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ABSTRACT 
 
 This paper  presents  methods and  experimental results for 
phonetic classification  using 39 phone classes and the NIST 
recommended training and test sets for NTIMIT and TIMIT.   
Spectral/temporal features  which represent the smoothed 
trajectory  of  FFT derived speech spectra over 300 ms intervals 
are used for the analysis.    Classification tests are made with 
both a  binary-pair partitioned  (BPP) neural network  system 
(one neural network for each  of the 741 pairs of phones) and  a 
single large neural network.    Classification accuracy is very 
similar for the two types  of networks, but the BPP method  has 
the advantage of much less training time.    The best results 
obtained (77% for TIMIT and 67.4% for NTIMIT) compare 
favorably to the best results reported in the literature for this 
task.    
 
        

1. INTRODUCTION 
 
Acoustic phonetic classification with the TIMIT data base is a 
standard benchmark for comparing different speech signal 
processing front ends and classification strategies. In this study, a 
compact spectral/temporal feature set is used along with a binary-
pair partitioned neural network classifier to obtain a high level of 
performance for automatic phone classification with TIMIT.  The 
analysis consists of first computing features which represent the 
smoothed spectral/temporal envelope of a 300 ms speech segment 
for each phone.  Typically about 60 parameters are computed for 
each segment.  The analysis is very flexible, allowing tradeoffs in 
time and frequency resolution, variable frequency resolution versus 
frequency, and variable time resolution within a segment.  This 
basic analysis method and classification strategy has been 
previously applied to vowel classification, also using TIMIT  [1,2]. 
The present paper is the first application of this method to a more 
comprehensive phonetic classification task-- all the phones in 
TIMIT.  The best test results obtained (77.0% for TIMIT and 
67.4% for NTIMIT using the 39 phone classes of the MIT/CMU 
standard) are very similar to the most comparable best results 
reported in the literature [3].  To our knowledge they are the 

highest obtained for 39 phones using the NIST recommended 
training and test sets.  Although some studies have compared a 
cepstral analysis front end with an auditory model front end [4], 
and found the auditory model to perform better (particularly in 
noise), our work shows that a properly refined cepstral analysis 
performs just as well.   
 
 

2. METHOD 
 
Spectral Analysis 
 
Phones were represented by 300 ms segments centered at the 
midpoint of each labeled phone.  Second order preemphasis was 
then applied to each segment, which was then further divided into 
10 ms frames, spaced 2 ms apart.  Frames were multiplied by a 
Hamming window and the FFT was computed.  This two-
dimensional time-frequency  data was morphologically dilated 
over frequency using an 80 Hz wide window and logarithmically 
amplitude scaled.  Features were then extracted from a portion of 
the 2-D spectrum (75 Hz to 6000 Hz for TIMIT and 300 Hz to 
4000 Hz for NTIMIT), as follows. 
 
 The features were  based on a discrete cosine transform 
(DCT) of the log of the DFT,  incorporating a  frequency warping 
function, f’ = g(f): 
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where   the   desired frequency  range is  normalized to the interval 
[ 0, 1]. 
 
By changing variables, the equation can be rewritten as 
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where the original cosine basis vectors are modified to account for 
the warping effect resulting in the basis vectors 
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Figure 1 depicts the first 3 basis vectors, using this approach, based 
on a bilinear warping using a coefficient of .45.   In practice, the 
DCTC terms are computed using sums involving FFT samples and 
samples of the modified basis vectors over a  specified frequency 
range.  These DCTC terms are thus very similar to cepstral 
coefficients typically used in speech analysis.  
 
  In a similar manner, the DCTC terms for several frames 
within a speech segment are also represented with a cosine 
expansion over time using  
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The variable t’ = h(t) is considered to be a “warped”  version of t 
where the function h is chosen to emphasize the center section of 
the segment. The time interval is normalized to [ -1/2, 1/2 ]. 
 
By again changing variables,  the equation can be rewritten as 

   DCSC i j DCTC i t j t dt( , ) ( , ) ( )=
−
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12
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where the basis vectors Θj(t) are the modified cosines for the 
segment interval 

    Θ j t j h t
dh

dt
( ) cos[ ( )]= π       

Figure 2 depicts the first 3 basis vectors, using a Kaiser window for 
dh/dt, with a Kaiser factor of 10, for a segment spanning 300 ms. 
 
 In effect, this two step procedure filters the log 
magnitude spectrum over frequency and then over time.  It can be 
viewed as a partitioned 2-D filter, whose outputs are the features 
used for classification.  The FIR filter coefficients (basis vectors 
over frequency and time) are designed so that the features represent 
the spectrum with non-uniform frequency and time resolution.  In 
particular the frequency resolution approximates a 
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Fig.1  First three basis vectors over frequency 
 
 

Bark scale and the time resolution is highest near the center of each 
segment and smoothly tapered to each endpoint.  From another 
point of view, the features encode DCTC (cepstral coefficient) 
trajectories over each segment.  As in our previous work, we refer 
to the  terms over frequency as DCTCs and the terms over time as 
DCSCs.  All features were scaled for a mean of 0.0 and standard 
deviation of .2 prior to classification. 

 
Fig. 2  First three basis vectors over time. 

 
 

3. CLASSIFIER 
 
All classifiers used in these tests were multilayer perceptrons with 
one hidden layer trained with backpropagation.  For the case of the 
binary-pair partitioned (BPP) system, 741 classifiers, each with 10 
hidden nodes and 1 output node, were trained with 200,000 
updates.  For  the large neural network (LNN), a network with 500 
hidden nodes was trained with 2,000,000 updates. 
   
 These network configurations were determined from 
experiments with developmental data, and achieved good 
performance with relatively fast training times.   The initial 
learning rate was .45 for the BPP networks, and .15 for the LNN 
networks.  The update rates were gradually reduced during the 
training iterations (using a multiplicative factor of  .96 for  every 
5000 network updates for the BPP case, and a factor of .96 for 
every 78000 networks for the LNN case).    
 
 For the case of the BPP method, final decisions were 
made by combining the 2-way decisions from each of the 
networks.   In  particular, for each phone category, there were 38 
classifiers used to discriminate that phone from each of the other 
38 possible phones.  By summing these 38 outputs, for each of the 
39 phone categories, an estimate of the probability of each phone 
was obtained.   The phone with the highest probability measure 
was  then selected as the most probable phone.  
 
 
 
 



4. EXPERIMENTAL TESTING 
    
Data Base 
 
All experiments were done with the TIMIT and NTIMIT data 
bases. Training was based on SX and SI sentences using the full 
training set (528 speakers, 3696 sentences, 131,890 tokens). All 
phones were included in the analysis. Experiments were conducted 
for 39 phone groups, using the CMU/MIT standard for combining 
phone categories [4].  For the results reported in this paper, the core 
test set developed by NIST (24 speakers, 168 sentences, 6790 
tokens) was used.  Development work was done with the 499 
speaker training set, and 50 speaker test set used by [6]. 
  
Experiment 1 
 
For each data set, 60 total features were used, with 5 terms 
encoding the trajectory of each of 12 cepstral coefficent terms.  
Except for the frequency range differences, as noted above, 
processing was identical for both cases. Table 1 gives test results 
for the TIMIT and NTIMIT data using the BPP and LNN 
classifiers.  Test results were scored considering (a) only the top 
choice of the classifier, and  (b) the top 3 choices of the classifier.   
 Test results for the TIMIT data are over 75% correct, considering 
only the top choice, and over 94%, using the top 3 choices of the 
classifier.  The performance of the BPP and LNN  classifiers are  
very similar.  However the LNN classifier required about 8 times 
as much training time (65 hours versus 8 hours on a Pentium 133). 
  For the NTIMIT data, the BPP classifier performance was 
superior to that of the LNN, with both much lower than that 
obtained with the TIMIT data.    For example, for condition (a), the 
BPP results in about 67% versus 61% for the LNN.   (Generally, in 
results with development data, the LNN and BPP results were 
much closer.)    
 
Table 1.  Phone classification results obtained with 60 features. 
 

Data       Method (a)  Top   1 (b)  Top   3 
TIMIT      BPP 76.5% 94.5% 
TIMIT      LNN 77.0% 93.8% 
NTIMIT BPP 66.6% 89.5% 
NTIMIT LNN 60.8% 82.9% 

 
Experiment 2 
 
Several other conditions were examined, in terms of the number of 
DCTCs and number of DCSCs for the both the NTIMIT and 
TIMIT data.  In particular, the number of DCTCs was varied from 
7 to 12, and the number of DCSC terms varied from 4 to 8  (but 
with total features varying from 48 to 96).   We hypothesized that 
for the NTIMIT data, better performance might be achieved by 
increasing time resolution (i.e., more DCSC terms) and reducing 
frequency resolution (fewer DCTC terms).  These cases were 
investigated only with the BPP classifier,  since this classifier 
required much less training time than the LNN classifier.   For all 

cases tried, classification accuracy for NTIMIT ranged from 64.4% 
to 67.0%,  and from 74.0% to 76.6% for TIMIT.   Thus the 
classification accuracy was quite insensitive to the number of total 
terms used  and to tradeoffs between time and frequency 
resolution.  
 
 Nevertheless, two attempts were  made at  feature 
“optimization.”   In the first of these, 35 features  from a set of 96 
(12 DCTC trajectories, each encoded with 8 DCS terms) were 
selected for each pair of phones, to optimally discriminate that pair 
of phones using a Gaussian  Bayes classifier for feature evaluation. 
 A modified add-on procedure was used [7,8] to determine feature 
sets.  The classification results for TIMIT data,  using the 35 
selected features, are given in the first row of Table 2.   In the 
second attempt, 60 features  were chosen as indicated in Table 3.   
These  particular features, which were used for all phone pairs, 
were chosen based on the features typically selected from the 
automatic feature ranking experiment for the 741 phone pairs.  
Results using these “best”  60 features are listed in the remaining 
rows of Table 2, for the TIMIT and NTIMIT data respectively.    
The results based on the 35 features are slightly inferior to those 
listed in Table 1.  The  results based on the 60 “best” features are in 
fact only very slightly different (but generally higher)  than for the 
60 features used in experiment 1.   Thus the main conclusion of 
experiment 2 is that phonetic classification accuracy, using the  
features analysis methods described, and the BPP classifier is 
insensitive to the number of features used.   Also many 
combinations of DCTC and DCSC terms yield very similar 
performance.       
 
Table 2.  Phone classification results for 39 phones for four cases. 
 

                   Case Top 1 Top 3 
TIMIT/BPP  Best 35 75.7% 94.6% 
TIMIT/BPP Best 60 76.4% 94.7% 
TIMIT/LNN * Best 60 76.3% 93.4% 
NTIMIT/BPP Best 60 66.8% 90.1% 
NTIMIT/LNN Best 60 67.4% 88.1% 

      (*  This case only trained for 1.1 million updates) 
 
Table 3. List of 60 “best” features.   
 

DCTC 0 1 2 3 4 5 6 
#DCSC 5 6 9 9 7 6 5 

 
DCTC 7 8 9 10 11 12  
#DCSC 4 3 2 2 1 1  

 
 
 



 
 
 

5. CONCLUSIONS 
 
The results obtained with the signal analysis and partitioned neural 
network classifier used in this study are among the best reported 
for TIMIT and NTIMIT.  Unfortunately, despite the use of a 
"standard" data base, it is still difficult to compare results because 
of differences in selection of training and test data, and also 
because of differences in selection of phone groups.  The results in 
this paper are based on the complete training and core test sets, 
which we believe are the most reasonable choices for comparisons 
of phonetic classification methods with TIMIT.   We also advocate 
the use of 39 phones as per MIT/CMU  (or else the full set of  
phones).  To our knowledge the results reported in this paper are 
the highest obtained for 39 phones using the NIST recommended 
training and test sets.  The most directly comparable results appear 
to be those of [3] (about 78% classification for 39 phones from 
TIMIT, and 69.2% classification for 39 phones from NTIMIT, 
both using 610 training speakers and 20 test speakers) and [9] 
(about 72% classification for 39  TIMIT phones using articulatory 
based modeling). 
  
 The signal analysis used to obtain these results is quite 
conventional (i.e., FFT derived cepstral coefficients), except for 
several refinements as reported previously in studies of vowel 
classification  [2, 10], and as summarized in this paper.   
Additionally, a second step of analysis is used to compute a 
compact set of segment features from a collection of frame based 
features.  The final features thus represent spectral/temporal 
information in an integrated form.   The analysis also performs 
well for telephone speech, provided small changes are made in the 
computations such as a reduced frequency range.   Thus our 
analysis appears to be as robust to noise as are the auditory model 
based front ends advocated in some studies [4]. 
        
 The binary-pair partitioned classifier, which we have 
previously shown to be effective for automatic speaker 
identification [11] and more limited phone classifications tasks, 
scales up well to large phone classification tasks.  The system of 
neural networks used for the present work was found to perform 
comparably to a large neural network classifier, but  requires much 
less training time.  The rapid training time enables more thorough 
examination of different configurations of signal processing front 
ends.  The partitioned classifier also allows for convenient 
individual optimization of features and classifier for every pair of 
phones. Using feature optimization techniques for each pair of 
phones, classification  obtained  using 35 features for each phone 
pair was obtained  nearly equivalent to that obtained  using 60 
features.    
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