effec

and without Time Warping 

Experiments were f

ts of using very short and very long block length. In 

addition to the previous experiments, block length of 5, 10, 

15, 45, 50, 55, and 60 frames were tried. Note that a block 

spacing of 10ms was used throughout. It was expected that  

use of very short and very long block should result in 

significant performance degradation; it was the objective of 

these experiments to investigate this point. For the case of 

very long blocks, applying warped basis vectors over time, 

which effectively emphasizes the center section of the 

block, was expected to be beneficial. Thus, experiments were 

carried out with and without warping. Recognition accuracies 

on test data are summarized in Fig. 6.1.  
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Fig. 6.1.  Results at various block lengths with and 

without time warping (Block spacing = 10 ms). 

 

From Fig. 6.1, there is significant degradation in 

accuracy, for very short or very long blocks, as expected. 

By applying basis vector warping, performance is improved 

for the large block size.  However, warping slightly 

degrades recognition performance with short blocks. Best 

accuracy was obtained with a block length = 40 frames and 

warping factor = 5. 

 Experimental results with standard methods have given 

us a good starting point for further investigation of other 

techniques. This ensures that the use of a block length 

around 73 ms and a block spacing of around 10 ms should work 

reasonably well with other methods. 
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6.3.3 Time Label Synchronization  

 To investigate effects of time label synchronization, 

experiments were carried out using the best parameters 

obtained previously (block length = 40 frames, block spacing 

= 10 ms, warping factor = 5).  

To study the importance of the use of the time labeling 

for model initialization, a phonetic recognition was 

conducted while the time labeling provided with the TIMIT 

database were totally ignored (no time labeling were used to 

estimate the initial phone models.) The initial parameters 

of every phone were estimated from the global mean and 

global covariance of the training data. Thus, all HMM models 

were initialized with the same set of parameters. Obviously, 

each initial model does not accurately represent the 

statistics of its data. Highest recognition accuracy 

obtained after 15 training iterations was 58.2%. Note that 

more training iterations were tried but there was no 

improvement after 15 iterations. 

 A series of experiments were conducted to test the 

sensitivity of the recognizer to the accuracy of the time 

label. Original time labeling was perturbed by uniformly 

distributed noise (with zero mean) such that the time 

indices of each phone were off by as much as ±20 ms. The 

recognizer was initialized with these modified labeling. 

Table 6.2 shows recognition performance at various 

perturbation levels.  
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Perturbation (ms) Accuracy (%) 

0 64.3 

±2 64.2 

±4 64.1 

±6 64.1 

±8 64.3 

±10 64.4 

±15 64.0 

±20 63.7 

Table 6.2.  Recognition results at various levels of 

noises added to the time labeling. 

In Table 6.2, there was no significant performance 

degradation if the labels were not off by more than 15 ms in 

both directions. However, there was a slight loss of 

accuracy when the time labeling was modified by as much as 

±20 ms. Note that it was impractical to consider time 

perturbations larger than this, since some of the phones 

would then have zero length. 

 Also recall from Chapter 5 that in our method of 

computing spectral/temporal features, some extra frames must 

be appended to both ends of the utterance to maintain the 

synchronization between the feature vectors and the phone 

boundaries. The first two series of experiments described in 

this subsection verified the importance of the time labeling 

but did not clearly illustrate the actual problem which 

occurs when no extra frames are added. Hence, an experiment 

which used the fixed block length and fixed block spacing 

method was performed to clarify this point. However, there 

were no extra frames added. As a result, the number of 
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processed blocks were less than the number of frames. The 

parameters used for this experiment were block length = 40 

frames, block spacing = 10 ms, warping factor = 5. The 

accuracy obtained was 57.6%. Note that the result was much 

lower than that obtained when extra frames were included 

(64.3%). Notice that the result achieved was slightly lower 

when compared to the result obtained without the use of 

labeling information. 

In conclusion, labels boundaries are essential but need 

not be extremely accurate. A recognizer that has been 

initialized with reasonable training samples performs much 

better than the one that has not been initialized or has 

been initialized with false data. 

 

6.3.4 Baseline Experiment with HTK’s MFCC Features 

 HTK provides a tool that can extract several kinds 

speech representations, including MFCC which is a standard 

feature set for many current systems. An experiment was 

therefore also conducted using MFCC parameters to serve as a 

baseline result. The parameters used to compute the MFCC 

features were mostly default for the HTK and are rather 

standard. Theses parameters can be summarized as follow:  

 

• Pre-emphasize filter:  H(z) = 1-0.95z-1 

• Use Hamming window: Yes 

• Frame size:  25 ms 

• Frame spacing:  10 ms 

• Frequency range:  70-7,000 Hz 

• Spectral floor: 50 dB 

• Number of filter channels: 20 
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• Number of Cepstral Coefficients: 12 

Twelve MFCC terms plus one normalized-energy term were 

extracted from each frame. Delta and delta-delta 

coefficients, both obtained over a 5-frame window, were 

included resulting in a total of 39 terms. The highest 

accuracy obtained with MFCC based features was 64.0% on test 

data. This result is slightly lower than that obtained with 

DCSC features. 

6.4 Variable Block Length Experiments 

We first tested the variable block length method with 

the ISOLET database believing that if a technique does not 

work well with isolated word recognition, then it will not 

work well with continuous speech recognition. Unfortunately, 

we did not find this technique to be beneficial for isolated 

word recognition. Best recognition result with the variable 

block length technique was not better than that obtained 

with the standard method (fixed block length and spacing).   

Nevertheless, some tests were performed with continuous 

speech, as reported in this section, for the sake of 

completeness.  

Frame-based features obtained as described in Section 

6.1 were used throughout in this section. 

This method involved normalization of the block using a 

resampling technique. In order to make certain that 

resampling does not itself cause significant performance 

degradations, a series of experiments were carried out. 

Based on the best parameters experimentally obtained in 

Section 6.2 (block size of 40 frame, block spacing of 10 ms, 

BVT warping factor of 5), each block was resampled. The 

resampling length was varied from 20 to 60 frames. Table 6.3 

shows recognition results for these cases. 
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Resampling length (frames) Accuracy (%) 

20 64.1 

30 64.1 

40 64.3 

50 64.4 

60 64.3 

Table 6.3.  Recognition results with various resampling 

lengths. 

Note that the resampling length of 40 frames indicated 

in Table 6.3 implies no resampling. The results of this 

experiment leads to a conclusion that resampling does not 

degrade recognition as long as the new length is longer than 

the original block length (up sampling). Resampling with a 

smaller number of frames (down sampling) degrades  

performance only slightly for down sampling by up to a 

factor of two. 

Use of warped basis vectors over time to compute 

spectral/temporal features has been shown to be beneficial. 

However, for the variable block length technique, the aim is 

to find an optimum block length that yields a MSE below a 

specified threshold. The effect of warping is to emphasize 

the signal in the center area of the block. Thus, the use of 

warping does not fit well with this method. As a 

consequence, warping was not used for the experiments in 

this section. 

Experiments were conducted to find the best parameters 

for this method. Some preliminary experiments have indicated 

that the use of a threshold around 4.0 to 5.0 should result 

in a promising performance. Based on the best parameters 
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obtained in Section 6.2, several experiments were conducted  

using several combinations of parameters. Block size in the 

range of 11 to 41 frames, block spacing of 8 to 10 ms and 

resampling length of 20 and 50 frames were examined. Table 

6.4 shows recognition performance on test data using various 

combinations of parameters with a resampling length of 20 

frames. Table 6.5 illustrates the same experiments with the 

resampling length of 50 frames. 

 

 Accuracy at various threshold and block length 

(%) 

Block 

Spacing 

Block 

(frames) 

 

4.0 

 

4.2 4.4 

 

4.6 

 

4.8 

 

5.0 
(ms) 

length 

 

8 63.4 63.6 63.5 63.4 63.4 63.3 11 to 25 

8 11 to 31 63.9 63.6 63.6 63.5 63.6 63.4 

8 11 to 41 63.1 62.9 62.8 62.9 62.9 62.8 

10 11 to 25 63.6 63.4 63.3 63.2 63.4 63.7 

10 11 to 31 63.5 63.7 64.0 63.8 63.5 63.4 

10 11 to 41 63.1 62.7 62.5 62.7 62.8 62.8 

12 11 to 25 63.2 63.5 63.2 63.1 63.4 63.4 

12 11 to 31 63.2 63.3 63.5 63.4 63.3 63.1 

12 11 to 41 62.1 63.4 62.3 62.3 62.1 62.3 

Table 6.4.  Recognition accuracy for test data when all 

 

blocks were resampled to 20 frames. 
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 Accuracy at various threshold and block length 

(%) 

Block 

Spacing 

Block 

(frames) 

 

4.0 

 

4.2 

 

4.4 

 

4.6 

 

4.8 

 

5.0 
(ms) 

length 

8 63.6 63.5 63.3 63.5 63.4 63.2 11 to 25 

8 11 to 31 63.8 63.9 63.5 63.5 63.4 63.6 

8 11 to 41 63.1 63.3 63.0 62.8 62.7 63.2 

10 11 to 25 63.2 63.3 63.2 63.4 63.4 63.8 

10 11 to 31 63.5 63.9 63.5 63.8 63.6 63.5 

10 11 to 41 62.9 63.0 62.6 62.4 62.8 62.9 

12 11 to 25 63.3 63.4 63.2 63.0 63.4 63.6 

12 11 to 31 63.2 63.3 63.3 63.2 63.5 63.4 

12 11 to 41 62.7 62.7 62.6 62.3 62.6 62.6 

 

Table 6.5.  Recognition accuracy for test data when all 

 

om the tables, best performance was 64.0% achieved 

with 

blocks were resampled to 50 frames. 

Fr

a block length varying from 11 to 31 frames and each 

block normalized to 20 frames. Block spacing was 10 ms and 

the error threshold was 4.4. The accuracy obtained was 

slightly better than that obtained from the fixed block 

length method with no warping. In general, there were no 

significant performance differences among the various 

parameter settings tried. 
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6.5 

This method was also first tested on the alphabet 

recognition task as described in Chapter 3.  The highest 

accur

 Chapter 5, this method requires 

 original time labeling to correct the 

synch

ck spacing technique, a series of phone 

recognition experiments were performed to determine the 

Variable Block Spacing Experiments 

acy achieved was 97.8%, which is comparable to the 

97.9% obtained in Chapter 3. However, much simpler HMM 

models (5 states, 3 mixtures with a diagonal covariance 

matrix) were used for the results reported in this Chapter. 

In the remainder of this section, we will focus on the use 

of this method for phonetic recognition for the case of 

continuous speech. 

As noted in

modification of the

ronization problem. Also, it was shown in control 

experiments that loss of synchronization can cause a severe 

performance degradation. To support this reasoning and to 

partially test the new labels, we conducted an experiment 

that forced the algorithm to behave like the fixed block 

length and fixed block spacing method. This was achievable 

by setting the minimum block spacing to be equal to the 

maximum block spacing. In fact, features obtained this way 

are identical to those obtained with the standard technique. 

However, the difference lies in the time labeling used for 

HMM initialization where the original timing was used with 

the standard method and the modified timing was used with 

the variable block spacing method. Experimental results 

verified that there was no significant difference in 

performance. 

To more thoroughly investigate the performance of the 

variable blo

range of block spacings that will give optimum results. 

Several block spacing combinations and spectral derivative 
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windows of 5, 10 and 15 frames were tried. Every block has a 

length of 25 frames and was encoded without warped basis 

vectors. Unless otherwise noted, 3 DCT basis vectors over 

time were used for each block. Neither warping nor 

orthonormalization were applied to the basis vectors. This 

resulted in a spectral/temporal feature vector of 39 

dimensions for each block. Fig. 6.2 is a bargraph 

illustrating experimental results obtained using the 

variable block spacing technique for feature extraction.  

From the figure, low performance was obtained when the 

range of block spacing was large. For example recognition 

accuracies were low when a block spacing of 2-8, 2-10 and 2-

12 ms were used. On the other hand, high accuracies were 

obtained when block spacing was not varied by much. Since 

the best result of 64.0% was achieved with block spacing 

varying in the range of 8-10 ms and a spectral derivative 

window length of 30 frames was used. As a result, further 

experiments were conducted based on these parameters, as 

summarized below. 
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Fig. 6.2.  Recognition results at various block spacing ranges and spectral derivative 

window lengths. 
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The next series of tests was designed to find a block 

length and a warping factor that works best with this 

technique, given that the block spacing is in the range of 

8-10 ms and the spectral derivative window size is 30 

frames. Warping was used in some cases here because it has 

shown to be useful in control experiments, especially when 

the block length is large. Fig. 6.3 shows recognition 

accuracies on test data when the block length varied from 25 

to 61 frames and the warping factor was 0, 5 or 10. 

 

58.0

59.0

60.0
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64.0

65.0
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Block length (frames)
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Warping factor=0
Warping Factor=5
Warping Factor=10

 

Fig. 6.3.  Results at various block lengths and various 

warping factors. 

 

 Fig. 6.3 shows that the technique was not very 

sensitive to block length. However, the use of a warping 

factor of 5 performed better with a block length shorter 

than 45 frames (113 ms) and the use of warping factor of 10 

performed best with the longer block length. Again, 
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performance degradation occurred when no warping was used at 

a large block length. Highest accuracy of 64.3% was obtained 

with a block length = 51 frames, and a warping factor = 10. 

6.6 Investigation of PCA Combination of Two Blocks 

At each position in the utterance, this method computes 

two sets of spectral/temporal parameters, each with a 

different block length. Then the two sets of parameters are 

combined with PCA.  

The frame-based observations obtained as described in 

Section 6.1 were used throughout. Since a frame based 

feature vector has 13 components, each block, when expanded 

with 3 DCS, results in 39 terms. Thus, the total number of 

parameters is 78 if the two blocks are directly combined. 

However, for these tests, PCA was used to reduce the 

dimensionality of the features to 39, so that the total 

feature numbers would be the same as for the other tests 

reported in this study. All experiments presented in the 

section were conducted with these 39 PCA terms.  

This method of feature computation has 4 free variables 

to adjust. Based on our pilot study and previous 

experimental results, the minimum block length was chosen to 

be 11, 15, 21 or 25 frames and the maximum block length was 

chosen to be 31, 35 or 41 frames. A block spacing of 8 or 10 

ms and a resampling window size of 50 frames was used. All 

combinations of these values were tried and the results 

obtained are reported in Fig. 6.4 and Fig. 6.5. 
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Fig. 6.4.  Results with various minimum and maximum block sizes (warping factor = 0, 

and resampling window = 50 frames). 
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Fig. 6.5.  Results with various minimum and maximum block sizes (warping factor = 5, 

and resampling window = 50 frames). 
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From Fig. 6.4 and Fig. 6.5, there were no significant 

differences in performance among all cases. In general, use 

of a block spacing of 8 ms is slightly better than use of 

block spacing of 10 ms. The best result (64.5%) was obtained 

with a block spacing of 8 ms, block length of 15&41 frames 

and warping factor of 10. 

6.7 Increasing Model Complexity 

The experimental results reported thus far in this 

section were obtained with 3-state 3-mixture HMMs. Low 

complexity models were used because training and recognition 

could be completed in a short amount of time. This allowed 

us to try many sets of parameters for each technique. Once 

optimum parameters were found, higher complexity HMM models 

could be applied to achieve higher recognition accuracy. In 

this section, the best case for each method was taken and 

some experiments with HMMs of a higher number of mixture 

components were performed. Table 6.6 compares recognition 

results obtained with standard method (DCSCs and MFCCs) and 

all proposed methods when the number of mixture increases 

from 3 to 18 mixtures (diagonal covariance) per state and 1 

to 4 mixtures (full covariance) per state. 

 



 96

 Accuracy with different methods (%) 

Number of 

mixtures 

DCSC  MFCC Var. Block

Length 

 Var. Block 

Spacing 

Combined 

Block Size 

3 Diag.      64.3 64.0 64.0 64.3 64.5

6 Diag.      66.2 66.3 65.6 65.6 65.7

9 Diag.      67.9 67.1 67.0 67.5 67.3

12 Diag.      68.3 67.8 68.2 68.9 67.8

15 Diag.      68.9 67.9 68.6 68.9 68.2

18 Diag.      69.4 68.4 69.2 69.0 69.1

1 Full      64.8 63.6 65.0 65.4 65.3

2 Full      68.7 67.5 68.6 68.7 69.2

3 Full 70.1 68.7 N/A*   70.4 70.5

4 Full N/A*     69.7 N/A* N/A* 71.2
* No result obtained due to training problems. 

Table 6.6.  Results with various numbers of mixtures per state (diagonal and full 

covariance matrix). 

9
6
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 As seen from the table above, the recognition accuracy 

improves significantly with higher complexity HMMs.  

However, training and recognition times are also longer. For 

example, the 18-mixture model takes about 5 times longer for 

recognition than the 3-mixture model. Note that “N/A” means 

that the model could not be successfully trained. This was 

due to the complexity of a model with a full covariance 

matrix in that some distribution of the training data may 

result in a non-invertible covariance matrix.  

 For systems with a diagonal covariance matrix, 

performance was not significantly improved when the number 

of mixtures was more than 12.  Best results overall for 18 

mixtures were slightly below 70%. Use of one mixture per 

state with a full covariance matrix showed slight 

improvement over the use of 3 mixtures with a diagonal 

covariance matrix. In general, use of 3 or 4 mixtures with a 

full covariance matrix outperformed use of 18 mixtures with 

a diagonal covariance.  However, the 3 mixture model with a 

full covariance matrix takes about 10 times longer for 

recognition than the 3 mixture model with a diagonal 

covariance matrix and about 2 times longer as compared to 

the 18 mixture model with diagonal covariance matrix. 

 There is an issue of the difference in memory 

requirement between the use of diagonal and full covariance 

matrix. Only diagonal terms must be stored for the diagonal 

case. For the full covariance case, all the diagonal terms 

and all the upper (or lower) triangle terms of the 

covariance matrix must be stored. Memory usage for a one-

mixture full covariance model is slightly more than that of 

a 9-mixture diagonal covariance model. On the other hand, 

systems with 9 diagonal mixtures performed much better than 

systems with one full mixture, as seen in Table 6.6. 
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6.8 Context Dependent Experiments 

A popular method for increasing modeling accuracy is to 

use context-dependent HMM models such that context is taken 

into consideration. The underlying reason for using context-

dependent models is the coarticulation which occurs in 

speech production because of the inertia of the vocal tract 

of the speaker.  This results in a different realization of 

the same phone depending on the adjacent phones. For 

example, the realization of the phone /ae/ that is followed 

by the phone /m/ (as in the word ‘am’) is different from the 

realization of phone /ae/ that is followed by the phone /t/ 

(as in the word ‘at’).  Monophone systems do not really take 

in account these coarticulation effects.   

There are two techniques for adding contextual 

information into the HMM-based recognizer: biphone and 

triphone methods. The first one models the coarticulation 

effects, taking into account only pairs of adjacent phones. 

There are right-context biphones and left-context biphones. 

Right-context biphones model the current phone and 

coarticulation with the succeeding phone. On the other hand, 

left-context biphones model the current phone and 

coarticulation with the preceding phone. 

Contextual information can be better observed with 

triphone context-dependent models. In this case, 

coarticulation effects of the preceding and succeeding 

phones are taken into consideration. Although there are 

several implementation problems that have to be accounted 

for, many of the state-of-the-art results in continuous 

speech recognition were achieved using triphones. 

The big drawback to the use of either biphones or 

triphones is the large number of models needed.  

Theoretically, the number of models is N2 for biphones and N3 
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for triphones, where N is number of monophone models. For 

example, in our case with 48 monophone models, there will be 

2304 biphone models and 110592 triphone models. Although 

some triphones and biphones may not be present in the 

vocabulary, the number of models is still relatively large. 

This leads to the problem of insufficient training data. As 

a result, a model that has only a few training samples will 

not be accurately and robustly estimated. Use of context-

dependent models will not improve overall system performance 

if this issue is not properly addressed. 

To build a context-dependent system, one has to first 

build a context independent system, i.e., monophone models 

must be trained. Then each biphone or triphone model is 

cloned from its corresponding monophone. After that each 

context-dependent model is further trained with its 

associated training data. 

There are many techniques to overcome the lack of 

training data problem. One solution is to use a sharing 

mechanism. A simple but effective example would be for all 

models of the same base phone to share the same transitional 

probability matrix. Although the transitional probability 

matrix is a crucial part of a HMM model, it is not sensitive 

to context. The sharing of the transitional probability 

matrix greatly reduces the number of parameters to estimate. 

Further sharing is still needed to make these models 

practical.  

Recall that each state of a HMM has a mixture of 

Gaussian PDFs to capture the statistics of the speech data. 

Even though it is a good practice and it is possible to 

share parameters among several states, care must be taken 

about which parameters are shared because the performance of 

the recognizer depends crucially on how accurate a state can 
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model the speech. The HTK provides tools to perform model 

cloning and very effective parameter tying (sharing) 

[64],[65]. 

In this work, simple right-context biphone models were 

used. First, all occurrences of a biphone in the training 

data were counted. Then, the top 400 phone pairs which 

occurred the most were chosen. This will ensure that each 

biphone will be sufficiently trained. Furthermore, all 48 

monophones were included to account for the less frequently 

occurring phone pairs and for the last phone of each 

utterance which has no succeeding phone. As a consequence, 

there were a total of 448 HMM models for the context-

dependent system.  

The original phone transcriptions provided with the 

TIMIT database was updated with the 448 context-dependent 

models. The HTK provides a tool that can modify the TIMIT 

label files and such a tool was used in this work.  

Since the use of a Gaussian mixture with a full 

covariance matrix introduces a system with great complexity, 

use of context-dependent phone models results in an 

extremely complex and computationally demanding system. 

Therefore, context-dependent models were used only with 

diagonal covariance matrices. Table 6.8 depicts experimental 

results obtained with CD models using the best parameters of 

each method for feature computations. The results should be 

compared against those in Table 6.7 where monophone models 

were used. 

 Results from Table 6.7 indicate that context-dependent 

models improve performance significantly over the low 

complexity models. However, adding context did not perform 

significantly better than monophones with a large number of 

mixtures. Thus, it appears that the additional mixture 
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components capture most of the contextual information. 

Therefore, introducing explicit context modeling is not 

necessarily beneficial. However, since only relatively 

simple CD models were used in this dissertation, it is 

possible that monophone models with a large number of 

mixtures could be further improved with a carefully designed 

biphone or triphone system.  Time limitations prevented a 

more detailed investigation of this issue, which is 

essentially a secondary point for the present work. 

 The best result of 72.6% obtained with the PCA method 

is not the absolute highest in the literature.   However, it 

does compare favorably. In the concluding chapter (Section 

6.11), a table is given which compares results of the 

present study to results reported in the literature for the 

same task. 

 Note that the highest accuracy obtained with monophone 

models was 71.2% with full covariance Gaussian PDF. The 1.4% 

improvement in accuracy due to the introduction of the 

biphone models is quite small, considering the increasing of 

recognition time by about a factor of three. 
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 Accuracy with different methods using context-dependent models (%) 

Number of 

mixtures 

DCSC  MFCC Var. Block

Length 

 Var. Block 

Spacing 

Combined 

Block Size 

3 Diag.      69.2 69.1 69.2 69.2 69.1

6 Diag. 70.9 70.4. 70.1 70.5 70.2 

9 Diag. 71.4 58.3*    71.6 71.1 70.8

12 Diag. 71.5 63.7*    71.6 71.5 70.9

15 Diag. 71.3 63.9*    71.4 71.5 71.5

18 Diag.      71.4 68.3 71.3 71.4 72.6
* Low result obtained due to training problems. 

Table 6.7.  Results with right-context biphone model for various numbers of mixtures 

per state (diagonal covariance matrix only). 

1
0
2
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6.9 Experimental Results with NTIMIT 

The experiments reported in the previous sections were 

carried out to test the proposed techniques with high 

quality data.  Parameters were “optimized” for each method, 

at least subject to the constraints given. In this section, 

these same methods were evaluated with the telephone-grade 

NIMIT database.  With band-limiting and lower SNR data, the 

robustness of various feature extractions was tested. There 

were no parameter tunings performed in these tests.  Rather, 

the parameters obtained previously with the TIMIT data were 

used.  The only difference when working with NTIMIT data was 

that the frequency range was reduced (70 Hz to 4,000 Hz) and 

the spectrum floor was reduced (to 35 dB) to match the 

database.  

Table 6.8 summarizes recognition results obtained under 

the same conditions as for Table 6.6 except that the NTIMIT 

database was used.  In general, the results with MFCC 

parameters were better than other methods when the number of 

mixtures was small and when a full covariance matrix was 

used. In many cases, there were no performance improvements 

over the use of a full covariance matrix.  

 Table 6.9 shows results with NTIMIT when context-

dependent models were applied. There were slight performance 

improvements with the use of context-dependent models. Best 

accuracy of 59.2% was achieved with PCA features. 
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 Accuracy with different methods (%) 

Number of 

mixtures 

DCSC  MFCC Var. Block

Length 

 Var. Block 

Spacing 

Combined 

Block Size 

3 Diag.      50.8 51.4 50.9 50.9 50.9

6 Diag.      54.0 54.4 53.4 53.4 53.2

9 Diag.      57.2 55.2 54.6 54.6 54.6

12 Diag. N/A*     55.4 56.2 56.2 55.1

15 Diag.      56.0 56.0 55.6 55.6 55.9

18 Diag. 56.5 56.8 N/A*   N/A* 56.3

1 Full      51.6 53.3 51.8 51.8 52.5

2 Full      54.5 56.9 54.5 54.5 55.7

3 Full      56.1 58.4 56.2 56.1 57.4

4 Full N/A*    N/A* N/A* N/A* N/A* 
* No result obtained due to training problems. 

Table 6.8.  NTIMIT results with various numbers of mixtures (diagonal and full 

covariance matrix). 

1
0
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 Accuracy with different methods (%) 

Number of 

mixtures 

DCSC  MFCC Var. Block

Length 

 Var. Block 

Spacing 

Combined 

Block Size 

3 Diag. 55.7 48.4**    54.9 54.9 55.2

6 Diag. 56.7 49.9**    57.6 57.6 56.5

9 Diag. 57.8 53.9**    57.6 57.6 57.7

12 Diag. N/A**     53.5** 58.2 58.2 58.4

15 Diag. 58.0 53.6**    58.0 58.0 59.2

18 Diag. 57.7 42.1**    N/A* N/A* 58.7
* No result obtained due to training problems. 
** Low result obtained due to recognition problems. 

Table 6.9.  Results on NTIMIT database with context-dependent models (diagonal 

covariance matrix only). 

 

1
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6.10 Discussion of Results 

On the TIMIT database, none of methods with the non-

uniform time sampling of features performed significantly 

better than the standard method. One explaination is that 

continuous speech is so complex that small inconsistencies 

in the processing steps may degrade overall performances 

even though the method is overall theoretically sound. 

Another reason could be that that the HMM is already so 

highly tuned that further improvements are just very 

difficult to achieve. The HMM framework may need more 

substantial modifications, with a better statistical model, 

in order to obtain any significant benefits from the 

approach attempted in this work. 

 One possibility is that the amount of training 

data is not sufficient. This can be tested by comparing the 

accuracy on training data versus test data for some cases.  

If the recognition rate on the training data is much higher 

than that on the test data, then it implies that more 

training data is needed for better model estimation. The 

recognition rate of 65.7% on training data versus 64.3% on 

test data (best case of the fixed block length and fixed 

block spacing method, 3 states and 3 mixtures per model) 

indicates sufficient training data for this case. On the 

other hand for our best case (combined block length method 

with biphone models), the training results were about 89.4% 

versus test results of 72.6%, indicating lack of training 

data for this case. 

6.11 Comparison with Other Systems 

The absolute best result on the NIST core test set 

(TIMIT) was 74.4% reported by [74]. Table 6.10 summarizes 

the methods used and accuracy achieved by other systems. 
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System 
Accuracy on 

NIST core test 
set(%) 

Lamel and Gauvain, 1993, [75], Bigram, 69.1 
Triphone, CDHMM. 

Goldenthal, 1994, [29], Trigram, Triphone, 
STM. 

69.5 

Robinson, 1994, [76], Bigram, Recurrent 
Nets.  

73.9 

Deng and Sameti, 1996 [77], Polynomial 73.4 
state HMM. 

Mari et al., 1996, [78], Bigram, 2nd order 68.8 
HMM. 

Chang and Glass, 1997, [79], SUMMIT, 73.4 
Bigram, Diphone. 

Ming and Smith, 1998, [74], Bayesian 74.4 
triphone models. 

Karnjanadecha, Bigram, Monophone, Diag. 69.4 
Cov., Non-uniform time sampling. 

Karnjanadecha, Bigram, Monophone, Full 71.2 
Cov., Non-uniform time sampling. 

Karnjanadecha, Bigram, Diphone, Diag. Cov., 72.6 
Non-uniform time sampling. 

Table 6.10.  Phonetic recognition accuracies on NIST 

stems that achieved an accuracy 

greater than 70%. The best result reported in this work was 

72.6%, achieved with context-dependent models and PCA 

features.  

core test set for various ASR systems. 

 

There were several sy



 108

Interestingly, our monophone system with a full 

covariance matrix outperforms 3 out of 7 context-dependent 

systems. The accuracy obtained from such a system was 71.2%. 

Moreover, the performance was not much lower (69.4% 

accur

ter Conclusions 

 using the TIMIT and  

NTIMIT databases.  Although none of the proposed non-uniform 

ignificantly better than the 

fixed

acy) when an 18-mixture with diagonal covariance matrix 

was used. 

There are not many results reported for NTIMIT data for 

this task. The results reported here should serve as a 

baseline for further investigation. 

6.12 Chap

This chapter contained a summary of all experiments and 

results for every proposed method

time sampling methods were s

 block length/fixed block spacing DCTC method, the best 

result obtained was very close to the performance of the 

state-of-the-art systems presently available. 
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CHAPTER VII  
CONCLUSIONS AND FUTURE WORK 

 

Many aspects of the use of variable block length and/or 

variable block spacing method for spectral/temporal feature 

computation have been investigated. Even though the proposed 

non-uniform time resolution methods have not proved 

themselves to be beneficial for continuous speech 

recognition over fixed time resolution methods, they should 

serve well as a starting point for further study in this 

field. Furthermore, there is room for improvement for each 

method which may lead to significant performance 

improvement. 

Use of triphone models with careful parameter tying 

should result in a much better performance. Since the aim of 

this work was concerned with the non-uniform time feature 

computation issue, we did not test our features with a more 

advanced statistical modeling method. 

7.1 Contributions 

In Chapter 3, a simple variable block length technique 

has been proposed for use with alphabet recognition. There, 

the block length and block spacing was varied depending on 

the position within the utterance. Our recognition accuracy 

on test data was the highest result reported in the 

literature on the same task. The method was also robust in 

the presence of noise. 

The idea of variable block length was adapted to 

continuous speech recognition. In Chapter 4, several methods 

were proposed. The first method was to choose a block length 
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based on the reconstruction error, while the block spacing 

was fixed. The second method used the spectral derivative 

obtained from frame-based observation sequence to determine 

appropriate block spacing at each position in the utterance. 

Block length was fixed in this case. The third method was to 

apply a small block to capture rapid change of spectrum and 

a long block to capture the steady state portion at the same 

time. Then, PCA was used to reduce the dimensionality of the 

combined parameters. 

 Chapter 6 illustrates these methods with a collection 

of experiments that were conducted using features computed 

from various methods. Performance was very similar for 

almost all cases. Best accuracy achieved in this work was 

comparable to most high-performance systems while the model 

complexity of our model was lower.  

7.2 Future Work 

There are several suggestions for further research as 

follow. 

1. All methods proposed in this dissertation are 

applicable to any frame-based parameters. Thus, it 

would be interesting to test them with MFCC 

coefficients. 

2. Linear feature transformations such as LDA or PCA 

can also be applied to the final features after 

the block processing. 

3. Better context-dependent model should be 

introduced. 

4. Variable block spacing based on the variable block 

length method and variable block length based on 
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the variable block spacing method should be 

investigated. 

5. Instead of an HMM, another framework should be 

employed. 

6. The HMM may need to be modified to more directly 

incorporate the idea of non-uniform time sampling 

of the observation vector.  
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APPENDIX A 

PHONE RECOGNITION EXPERIMENTS WITH HTK 

TOOLKIT 

 

A.1 Monophones 

A.1.1  Data Preparation 

The following are things needed before training an HMM 

recognizer. 

(1) Prototype of each model (phone), generated 

using MakeProtoHMMSet perl script. 

(2) List of feature files for training 

(3) List of feature files for testing 

(4) MLF file of training set 

(5) MLF file of test set 

(6) List of all HMM models 

(7) Network lattice with bigram 

(8) Dictionary 

A.1.2  Initialization 

Initialize each model with HInit for 20 iterations 

using (1)(2)(4) and other options. Then initialize each 

model with HRest for 20 iterations using resulting model 

from HInit and (2) and (4). See HTK manual Section 8.2 and 

Section 8.4. 
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A.1.3  Embedded Training 

Train all models in embedded mode with HErest for 5 

iterations using resulting models from HRest and (2)(4) and 

(6). ). See HTK manual Section 8.5. 

A.1.4  Recognition  

Use HStats to compute bigram statistics using (2) and 

(6) and use HBuild to create network lattice. See HTK manual 

Chapter 12. 

Invoke HVite to find hypothesis phone transcription of 

each test sentence using results from HErest and from HBuild 

and also using (3)(6) and (7). ). See HTK manual Chapter 13. 

A.1.5  Result Evaluation 

Use HResults to compute recognition accuracy using 

output transcription obtained with HVite and (5). Use –e 

option to ignore confusions between a pair of phones. See 

HTK manual Section 13.4. 

A.1.6  Sample Script 

The following is a sample script to train a monophone 

system. 

 

--- Model initialization --- 

HInit -A -T 1 -i 20 -I trnMLF -l ae -o ae -C hinit.conf -D -

M hmms\hmm.0 proto\ae -S trnlist 

HRest -A -T 1 -u tmvw -w 3 -v 0.05 -i 20 -I trnMLF -l ae -C 

hrest.conf -D -M hmms\hmm.1 hmms\hmm.0\ae -S trnlist 
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--- Compute bigram statistics --- 

HLStats -A -D -b outmonbigrm monlist trnMLF 

HBuild -A -D -m outmonbigrm monlistbigrm monnetworkbigrm 

 

--- Recognition --- 

HVite.exe -A -D -C hvite.conf -T 1 -H hmms\hmm.3\hmmdefs -S 

tstlist -l * -i tstrecbigrm -w monnetworkbigrm -p 0.0 -s 5.0 

monvocabbigrm monlist 

 

--- Evaluation --- 

HResults -A -e si cl -e si vcl -e si epi -e el l -e en n -e 

sh zh -e ao aa -e ih ix -e ah ax -I tstMLF monlist 

tstrecbigrm 

 

A.2 Right-Context Biphones 

A.2.1  Data Preparation 

In addition to monophone data preparation, there is 

some more information needed. 

(9) List of biphones 

(10) Biphone MLF file of training set 

(11) Biphone MLF file of test set 

(12) Biphone Network lattice with bigram 

(13) Biphone Dictionary 

A.2.2  Cloning 

Clone each biphone model using HHed tools with (6). See 

HTK manual Section 3.3. 
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A.2.3  Embedded Training 

Train all models in embedded mode with HErest for 5 

iterations using resulting models from HHED and (9) and 

(10). See HTK manual Section 8.5. 

A.2.4  Recognition  

Use HStats to compute bigram statistics using (2) and 

(9) and Use HBuild to create network lattice. . See HTK 

manual Chapter 12. 

Invoke HVite to find hypothesis phone transcription of 

each test sentence using results from HErest and from HBuild 

and also using (3)(12) and (13). See HTK manual Chapter 13. 

A.2.5  Result Evaluation 

Use HResults to compute recognition accuracy using 

output transcription obtained with HVite. Use –e option to 

ignore confusions between a pair of phones. See HTK manual 

Section 13.4. 

A.2.6  Sample Script 

The following is a sample script to train a biphone 

system. 

 

--- Model Cloning --- 

HHed -A –B –D –C hhed.conf –T 1 –H hmm.16\hmmdefs –M hmm.17 

makerc.hed monlist 

 

--- Compute bigram statistics --- 

HLStats -A -D -b outrcbigrm rclist trnMLF 

HBuild -A -D -m outrcbigrm rclistbigrm rcnetworkbigrm 
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--- Recognition --- 

ite.conf -T 1 -H hmms\hmm.22\hmmdefs -S 

- Evaluation --- 

l -e si vcl -e si epi -e el l -e en n -e 

HVite.exe -A -D -C hv

tstlist -l * -i tstrecbigrm -w rcnetworkbigrm -p 0.0 -s 5.0 

rcvocabbigrm rclist 

 

--

HResults -A -e si c

sh zh -e ao aa -e ih ix -e ah ax -I tstMLF rclist 

tstrecbigrm 
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