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Abstract 
Many speech segmentation techniques have been proposed to 
automate phonetic alignment. Most of the techniques require, 
however, labeled data to train, and perform well only for read,  
high-quality speech. Automatic phonetic alignment, for lower 
quality varied data with no labeled training data, the subject of 
this paper, is a much more challenging domain.  An HMM-
based automatic speech recognizer was used in this study to 
determine phonetic sequences and boundaries of “open source” 
speech data, retrieved from public websites. The HMM models 
were initially trained using the TIMIT database and 
subsequently adapted to each passage. Standard frontend 
features such as MFCC, LPCC and PLP, and features computed 
by applying the DCT directly to the short-time spectrum 
(DCTC) were evaluated using TIMIT data. The “best” 
parameter set was found to be DCTC_78 and these parameters 
were used to align the speech data of interest. 
 
Index Terms— speech segmentation, phonetic alignment, 
speech recognition 
 

1. Introduction 
 
Although automatic speech recognition (ASR), automatic 
speaker identification, and automatic language identification 
have all improved dramatically, there are still large performance 
gaps between performance obtained with clean speech and 
speech spoken and recorded in more natural environments. The 
Open Source Multi-Language Audio (OSMLA) database 
project was initiated to collect real-world speech data available 
in audio/video format from public websites and provide labeling 
at various resolutions including phonetic level transcriptions 
[1]. The difficulty with speech database development is the 
requirement for human input in the annotation and labeling 
process. Ideally, each recording should be listened to and 
evaluated by a human listener. This is highly problematic for 
collecting a large speech database, especially when time-aligned 
phonetic transcriptions are desired. 

Time aligned transcriptions of speech data are, however, 
very useful for speech research. For example, a speech 
recognizer based on Hidden Markov Models (HMMs) ideally 
should have access to phonetic boundaries of every phone in the 
training data for model initialization. TIMIT [2] is one of the 
most widely-used speech corpora for the speech research 
community over the past 2 decades. The labeling information 
provided with this corpus has greatly contributed to its 
popularity and continual use, despite its small size (~5.38 hours 
of read speech). 

Several automatic methods for speech segmentation have 
been investigated [3,4,5,6,7]. Some of the automatic techniques, 

such as those reported in [3, 4], have yielded segmentation 
accuracy comparable to that from manual methods. However, 
all of these techniques were for read good quality speech, with 
ground truth information available for training and testing. 
Many published works focus on speech segmentation 
techniques for speech synthesis applications [5,8,9], again using 
high quality speech. In the OSMLA case, the data are often 
contaminated with noises of various characteristics. They are 
also spontaneous passages spoken by speakers of various 
accents, with different types of recording equipment, etc. This 
variability and low quality imposes many problems for 
automatic speech labeling.  Note, however, that all of this 
speech is easily understandable by human listeners. 

HMM-based ASR performing forced alignment is the most 
popular method for phonetic labeling. Although the HMM 
method is not optimized for speech alignment, it is a well-
studied technique and yields reasonably accurate alignment. 
Segmentation performance obtained with a HMM can be further 
improved using boundary refinement post-processing steps. 

The objective of this work was to determine speech 
features, HMM parameters and HMM training method to align 
the OSMLA database at the phonetic level with highest 
accuracy. Optimum system parameters were first determined 
using the TIMIT database, and applied to the OSMLA database.  

The remainder of this paper is organized as follow: Section 
2 briefly describes the OSMLA database project. Section 3 
discusses proposed methods, Section 4 explains experiments 
using TIMIT, Section 5 presents experiments on the OSMLA 
database, and Section 6 concludes the paper. 
 

2. The open source multi-language audio 
database 

 
The OSLMA database comprises a large database of English, 
Mandarin, and Russian audio/video recordings. The data were 
collected, formatted, organized, annotated, and given time 
aligned orthographic transcriptions at the sentence/phrase level 
by human listeners. Each language consists of 300 recordings, 
resulting in a total of approximately 90 hours of audio/video 
data. The speech data were often contaminated with noises of 
various characteristics, due to acoustic conditions of the 
recording site and the quality of the recording equipment. 
Moreover, the speakers speak with various accents and 
emotions.  A detailed description of the database is presented in 
[1]. 

An ultimate goal of the database project is to obtain time-
aligned transcriptions at the phonetic level of highest possible 
accuracy with the least human intervention. To help in this 
process, for each recording, 3 utterances (each 4-10 seconds 
long) were manually labeled at the phonetic level. This 



information is meant to serve as ground truth test data for 
algorithm development, rather than for system training. 

 
3. Proposed method 

 
Two major difficulties that underlie this work are: quality of the 
speech, and unavailability of the correct phonetic sequences. As 
briefly discussed in Section 2 about the speech quality, a 
desirable automatic phonetic alignment system is one that is 
robust to noises and that can cope with dialectic variations.  

The database was manually transcribed as word sequences 
with noise events marked. The only available time markers are 
at the sentence boundaries.  Thus the only two inputs that were 
available to the automatic phonetic alignment system are the 
speech data and its sentence level transcription (sequence of 
words). 

A hybrid architecture was proposed in [6] to automatically 
segment the TIMIT database using its word transcription (not 
using the phonetic transcription). The system was a HMM-
based phone recognizer initialized with embedded parameter 
estimation. The initial models were used to force-align the 
training data.  New HMMs were created and trained using the 
force-aligned phonetic labels for bootstrapping. The process 
was repeated for several passes to refine the HMM models. The 
alignment accuracy obtained with this method was 83.6%, using 
a 20 ms tolerance. 

The proposed method uses HMM-based ASR running in 
forced alignment mode to achieve phonetic labeling. This 
labeling will serve as initial information for further boundary 
refinement. Our method is similar to [6] in that the input to the 
system is the speech signal and its corresponding word 
sequence, and the use of multi-pass training. Fig.1 illustrates the 
method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The proposed method. 
 

In Figure 1, TIMIT HMMs represent phone-based HMMs 
trained with TIMIT data. In the first pass, the TIMIT models are 
adapted using the speech data and its word transcription, 
resulting in the adapted models (shown as Adapted HMMs in 
the figure). Since the adaptation needs phone transcriptions, the 
initial phone transcription is used as obtained from the word 
transcriptions by dictionary lookup (using the first 

pronunciation). The dictionary in Figure 1 refers to the 
pronunciation dictionary (lexicon) which maps each word to a 
phone sequence. The dictionary also supports words with 
multiple pronunciations. 

The adapted models are used to perform forced alignment 
of the speech data using the word transcription and the 
dictionary. The outcome of this step is the refined phone 
transcription in which multiple pronunciation of words are 
taken into account. This is the by-product results of the Viterbi 
search in HMM decoding. Note that the dictionary used in this 
work was created such that for each pronunciation of a word, an 
extra phone sequence that ends with SP (short pause) was 
inserted. The purpose is to enable the forced alignment to 
automatically insert a short pause between a pair of words 
where there is high probability of an acoustic clue for a short 
pause. 

In order to obtain better model parameters, the model 
adaptation process is repeated for several passes. For all but the 
initial pass, the refined phone transcriptions are used for model 
adaptation instead of the initial transcription. 

Due to the noisy and dialectic nature of our database, there 
is no single phonetic alignment method that works well on all 
utterances. The proposed HMM-based ASR method yields an 
all around best result which would be valuable for further 
refinement. The lack of labeled data to train the system (used  
for most high-performance speech alignment systems) is not a 
severe limitation because of the availability of HMM adaptation 
techniques. So initial HMM models can be trained using labeled 
databases such as TIMIT.  

Based on preliminary experiments, alignment accuracy 
obtained from adapted models was highest when adaptation is 
performed on a passage-by-passage basis. By passage, we mean 
the entire recording session (about 3-6 minutes long) of a 
speaker. 

3.1. Figure of merit 

In this work, two types of errors can occur: phonetic 
transcription errors and alignment errors. Both errors have to be 
accounted for at the same time. Alignment accuracy is 
measured along with phonetic transcription accuracy. Three 
type of transcription errors (insertion, deletion and substitution 
errors) are computed using a dynamic-programming-based 
string alignment algorithm. Only matched phones were used to 
compute alignment accuracy. The most commonly used figure 
of merit (as pointed out in [2]) for segmentation accuracy is the 
percentage of boundaries with errors smaller than 20 ms.  This 
20 ms error criteria was used in this work (although error 
tolerances of 5 ms, 10 ms, 30 ms, 50 ms and 100 ms were used 
in our experiments, results with 20 ms tolerance are mainly 
reported). 
 

4. Experiments with TIMIT 
 
The main purpose of this set of experiments was to investigate 
the best feature set, the best HMM parameter and the best 
HMM training that suits the task at hand. The TIMIT database 
was used in all initial experiments, as reported in this section. 
As mentioned above, since the proposed system is based on 
model adaptation from initial TIMIT models, it is important to 
determine a parameter set that works well with TIMIT. 

According to the proposed system depicted in Figure 1, the 
system also behaves like a pattern recognizer when it is 
matching the acoustic information with the most likely phone 
sequence. Thus the adapted models must be a good recognizer. 
However some reported works have shown that the best 
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recognition architecture does not always result in best alignment 
accuracy, and vice versa [3, 10]. It would be beneficial to 
investigate the phone recognition and alignment performances 
simultaneously using different settings, to find the setting that 
gives balanced results between recognition accuracy and 
alignment accuracy.  

4.1. Feature sets 

The feature sets used in the experiments include: Mel-frequency 
Cepstral Coefficients (MFCC), Linear Prediction Cepstral 
Coefficients (LPCC), Perceptual Linear Prediction Coefficients 
(PLP), and Discrete Cosine Transform Coefficients (DCTC).  
For MFCC, LPCC and PLP, 13 coefficients were extracted from 
each frame and their corresponding delta and delta-delta terms 
were augmented resulting in 39 terms. These feature sets are 
referred to as MFCC_39, LPCC_39 and PLP_39. Note that all 
of these features were computed with 25 ms frame size with 5 
ms frame spacing. 

The DCTC features were computed as described in [11]. 
Two sets of DCTC features were investigated: DCTC_39 and 
DCTC_78. The DCTC_39 feature set was computed with 13 
discrete cosine transform coefficients (DCTCs) of the log 
spectrum, with each DCTC trajectory encoded with 3 terms of a 
discrete cosine series (DCSs) over a block of 200 ms. The frame 
size was 25 ms and the frame space was 5 ms or 10 ms. The 
DCTC_78 features were computed with 13 DCTCs with 6 
DCSs expansion, resulting in 78 terms. These features were 
computed using a frame size of 8 ms and expanded with DCSCs 
over a block of 200 ms with a block spacing of 8 ms. This 
DCTC_78 feature set was included in the experiments because 
it yielded excellent phone recognition accuracy on TIMIT test 
data. 

4.2.  HMM architecture 

The HMM used in this set of experiment is n-state left-to-right 
model (no skipping), with m diagonal covariance Gaussian 
mixture components. The number of states, n, was 3, 4, 5 or 6 
and the number of mixtures, m, was 1, 2, 4, 8, 16, or 32. The 
collapsed TIMIT’s 48 phone set was used. The HTK toolkit 
[12] was used to build and train the models and also used to 
compute MFCC, LPCC and PLP features. 

Two methods of HMM training were tested: isolated-word 
training and full training. The isolated-word training was 
achieved by using the isolated-word Viterbi training (available 
in HTK’s HInit tool). No further training was performed. The 
full training utilized all HMM training steps i.e.  isolated-word 
Viterbi training + isolated-word Baum-Welch training + 
embedded training. The isolated-word training method has been 
shown to be superior to full training for the phonetic alignment 
task [10]. 

4.3. Results 

Tables 1, 2 and 3 show recognition results and alignment results 
with 8-mixture HMM models when the number of states is 3, 4 
and 5, respectively, for the three tables. The alignment 
accuracies at 20 ms tolerances are reported. 

Several observations can be drawn from Table 1, 2 and 3: 

1. Feature sets that worked well for recognition also work 
well for alignment. 

2. Alignment accuracies obtained with the isolated-word 
training were higher than for full training, while the 
recognitions accuracies were the other way around. 

3. DCTC_78 yields all around best results with 4-state 
HMMs. 

 

Table 1: Results with 8-mixture models, 3 states. 

Feature set 
% Accuracy 

Isolated-word Trn. Full Training 
Recog. Align Recog. Align 

MFCC_39 62.9 86.9 65.5 85.0 
LPCC_39 58.1 85.2 61.8 84.0 
PLP_39 57.7 85.1 65.6 85.2 
DCTC_39 65.6 87.6 66.9 81.8 
DCTC_78 67.1 89.6 68.2 85.6 

Table 2: Results with 8-mixture models, 4 states. 

Feature set 
% Accuracy 

Isolated-word Trn. Full Training 
Recog. Align Recog. Align 

MFCC_39 63.8 87.9 66.7 86.6 
LPCC_39 58.6 86.5 62.3 85.4
PLP_39 58.2 86.1 66.2 86.8 
DCTC_39 65.9 88.5 67.4 83.6 
DCTC_78 66.7 90.4 68.5 87.6 

Table 3: Results with 8-mixture models, 5 states. 

Feature set 
% Accuracy 

Isolated-word Trn. Full Training 
Recog. Align Recog. Align 

MFCC_39 63.7 88.8 66.4 87.8 
LPCC_39 58.7 87.4 61.6 86.9 
PLP_39 57.8 87.2 65.7 87.4 
DCTC_39 65.5 89.4 67.3 84.9 
DCTC_78 63.4 89.0 66.7 86.4 

 
Observation 2 agrees with that reported in [10]. In 

addition, DCTC_78 features yielded even better results with 
more HMM mixture components (results not shown).  Note that 
for all 39 feature parameter sets, results are only reported for a 5 
ms frame spacing; results obtained with a 10 ms frame spacing 
were typically about 1-2% lower. Although DCTC_39 
outperformed DCTC_78 with 5-state HMMS (Table 3), best 
absolute results were obtained with DCTC_78 and 4-state 
HMMs (Table 2). 

Results in Table 4 indicate that all feature sets (except for 
the alignment accuracy of the MFCC_39) yield higher accuracy 
when trained with 32 mixture components. The DCTC_78 
feature set yields the highest performance. Thus this feature set 
was chosen for further investigation in the next set of 
experiments. 

 

Table 4: Results with 32-mixture models, 4 states. 

Feature set 
% Accuracy 

Isolated-word Trn. Full Training 
Recog. Align Recog. Align 

MFCC_39 66.2 88.3 68.4 52.2 
LPCC_39 60.3 86.6 64.3 85.9 
PLP_39 58.9 86.1 67.5 86.3 
DCTC_39 69.0 89.0 70.6 85.3 
DCTC_78 70.5 90.9 72.9 88.6 

 
5. Experiments using the open source 

database 
 
The primary pronunciation dictionary used was CMU dictionary 
version 07a. This dictionary utilizes 39 phones; thus the 61 



TIMIT phones were collapsed to 39. As a result, the TIMIT 
models consisted of 39 HMMs. Each HMM was modeled with 
4 states and 32 mixtures, and trained with the full training 
method described in Section 4.2. Note that an additional 
dictionary was manually created to handle words that are not in 
the primary dictionary. 

A subset of 212 passages (146 male + 66 female speakers) 
of the English speech from the OSMLA database was used. 
Each passage was first segmented into short utterances 
according to the utterance boundaries marked by human 
listeners. All noisy utterances were rejected.  For each passage, 
there were 3 utterances that were manually labeled and they 
were used for performance evaluation. 

The maximum likelihood linear regression (MLLR) HMM 
adaptation which is available in the HTK tool was used to adapt 
the TIMIT model using the speech data from each passage. The 
adaptation and evaluation was performed on a passage-by-
passage basis. Sub-results were accumulated and reported as a 
whole after all passages had been processed. 

The DCTC_78 and the MFCC_39 feature sets were tested. 
Table 5 shows all phone transcription error rates based on the 
total of 45,031 phones and Table 6 shows the alignment results 
based on the phone transcription errors in Table 5.  

Table 5: Phone transcription errors with MFCC_39 and 
DCTC_78 feature sets. 

Feature 
set 

Phone transcription error (%) 
Insertion Deletion Substitution 

MFCC_39 1.59 0.40 1.63 
DCTC_78 0.64 0.64 1.20 

Table 6: Alignment accuracies with MFCC_39 and DCTC_78 
feature sets. 

Feature 
set 

Alignment Accuracy (%) 
5 ms 10 ms 20 ms 30 ms 50 ms 100 ms 

MFCC_39 32.1 55.5 78.6 87.9 94.6 98.4 
DCTC_78 33.2 63.6 82.3 89.5 95.2 98.2 

 
From Table 5, DCTC_78 features yield lower insertion and 

substitution errors. In Table 6, DCTC_78 features yielded 
higher alignment accuracy than the MFCC-39 in all cases 
except for 100 ms tolerance.  
 

6. Conclusions and future work 
 
DCTC_78 features have been shown to be features of choice for 
ASR and speech alignment on the TIMIT and the OSMLA 
databases. The proposed HMM-based ASR forced alignment 
system that utilizes passage-by-passage adaptation is promising. 
Our future work will be focused on inclusion of noisy speech in 
the adaptation data set and aligning this speech. Robust 
boundary refine methods will be investigated to improve the 
alignment accuracy obtained from the HMM alignment. 
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