
 

HMM-Neural Network Monophone Models for Computer-
Based Articulation Training for the Hearing Impaired 

Mukund Devarajan, Fansheng Meng, Penny Hix, and Stephen A. Zahorian 
 

Department of Electrical and Computer Engineering, Old Dominion University 
Norfolk, Virginia 23529, USA 

 
       ABSTRACT 

 
A visual speech training aid for persons with hearing impairments 
has been developed using a Windows-based multimedia 
computer. In previous papers, the signal processing steps and 
display options have been described for giving real-time feedback 
about the quality of pronunciation for 10 steady-state American 
English monopthong vowels (/aa/, /iy/, /uw/, /ae/, /er/, /ih/, /eh/, 
/ao/, /ah/, and /uh/).  This vowel training aid is thus referred to as 
a Vowel Articulation Training Aid (VATA).  In the present paper, 
methods are described to develop a monophone-based Hidden 
Markov Model/Neural Network recognizer such that real time 
visual feedback can be given about the quality of pronunciation of 
short words and phrases.   Exp erimental results are reported 
which indicate a high degree of accuracy for labeling and 
segmenting the CVC database developed for  "training" the 
display. 
 

1.  BACKGROUND 

 
Vowel Displays 
 
The existing system [1][2][3][4] has two main displays.  One is a 
bargraph display, which gives feedback about how well speech 
utterances match discrete vowel categories. The other is an 
“ellipse” display, which provides more continuous feedback about 
vowel pronunciation.  The system is designed to provide feedback 
for the vowels /aa/, /iy/, /uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/, and 
/uh/, which correspond to the vowel sounds found in the words 
“cot,” “beet,” “boot,” “bag,” “bird,” “pig,” “bed,” “dog,” “cup,” 
and “book” respectively.  In addition to the bargraph and ellipse 
display, three game displays have been developed. A speaker 
group selection option with "CHILD," "FEMALE" and "MALE" 
settings allows all displays to be fine-tuned for better 
classification of sounds produced by child, adult female, or adult 
male speakers respectively.  A fourth speaker group option, 
"GENERAL" uses a classifier based on all speakers. 

 

2.  CVC DISPLAY PROCESSING STEPS 
 
The objective of a CVC display is to visually present indicators of 
pronunciation “correctness” at the phone level in real time, with 
minimum time delays, in response to short words produced by a 
speaker. The operating system interacts with the sound card to 
continuously acquire contiguous sections of data (a “segment”) 
from the audio data stream, using a double buffering approach for 

processing. The basic data acquisition was developed with 
operating system services, rather than directly with the hardware, 
and therefore the overall CVC system is able to work with most 
commonly available Windows-compatible sound cards. 
 
 

 
 
 
 
 Figure 1. CVC display block diagram 
 
A very important consideration in the overall implementation of 
the display is to minimize delays between input speech and 
display changes—to make the overall system as “real time” as 
possible.  The data management for this signal processing can be 
explained in terms of three levels of buffering, as illustrated in 
Figure 1.   First, as just mentioned above, the non-overlapping but 
continuous “segment” buffers form the interface between the data 
acquisition subsystem and the signal processing and recognition 
software. The first step of processing is based on overlapping 
frames of data--- thus frames form the second level of buffering. 
 
The third and final level of buffering is referred to as "blocks,” 
with each block consisting of an integer number of frames, with 
block spacing also consisting of an integer number of frames.    
All parameters ("features") used for recognition are computed 



from all the frames in a block with parameter updates based on 
the block spacing. Similarly recognizer decisions are made from 
all the block output parameters. Display updates are made once 
per each new segment, but using all the block-based recognizer 
decisions which occur in that segment. Each of the processing and 
recognition modules maintains internal delay memories that hold 
all previous data and intermediate calculations that are needed.     
Thus the "frame'   and 'block' level buffers can be asynchronous 
with respect to the segment buffers. Typical values for the various 
buffers are 100 ms for the segment buffer, 30 ms frames with a 
frame spacing of 10 ms, and blocks consisting of 10 frames with a 
spacing of 5 frames between blocks.   The time delay between 
input speech and display changes is on the order of one segment 
time, or 100 ms for the values given.    
 
The actual signal processing consists of mid-frequency pre-
emphasis, windowing, spectral magnitude calculations, DCTC 
computations for each spectral frame, DCS calculations over the 
DCTCs in each block, scaling, and finally neural network 
classifications and HMM phone log probability calculations. 
DCTCs, similar to cepstral coefficients, are computed using 
cosine basis vectors which are modified so that the frequency 
resolution approximates a mel frequency scale. In the final step, 
the DCTC’s are block-encoded with a sliding overlapping block 
using another cosine transform over time that is used to 
compactly represent the trajectory of each DCTC. The cosine 
basis vectors in this second transform are also modified so that 
the temporal resolution is better near the middle portion of each 
block relative to the endpoints. The coefficients of this second 
transform are called Discrete Cosine Series Coefficients (DCSC). 
This method is very flexible with a small number of parameters 
that control the details of the analysis, particularly in terms of 
spectral/temporal frequency resolution tradeoffs.   Typically 15 
DCTC terms are computed, followed by 5 DCS terms for each 
DCTC (75 total parameters), but   then as subset of 40 of these 
terms are used for recognition.     
 
As for the actual phone recognition, the active dictionary varies 
from a single word, for the case when the system simply prompts 
the user to pronounce a certain word, up to the entire trained 
dictionary (at this point, consisting of 13 CVC words, containing 
18 phones).  In either case, the recognition module returns the 
identity of the top scoring phone models, log probability ratios for 
each model, neural network classification scores for each phone, 
time markers for the beginning and end of each phone, and the 
identity of the most likely word.  The goal is to use this 
information to provide feedback about the produced word in a 
variety of formats including game displays. 
 
In order to achieve these objectives for the display of phonetic 
information, it was first necessary to record and prepare a large 
database of CVC tokens.  Preparation includes elimination of 
poorly pronounced tokens, determination of time markers for 
phonetic segments in the properly produced segments, and finally 
creation of HMM and neural network phone models for each 
phone of interest. 

 

 

3.  DATABASE OF CVCS 
A database of CVC sounds was collected from adult males (120 
speakers), adult females (142 speakers), and children between the 
ages of 6 and 13 (55 speakers).  The tokens recorded are listed in 
Table 1.  All tokens were automatically endpointed, using an 
endpoint routine similar to [5].  Listeners then evaluated tokens, 
and those that appeared to be incorrectly pronounced were 
eliminated from the database.  This data was collected over a 
period of several years during which the sampling rate was 
increased from 11025Hz to 22050 Hz.  For all experimental 
results reported in this paper, the 22 kHz data was smoothed with 
a 2-point smoothing window, and decimated to 11 kHz.  
 
Table 1. List of CVC Tokens Recorded 
 

CVC Pronunciation CVC Pronunciation 
Bag b ae g Boyd b oy d 
Bed b eh d Cake k ey k 
Beet b iy t  Cot k ao t 
Bird b er d Cup k ah p 
Boat b ow t Dog d ao g 
Book b uh k Pig p ih g 
Boot b uw t   

 
 

4.  SEGMENTATION AND LABELING OF 
CVC DATABASE 

 
After considerable experimentation, manual examination, and 
testing, the following multi-step approach was used for 
segmentation of the CVC database. 
1. A heuristic rule-based segmentation, based primarily on pitch, 
spectral band energies and endpoint detection was used as a first 
pass for segmentation. 
2. An HMM triphone-based word recognizer was trained as a 
recognizer for the entire database, using the segmented data from 
step 1 to initialize HMM models. 
3. Using the models trained in step 2, recognition was performed 
on all the training data.  All CVCs that were not  “correctly” 
recognized at this step were eliminated from the database. 
4. HMM models were retrained using the data after step 3. 
5. The HMM models obtained in step 4 were used for forced 
alignment of CVC tokens. 
 
Each of these steps is now described in somewhat more detail 
below and illustrated with experimental data. 
 
Step 1 Heuristic Rule-Based Segmentation 
 
The onset and offset of speech (i.e., the endpoints) are first 
determined using an endpointing routine similar to [5].  Next a 
pitch track is computed for each utterance, using the pitch routine 
of [6].  Additionally three normalized spectral band energies were 
computed—low-frequency energy band (300-800 Hz), mid-
frequency energy band (800-2000 Hz) and high-frequency energy 
band (2000-4000Hz).   The vowel region of each syllable is 



located using a combination of the voiced portion of the pitch 
track, the normalized low-frequency band energy, and heuristic 
rules (including maximum and minimum durations for each initial 
and final stop).   Next, the spectral band with the maximum value 
between the vowel end and the final endpoint of the CVC from all 
the 3 bands is selected as the band to be used to determine the 
start point for the final consonant.   The first point in time at 
which this normalized band energy exceeds an empirically 
determined threshold (typically .3) is selected as the beginning of 
the final consonant.    In addition, if this energy band falls below 
another threshold (typically .1) for at least a certain time duration, 
in the region between the end of vowel and the beginning of the 
final consonant, then that low-energy region is labeled as closure.   
Figures 2 and 3 illustrate this heuristic labeling method for two 
CVCs.  Note that the method appears to give correct segmentation 
for Figure 2 whereas the initial stop and final stop appear to be in 
error in Figure 3.  Visual inspection of several hundred tokens 
indicated that this heuristic segmentation appeared to be generally 
correct (no really large errors) for about 80% of tokens, but did 
have some really large errors for the remaining 20% of tokens.  
Thus the heuristic method was not considered accurate enough for 
a "final" pass of segmentation, but was valuable for bootstrapping 
HMM models.   The HMM models, followed by forced 
alignment, did appear to provide more accurate segmentation.    
 

 
Figure 2.    Example of correct heuristic segmentation for “boyd”  
 

 
 
Figure 3.  Example of incorrect heuristic segmentation for  "bed." 
 
 
Step 2 Bootstrap triphone models 
 
The heuristic labeling process just explained was used for 
initializing HMM triphone models for the CVCs.  (Initialization 
based on “flat-start” data (no segmentation used) resulted in lower 
recognition performance than initialization based on the 

heuristically labeled data.)   The HTK (Hidden Markov model 
Tool Kit ver 3.1)  [7] was used in this process to build a 
recognizer, which was used to determine the degree to which the 
words present in the training database could be automatically 
recognized.  The HTK was configured with a dictionary which 
allowed the presence or absence of closure in each CVC. Mel 
frequency cepstral coefficients (MFCCs) derived from the FFT-
based log spectra were used as the features, augmented by delta 
and acceleration coefficients (totally 39 terms). 
 
The HMM triphone prototype models were configured with 5 
states, 39 features, and 1 Gaussian mixture.  After the prototype 
models were established, each monophone HMM was initialized 
by the HTK tool (HINIT), which uses the Viterbi algorithm to 
find the most likely state sequence corresponding to each training 
sample.  These isolated-unit models were refined using the Baum-
Welch re-estimation procedure (HREST tool in HTK) for 3 
passes.   State tying was also used.  
 
Total processing time needed for all the above processes 
including initialization and re-estimation was approximately 32 
minutes on a 1GHz machine with 512 MB ram.  Note that a total 
of 20 monophone models were created (12 vowels, 6 consonants, 
1 silence and 1 closure model). 
 
 Step 3 Bad data removal 
 
The HMM models trained in the previous step were used as a 
recognizer to eliminate all tokens not correctly recognized by the 
recognizer.  Table 2 summarizes the database size before and 
after this step.  Note the database includes over 300 speakers, 
including adult males, adult females, and children, thus making 
the recognition task somewhat difficult.  Approximately 12% of 
the data was eliminated (recognition rate of 88.1%) by this step.   
The motivation for this step was that the majority of 
misrecognized tokens (entire database used for training) were not 
pronounced correctly or clearly.  The goal was to be confident 
that nearly all tokens used for final training were clearly and 
correctly produced. 
 

Table 2. CVC database before and after removal of tokens 
incorrectly recognized by HMM recognizer. 
 

CVC Male Female Child Total 
Original 
Database 

4638 5514 2168 12320 

After 
Removal 

4172 
 

4935 1747 10854 

 
 
Step 4—Triphone model retraining 
 
Triphone models were recreated using the identical processing 
methods as described above for step 2, except now, only data 
remaining after step 3 was used.  Thus, it was expected that these 
HMM models would be better representations of the phones than 
those created in step 2, because of the elimination of the “bad” 
data.  As a test, these triphone models were again used as a 



recognizer, and approximately 98% accuracy was obtained on the 
training data. 
 
Step 5—Final forced alignment 
 
Finally the above retrained HMM models were used to obtain a 
forced Viterbi alignment, resulting in final labeled training data. 
 

5.  NEURAL NETWORK TRAINING 

 
Three neural networks are used in the CVC display system--one 
each for the initial consonant, vowel and the final consonant.  
Each neural network has one input node per feature component 
and 25 nodes in the hidden layer. The initial consonant network 
has 4 output nodes, the vowel network has 12 output nodes and 
the final consonant network has 5 output nodes. The NN's are 
trained using error backpropagation for (typically) 250,000 
iterations.  These neural network classifiers resulted in the 
following recognition rates for the training data.    As expected 
the recognition rates are generally higher if based on the data 
obtained from the final forced alignment, rather than the heuristic 
algorithm alignment. 
 
Table 3.  Percent correct results for neural network classification 
of the phones in CVC syllables based on either heuristic labeling 
of phonetic segments or HMM forced alignment.   
 

 Initial 
Consonant 

Vowel Final 
Consonant 

Heuristic 
Algorithm 

95.3% 83.6% 82.8% 

HMM / 
NN Based 

94.0% 90.8% 85.2% 

 
 

6.  CONCLUSIONS 

 
The extension of the Vowel Articulation Training Aid (VATA) 
for use with short words (CVCs) has been described.   In response 
to audio input from a user, a visual display is generated to provide 
feedback about the quality of pronunciation of the phones in each 
CVC.   A key aspect of the system is the short time delay between 
input speech and display changes. Experimental data gives 
indicates that speaker independent phonetic accuracy is on the 
order of 90%.  Interested readers may obtain a copy of the run 
time program by emailing (szahoria@odu.edu) 
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