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ABSTRACT 

This paper presents speech signal modeling techniques which are 
well suited to high performance and robust isolated word 
recognition. Speech is  encoded by a  discrete cosine transform 
of its spectra, after several preprocessing steps. Temporal 
information is then also explicitly encoded into the feature set.  
We present a new technique for incorporating this temporal 
information as a function of temporal position within each word.  
We tested features computed with this method using an alphabet 
recognition task based on the ISOLET database.  The HTK 
toolkit was used to implement the isolated word recognizer with 
whole word HMM models.  The best result obtained based on 50 
features and speaker independent alphabet recognition  was 
98.0%.  Gaussian noise was added to the original speech to 
simulate a noisy environment. We achieved a  recognition 
accuracy of 95.8% at a SNR of 15 dB. We also tested our 
recognizer with simulated telephone quality speech by adding 
noise and band limiting the original speech. For this "telephone" 
speech, our recognizer achieved 89.6% recognition accuracy. 
The recognizer was also tested in a speaker dependent mode, 
resulting in 97.4%  accuracy on test data. 

1. INTRODUCTION 

Continuous speech recognition systems have been developed for 
many real-world applications, often using commercial low-cost 
speech recognition software.  However, high performance and 
robust isolated word recognition, particularly for the letters of the 
alphabet recognizer and for digits, is still useful for many 
applications such as recognizing telephone numbers, spelled 
names and address, and  ZIP codes.  

Because of the potential applications, as mentioned above, many  
isolated word recognizers are optimized for the digits or alphabet 
or both (alphadigit).  The alphabet recognition task is particularly  
difficult because there are many highly confusable letters in the 
alphabet set---for example the great acoustic similarity among 
the letters of the E-set (b, c, d, e, g, p, t, v, z) or  for the (m,n) 
pair.  Also, since language models cannot generally be used, the 
alphabet recognition task is a small, challenging, and potentially 
useful problem for evaluating acoustic signal modeling and word 
recognition methods  

Several techniques have been proposed to improve isolated word 
recognition systems. For example, the best result in a speaker 
independent alphabet recognition was obtained using a  multi-tier 
phoneme-based Hidden Markov Model (HMM) recognizer [5]. 
Disadvantages of phoneme-based HMM recognizers are the 

system complexity and the phonetic transcription of the training 
words has to be known. 

The main contribution of this paper is to present a method for 
isolated word recognition which is easier to implement than the 
state of the art systems introduced to date, and one which gives 
better performance than any of these previously introduced 
systems.  

The ISOLET database, [1], was used for all experiments reported 
in this paper.  This LDC distributed database was intended for 
evaluation of  isolated word recognizers  and it has therefore 
been used by many researchers.  Thus, it is possible to directly 
compare  results.  Most of the experiments were done in a 
speaker independent fashion using all files from the database, 
i.e., 120 speakers (60 male and 60 females) for training and 60 
speakers for testing (30males and 30 females). 

The HTK toolkit [6], originally developed at Cambridge 
university, and now distributed by Entropics Inc., was used to 
implement the HMM recognizer. In our lab, we ported this 
toolkit to  Windows NT, and conducted all experiments under 
this operating system. 

In [4], which appeared in November 1998,  we achieved a best 
result of 97.3% for  speaker independent alphabet recognition. 
With the modifications introduced in this  paper we achieve even 
better performance, i.e. 98.0%.   This represents a reduction in 
error rate of about 25%, or with 1560 test tokens, the number of 
error tokens was reduced to 31 from 42.  

This paper is organized as follows. Section 2 describes the signal 
modeling procedures. Experimental details and result discussions 
are presented in Section 3 and conclusions are drawn in Section 
4. 

2. SIGNAL MODELING 

Our feature extraction method, which has been shown to work 
well with several classification and recognition problems, has 
been under refinement for a very long time. The method 
presented in this paper is a variation of  the method used in [4] 
and [7].    In this paper, we summarize the method,  including the 
changes which resulted in the error rate reduction.  

First, after second order pre-emphasis with a pre-filter centered 
at 3200Hz, Kaiser-windowed 20-ms speech frames were 
analyzed with a 512-point FFT every 5 ms.  A Kaiser window 
beta of 8, that is a window slightly "smoother" than a Hamming 
window, was used.  The spectral range was  limited to 60 dB for 
each frame, using a floor.  10 modified cosine terms over 
frequency were computed for each spectral frame.  These 10 



          ……. terms, very similar to cepstral coefficients, were computed with a 
bilinear warping factor of .45 over the frequency range of 60 Hz 
to 7600 Hz.  These 10 terms in turn were each represented by a 5 
term modified cosine expansion over time, using a "block" 
window with variable length. Thus each block was represented 
by 50 spectral/temporal features, as given by the following 
equations. 
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In equation 1, the DCTC terms (0 ≤ i ≤ 9) are the cosine terms 
computed over frequency for each frame.  The DCSC terms  
(0 ≤ j ≤ 4) are the terms which represent the trajectory 
information. Equation 2 is the method for computing the basis 
vectors over time (with h(t) a Kaiser window function). Both  
of these equations are in terms of "normalized" time t  
(-0.5 ≤ t ≤ 0.5).   In the next few paragraphs, we describe the 
method used to determine the actual time on which segment 
features are based, which we call the block length, or number of 
frames used to compute each set of 50 features. 

This block length was adapted to the position within the 
utterance.  In particular, at the beginning of an analyzed token, a 
block size of 6 frames (i.e., a 45 ms total duration, including end 
effects of the analysis frames) was used.  As the analysis window 
moved forward, the block size increased until a specified 
maximum was reached.  The block size was then fixed at this 
maximum until the end region of utterance was reached.   At this 
point the block length was again gradually reduced until, for the 
very final block, it again reached 6 frames. Time "warping" was 
also applied to each block, again using a Kaiser window, but 
with a beta value of 5.0 for the maximum length blocks.   The 
Kaiser window beta also varied from 0 for the 45 ms blocks up to 
5.0 for the maximum block length.   Thus, the features gave 
better time resolution for the onset and offset portions of each 
word, and less time resolution in the central  portions of each 
word.  The block features were re-computed every 10 ms. No 
manual segmentation or phonetic labeling was required or used.  
The primary modification, relative to [4] is that the block length 
was varied at both ends of each analyzed utterance, rather than 
only for the beginning section. 

As an example, suppose block features are to be computed from 
a speech token having N analysis frames, with block lengths 
ranging from 1 to 5 frames per block.  For this example, the 
block processing starts with a minimum block length of 1 frame, 
increasing to a  maximum block length of 5 frames and used a  
block advance rate of 2 frames. Figure 1 illustrates the increasing  
block length at the beginning of the analysis token.  As can be 
seen, the block length starts with 1 frame then increases in  size 
to 3 and 5 frames consecutively. The block length of 5 frames is 
fixed until the end of token is almost reached.  At this position, 
the block length is reduced from 5 frames to 3 frames then to 1 
frame as shown in Figure 2. 
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Figure 1. The increase of block length at the beginning 
of an utterance. 
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Figure 2. The decrease of block length at the end of an 
utterance. 

Note that the warping factor over time is adjusting according to 
the block length. For example, the factor is zero when the block 
length is  minimum and the warping factor is 5 at the maximum 
block length. The idea behind the adjustable warping factor is 
that for a shorter block, each frame gives equal contributions. For 
a longer block the frames in the middle of the block gives more 
contribution  (i.e., more emphasized).  

3. EXPERIMENTS, RESULTS AND 
DISCUSSION 

The ISOLET database from OGI [1] was used in all experiments. 
The database is comprised of the English alphabet letters  spoken 
by 150 speakers. There are 75 male and 75 female speakers. 
Each speaker uttered the same word twice. Thus there are totally 
7800 utterances. The database is divided into 5 groups: ISOLET-
1, ISOLET-2, ISOLET-3, ISOLET-4, and ISOLET-5. Each 
group has an equal number of speakers.  Utterances were 
recorded as isolated words with the sample frequency of 
16000Hz and a 16-bit A-to-D system.  The speech signal-to-
noise ratio (SNR) reported by OGI is 31.5 dB with a standard 
deviation of 5.6 dB. 

Although all speech files were reasonably accurately endpointed 
in the original distribution list, in our previous work, we found a 
small but significant improvement in recognition performance 
using data with endpoints refined by the modified endpoint 
detection algorithm of [3].  Therefore, for all experiments 
reported in this paper, we used the same endpoint detected 
version of ISOLET database  as was used in  [4]. 

For all experiments presented in this paper, the HTK toolkit was 
used to implement a word-based HMM recognizer. In each 
experiment, there were 26 HMM models trained to recognize all 
26 English alphabets. Each model had 5 states and 3 multivariate 
Gaussian mixtures with a full covariance matrix. In the training 



phase of each alphabet, every training utterance was segmented 
into equal lengths and then  initial model parameters were 
estimated. Note that no Baum-Welch iterations were done, as 
there were not found to be useful.  Next, the Viterbi decoding 
algorithm was applied to determine an optimum state sequence 
of each training token. Every token was re-segmented based on 
its corresponding optimum state sequence. Model parameters 
were re-estimated repeatedly until the estimates were unchanged 
or the maximum number of iterations were reached. Again the 
Viterbi algorithm was applied in the testing phase to determine 
the most likely model that best matched each test utterance. 

3.1 Experiment I 

The purpose of this experiment was to evaluate our feature 
extraction technique in a speaker independent alphabet 
recognition task.  The training data was comprised of all 
utterances from ISOLET-1 to ISOLET-4 (i.e. totally 6240 
tokens) and test data was comprised of all tokens from ISOLET-
5 (totally 1560 tokens). The feature analysis together with HTK 
toolkit described above were used. The minimum block length 
was fixed at 6 frames while the maximum block length was 
varied from 6 to 100 frames. The table below shows recognition 
results with various maximum block sizes. 

Table 1. Recognition accuracy with various maximum 
block length. 

Maximum block length 
(frames) 

Recognition accuracy 
(%) 

6 94.2 

10 95.0 

20 96.9 

30 97.2 

40 98.0 

50 97.4 

60 97.6 

70 97.4 

80 97.2 

90 97.1 

100 97.3 

 

The best performance was obtained with a  maximum block 
length of 40 frames which is equal to the time duration of 215 
ms. With these best parameters, the recognition accuracy of each 
alphabet subset is shown as in the following confusion matrix. 
Note that rows and columns with no error entries are not shown. 

Table 2. Error section of confusion matrix corresponding 
to the best test result (2% error). 

 B C D E F G I J L M N O P Q R T U V W Y Z
B 58 . . 1 . . . . . . . . . . . . . 1 . . .
C . 59 . . . . . . . . . . . . . . . . . . 1

D . . 59 . . 1 . . . . . . . . . . . . . . .
E 1 . . 59 . . . . . . . . . . . . . . . . .
F . . . . 59 . . . . 1 . . . . . . . . . . .
G . . . . . 59 . . . . . . . . . 1 . . . . .
L . . . . . . . . 59 . 1 . . . . . . . . . .
M . . . . . . . . . 58 2 . . . . . . . . . .
N . . . . . . . . . 7 52 . . . . . . . 1 . .
O . . . . . . . . 1 . . 59 . . . . . . . . .
P 2 . . . . . . . . . . . 58 . . . . . . . .
R . . . . . . . . . 1 . . . . 59 . . . . . .
T . . . . . . . 1 . . . . 2 . . 57 . . . . .
U . . . . . . . . . . . . . . . . 59 . 1 . .
Y . . . . . . 1 . . . . . . . . . . . . 59 .
Z . 3 . . . . . . . . . . . . . . . 1 . . 56

 

This recognition accuracy with respect to each alphabet set can 
be described as follows. The recognition rate of alphabet letters 
in the E-set is 97.2%, the recognition rate of the (m,n) pair is 
91.7%, and recognition rate of the remaining letters is 99.3%. 
Note that the poorest performance is obtained from (m,n) pair. 
The result shown in the table is a 25% error reduction compare to 
the best result reported in [4] and is the highest result ever 
reported on this test set. 

The accuracy of 98.0% corresponds to 31 error tokens,  
pronounced by 14 speakers out of the 60 test speakers (with  12 
errors obtained from just 2 speakers). The number of errors was 
small enough to be inspected graphically and by listening. After 
listening to all of the error tokens, we concluded that there are 4 
situations for which tokens were misrecognized. There were 9 
tokens which appeared to have an  endpoint detection problem. 
We believe that if endpoints were more accurately obtained, 
these errors would be eliminated or reduced.  There are 8 tokens 
that were pronounced in an unusual way, all by single speaker.  
Also there were 8 tokens that were misrecognized because they 
are so similar to other letters, that, even with careful listening, 
they were difficult to recognize.  Finally, there were 6 tokens that 
sounded reasonably clear and understandable, and there was no 
reason that could be specified for the error in machine 
performance. 

Note that the best parameter values obtained from this 
experiment were also used in later experiments. 

3.2 Experiment II 

This experiment was conducted to determine the overall 
performance of the system. The test set was rotated to avoid 
unfair tuning of parameters. As stated above, the ISOLET 
database contains 5 subsets.   For this experiment, each subset 
was used once as a test set while the rest were used as the 
training set. Results are depicted in Table 3. 

 

Table 3. Results obtained with various test sets. 

Test set Recognition accuracy 
(%) 

ISOLET-1 97.9 



ISOLET-2 97.4 

ISOLET-3 97.4 

ISOLET-4 97.4 

ISOLET-5 98.0 

Average = 97.6 

 

The average performance of 97.6% is achieved in this 
experiment which is shown that our recognizer works very  well 
with any test set and confirmed that it has not been tuned to 
perform well only on a particular test set.  

3.3 Experiment III 

The purpose of this experiment was to investigate the recognition 
performance on noisy and band-limited speech. The best 
parameter values obtained from the previous experiment were 
used with noisy and band-limited speech. Gaussian noise was 
added to all speech tokens to have a SNR of 15 dB. Band-
limiting was achieved by selecting frequency components that 
are in the desired range.  For example, in this experiment speech 
data was band-limited to the telephone channel bandwidth, i.e. 
300-3200 Hz. Gaussian noise was also added to band-limited 
speech in order to simulate telephone speech. Results are shown 
in the following table. 

Table 4. Results with noisy and band-limited speech 

Frequency range 
(Hz) 

SNR 
 (dB) 

Recognition accuracy 
(%) 

60-7600 clean speech 98.0 

60-7600 15 95.8 

300-3200 clean speech 92.9 

300-3200 15 89.6 

 

The recognizer performed very well with noisy speech and  
band-limited speech. The most interesting part is a recognition 
accuracy of 89.6% was achieved in the case of simulated 
telephone speech. This does not guarantee that performance will 
be the same for real telephone speech.  Although telephone 
speech cannot be modeled by only band-limiting and additive 
Gaussian noise, the noise level used in our tests (15 dB SNR) is 
much higher than would be typically found on a telephone. 

3.3 Experiment IV 

This experiment was intended to show the system performance 
on a speaker dependent alphabet recognition task. The database  

was organized in multi-speaker configuration. All first utterances 
from ISOLET-1 to ISOLET-4 were used for training and all 
second utterances from the same subsets were used for testing. In 
the other words, totally 120 speakers were used for training and 
testing. Recognition accuracy of test data obtained from this 
experiment was 97.4%. This is favorable to the result reported in 

[2]. Note, however, that the result in this experiment is slightly 
lower than that of the speaker independent case.  Presumably, the 
reduction in the number of training tokens was more detrimental, 
than any increase due to the speaker dependent effects.   

4. CONCLUSIONS 

Word-based HMM recognizers have been claimed to give poorer 
recognition performance compared to phoneme-based 
recognizers as presented in [5]. Experimental results reported in 
this paper have shown that if features are computed properly, 
whole word recognizers can, in fact, surpass the best reported 
results for phoneme based recognizers.  Whole word HMM 
based recognizers are easier to implement, at least for isolated 
word recognition. Results show that the proposed signal 
modeling techniques are straightforward, efficient and robust. 
The technique can also be extended to work with continuous 
speech. Block length can be varied depending on “rate of change 
of the spectrum” with shorter block lengths used in sections of 
high spectral derivative and longer block length used in sections  
with low spectral derivative. 
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