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ABSTRACT 

Spectral/temporal segment features are adapted for isolated 
word recognition and tested with the entire English alphabet set 
using Hidden Markov Models. The ISOLET database from OGI 
and the HTK toolkit from Cambridge university were used to 
test our feature extraction technique. With our feature set we 
were able to achieve 97.3% recognition accuracy on test data 
with one pass using a whole word based recognizer. Gaussian 
noise was also added to evaluate robustness of the feature set. 
We were able to obtain recognition accuracies of 49.6% and 
84.3% at SNR of -10dB and 0dB, respectively. Linear 
discriminant analysis was also applied to the initial feature set 
for a number of feature configurations and noise levels but, 
generally, the performance was not improved.  We conclude 
that the initial feature computations used are both very efficient 
(best results obtained with 50 total features) and robust in the 
presence of noise. 

1. INTRODUCTION 

Although automatic speech recognition performance has 
improved substantially over the past several years, automatic 
methods are still far inferior to most human listeners for most 
tasks.   Automatic performance is quite good for limited tasks 
with clean speech, but often degrades under adverse conditions, 
or for the case of difficult phonetic distinctions.    For example, 
stop consonants extracted from continuous speech can be 
identified with over 95% accuracy [5], whereas the best 
reported machine performance for the same task is about 82% 
[7]. Similarly, human listeners are generally able to better 
discriminate members of the “E” set  (b, c, d, e, g, p, t, v and z) 
than are the best machine algorithms.    In this paper, we adapt 
and modify feature extraction techniques which we previously 
found to work well for phonetic classification [10], to isolated 
word recognition and test these with the entire English alphabet 
set. 

In this work, each feature vector was comprised of 50 terms 
which encode the trajectory  of short-time cepstral coefficients 
over overlapping intervals 200 ms long.  Additionally, Linear  
Discriminant Analysis (LDA), a linear transformation technique 
that has been shown  to improve recognition performance of 
many speech recognizers [4], was applied to these features and  
transformed terms were used for recognition.  For the case of 
LDA, the number of terms used was varied from 5 to 50.  We 
compared recognition results obtained with these two set for 
features for  varying signal-to-noise ratios. 

The ISOLET spoken letter database from OGI was used in all 
experiments presented in this paper [1]. This database suits the 
objectives of evaluating our signal modeling/feature 
computation methods  in many aspects. It is spoken in isolation 
which was more convenient for testing than would have been a 
continuous speech recognition system.   It is comprised of 7800 
spoken letters uttered by 75 males and 75 females and is 
suitable to train and test a speaker independent recognizer.  It is 
a small but difficult task.  It was also previously used by several 
researchers which makes it easier to directly compare our 
results with published work. 

This paper is organized as follows. Section 2 presents the 
speech analysis procedures used in the study. Experiments and 
results are given in Section 3. In Section 4, results are discussed 
and, in  Section 5, final conclusions are given. 

2. ANALYSIS PROCEDURES 

For all experiments, every speech file from the database was 
analyzed by an endpoint detection program in order to locate 
more accurate endpoints. An endpoint detection scheme 
proposed in [2] was used to locate initial endpoints, which were 
then extended 30 ms in each direction (i.e., backward in time  
for the onset and forward in time for the offset) to allow for 
some inaccuracies in the original detection, and also to include a 
small amount of silence at the beginning and end of each 
utterance. The endpoint detection algorithm from [2] can be 
summarized briefly as follows. First the speech signal is pre-
emphasized to eliminate the DC component and to emphasize 
the higher frequency components prior to background noise 
estimation. Then, at each endpoint, a location of low energy 
area is detected using energy thresholds derived from the 
estimated background noise. The energy is computed using 
80ms non-overlapped frames. Then a shorter frame, 30ms, is 
used to locate the endpoint more precisely by finding a location 
where  the maximum change of energy content of  two adjacent 
frames occurs. In this step the frame is shifted one sample at a 
time.   

We adapted the endpoint algorithm of [2] slightly as follows, to 
be more suited to the ISOLET data.  One fundamental difficulty 
was that only short silence intervals were available at the 
beginning and end of each utterance.  Therefore , we used a 
frame size of 20ms and 10ms for the long frame and short 
frame, respectively.  Also, for about 10% of the utterances, the 
algorithm did not satisfy certain threshold criteria to indicate a 
reliable result (often due to insufficient silence intervals for the 
background noise estimates).  For those cases, we used the 
endpoints in the original database.   Although every speech file 



in the database was already endpoint detected, our pilot tests 
indicated that the recognition performance on test data could be 
improved by a small amount (0.3%) if our endpoint detection 
program was applied. 

For signal modeling/feature extraction, we use a variation of 
methods previously presented for phonetic classification [10]. 
Summarizing briefly, after second order pre-emphasis, Kaiser-
windowed 20-ms speech frames are analyzed with a 512-point 
FFT every 5 ms. For the results given in this paper, a Kaiser 
window beta of 8 was used, corresponding to a somewhat 
"smoother" window than the more typically used Hamming 
window.  Using 10 basis vectors over frequency,  which 
incorporate a  bilinear frequency warping, 10 modified cosine 
terms over frequency were computed for each spectral frame.   
These 10 terms, very similar to cepstral coefficients, were 
computed with a bilinear warping factor of .45 over the 
frequency range of 60 Hz to 7600 Hz.  These 10 terms in turn 
were each represented by a 5 term modified cosine expansion 
over time, using a "block" window with variable length. Thus 
each block was represented by 50 spectral/temporal features. 

For the experiments reported in this paper,  special attention 
was given to adapting the block length to the position within the 
utterance.   In particular, at the beginning of an analyzed token, 
a block size of 6 frames (i.e., a 45 ms total duration, including 
end effects of the analysis frames) was used.  As the analysis 
window moved forward, the block size increased until a 
maximum of 40 frames (215 ms total duration) was reached.  
The block size was then fixed at 40 frames until  the end of the 
token.  Time "warping" was also applied to each block, again 
using a Kaiser window, but for this case the Kaiser window beta 
was 5.0 for the 40 frame blocks.   The Kaiser window beta also 
varied from 0 for the 45 ms blocks up to 5.0 for the maximum 
block length.   Thus, the features gave better time resolution for 
the onset portion of each word, and less time resolution in later 
portions of each word.  The block features were recomputed 
every 10 ms. No manual segmentation or phonetic labeling was 
required or used. 
Although the features described above perform well for both  
phonetic classification and speech recognition, we investigated 
the effectiveness and robustness of these features by 
transforming them with LDA.  Both feature sets were also tested  
with clean speech and noisy speech. 

We began  with clean speech utterances (as distributed by the 
LDC)  and added various levels of Gaussian noise to them 
before the feature extraction step was performed. In this work 
speech signals with signal-to-noise ratios (SNR) of -10dB, 0dB, 
10dB, 20dB, and 30dB were evaluated. 

In our  implementation of the LDA technique, we compute two 
covariance matrices, B and W.    The between class covariance 
B is estimated as the grand covariance matrix of all the training 
data (the same as for a principal components analysis).   The 
within class covariance W is estimated  by computing the 
average covariance of  time aligned frames of  data belong to 
the same class.    Time alignment is accomplished  using 
dynamic time warping to first determine a “target” for each 
word by successively aligning  and averaging all tokens of that 
word in pairs until only one token remains.    Covariance 
contributions are then computed as variations about the target, 
after another time alignment to that target.    These two matrices 

are then used to create a linear discriminant analysis 
transformation which maximizes the ratio of  between-to-within 
class covariance. Our implementation of this technique is 
similar to what is presented in [8]. 

3. EXPERIMENTS 

The entire ISOLET database was used to test the recognizer. 
The speech waveform was sampled at 16000 Hz with 16-bit 
quantization. This database contains 5 subsets: ISOLET1, 
ISOLET2, ISOLET3, ISOLET4, and ISOLET5. Each subset is 
comprised of speech utterances pronounced by 15 males and 15 
females. Each speaker utters the same word twice. In 
Experiments I and II, all speech utterances from ISOLET1-4 
(6240 total tokens) were used for training and all speech 
utterances from ISOLET5 (1560 total tokens) were used for 
testing. In Experiment III, training and test data were organized 
into 5 groups by rotating the test set. Each group has one 
database subset as test data and the remaining subsets as 
training data. Recognition results were averaged over all groups. 
Note that all database arrangements were done in a speaker 
independent fashion. 

For some cases, as shown below, additive Gaussian noise was 
added to the speech files in order to test the robustness of the 
features to noise at various levels. 

In all cases the HTK toolkit version 2.1 from Cambridge 
university [9] (distributed by Entropic Cambridge Research 
Laboratory Ltd.) was utilized to provide a whole word HMM 
based speech recognizer. Continuous density, full covariance 
HMM’s were used, with  3 Gaussian mixture components, 5 
states,  and  only self transitions and transitions to the next state 
allowed. 

With the HTK toolkit, initial HMM models are estimated by 
uniformly segmenting each training token to have an equal 
number of states (frames). Model parameters are computed 
based on segments of  all training tokens. Viterbi decoding is 
then carried out to determine the most likely segment 
boundaries of each token and new boundaries are assigned to it. 
Model reestimation is performed after every token had been 
resegmented. These steps are repeated until the estimate does 
not change or a specified number of iterations is exceeded. By 
default the number of iterations is 20. The HKT toolkit also 
provides the Baum-Welch reestimation program but we found 
that in most cases our test results were superior with initial 
models (about 0.1% to 0.4% higher without reestimations). 
Since the toolkit was mainly designed for continuous word 
recognition, recognition scores given in this paper are based on 
tokens that yield the highest probability of the most likely state 
sequences obtained by Viterbi decoding.   Thus Baum-Welch 
restimation was not used at all in our reported work 

3.1. Experiment I 

The objective of this experiment was to evaluate the 
performance of  our overall system with and without LDA 
analysis in the presence of noise on both training and test 
speech.   For these tests  white Gaussian noise was added to the 
speech signal  such that the overall signal-to-noise ratio varied 
from -10 dB to 30 dB. Also performance with clean speech was 



tested. Test results for 50 initial features and 30 LDA 
transformed features are given. 

 

Signal to Noise 
ratio (dB) 

Results with 50 
original features 

(%) 

Results with 30 
LDA features 

(%) 

-10 46.1 49.6 

0 82.5 84.3 

10 92.9 92.0 

20 96.6 96.3 

30 96.6 96.2 
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Figure 1:   Test recognition results with various number of 
LDA terms on clean speech and degraded speech. 

3.3. Experiment III 
Table 1:   Test recognition results for various signal-to-
noise ratios, using original features or LDA transformed 
features. 

We conducted this experiment in order to evaluate whether or 
not our very high results were due to unfair tuning of our 
parameters to the test set ISOLET5.  Therefore, for this 
experiment each database subset was selected as a test set and 
the remaining data were used  for training our recognizer. For 
example if ISOLET1 was used for testing then ISOLET2-5 were 
used for training. The following table depicts recognition 
accuracy on each set of test data. Average recognition results 
are also shown in the last row. Note that these experiments were 
all performed with our initial features (50 terms). 

Discussion 

The result of 97.3% (42 error tokens) with 50 original features 
for clean speech is the baseline result for this work.  Note that 
this result was obtained after numerous pilot tests to used to 
adjust parameter values.   It can be further broken down in 
terms of  alphabet subsets as follows.  The accuracy on the E set 
portion of the alphabet (B, C, D, E, G, P, T, V, and Z) is 96.1%. 
The performance on the M and N alphabet is 90.0% and 
performance on the rest of the alphabet is 99.1%. Note that 
performance is poorest for the recognition of  M and N.   
Although some attempts were made to implement a two pass 
recognizer, with the goal of the second pass to improve 
performanceon the E set and the M/N pair similar to [6], none 
of our attempts improved this baseline result. 

 

Test set Recognition Accuracy (%) 

ISOLET1 98.0 

ISOLET2 97.0 

ISOLET3 97.6 

ISOLET4 97.7 

ISOLET5 97.3 

Average = 97.5% 

The total number of errors for the test data was so few (42 
tokens in error out of 1560 total), that is was very easy to 
visually and auditorily inspect all error tokens in detail.   Based 
on this inspection, we concluded that all remaining errors are 
due to three sources:   1, In some cases the endpoints are still 
not  correct with  either extra noise, or truncation problems;  2,  
Some of the tokens are simply extremely difficult to 
discriminate, even with careful listening; and finally 3, some of 
the error tokens, although clearly recognizable, were 
pronounced in kind of slow "drawl," and thus much longer than 
average. 

Table 2:   Test recognition results on various test sets. 

The results indicate that the features described in this paper 
perform very well on all subsets of the ISOLET database. 

 4. DISCUSSION OF RESULTS 
3.2. Experiment II The best speaker independent performance on OGI’s ISOLET 

database with the same test data as used for our work was 
obtained using a 2-stage, phoneme-based, context-dependent 
HMM recognizer [6].    The result reported was 97.37%.  The 
next best reported result of 96.0%  was obtained using 617 
features and a neural network approach [3].  Our recognizer was 
able to achieve 97.3% of accuracy with a simple one pass, 
word-based recognizer.   We also use a relatively low number of 
features (50) which are computed in a straight forward manner.   
We believe our methods would be much easier to duplicate and 
to apply to other tasks than an isolated word alphabet recognizer 

For this case, recognition performance of the alphabet set 
experiments was examined on test data as the number of  LDA 
transformed features varied from 5 to 50 on clean speech and 
degraded speech (SNR=15dB). In both cases, test performance 
is quite stable from 15 features to 50 features, with slight 
degradation in performance with fewer than 15 features. 



than would be the methods reported in the other two studies 
mentioned in this paragraph. 

One puzzling result, at least to us, was that LDA did not 
improve recognition performance for most cases. It only  
improved performance slightly at very high noise levels, -10dB 
and 0 dB.   In the developmental stages of this work, we did 
observe, however, that for feature parameter values that did not 
result in optimal  performance, LDA did usually result in  
improved accuracy.   We hypothesize that if original features 
are very good,  LDA is not particularly beneficial.   We further 
hypothesize that the feature modeling techniques described in 
this paper are already beyond the point that LDA can result in 
further improvements. 

However, as shown by Experiment II, LDA can be used to 
reduce the number of features by a factor of about 3 with only 
modest decreases in performance.   Results of Experiment II 
show that 15 LDA terms could be used for recognition without 
losing much accuracy. Thus the feature reduction capability of 
LDA still holds true. 

5. CONCLUSIONS 

Methods for compactly representing the spectral temporal 
structure of speech have been applied to recognizing the letters 
of the English alphabet set. The use of LDA does not result in 
any improvement with either clean or noisy speech.   We 
conclude  that the signal modeling techniques described in this 
paper, and also as reported in more detail previously, apply very 
well to difficult isolated word recognition tasks.   The best  
result obtained from this test is as good as the best reported 
result for this database. 

Although the signal modeling methods used in this study are 
very similar to the commonly used cepstra and delta cepstra 
features, there are also many important differences which, we 
believe, lead to improved performance. The most obvious 
difference is the greater consideration paid to temporal 
information in the feature set.  In particular, as compared to 
most reported work, our features use more trajectory terms and 
a much longer time interval. 
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