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ABSTRACT 

 
 In this paper we present an approach for efficiently computing a 
compact temporal/spectral feature set for representing a segment 
of speech, with effective resolution depending on both frequency 
and time position within the segment.  The goal is to mimic the 
resolution properties of the human auditory system, but using a 
computationally efficient FFT-based front end rather than a more 
complex auditory model.  In particular we apply both frequency 
and time "warping" to FFT spectra to obtain good frequency 
resolution at low frequencies and good time resolution at high 
frequencies.  Time resolution is also varied so that the center of 
the segment is better represented than the endpoints.  The 
resolution can be varied by the selection of “warping” functions 
controlled using a small number of parameters.  The method was 
experimentally verified for the classification of six stops extracted 
from the TIMIT continuous speech data base.    The best  
classification rate obtained was 81.2%  for test data using 50 
features computed with the method presented.  
 

1. INTRODUCTION 
 
Normally spectral analysis of speech signals  begins with a fixed 
frame-rate short-time Fast Fourier Transform (FFT) calculation 
which inherently has uniform time and frequency resolution. 
Tradeoffs between time and frequency resolution can be made by 
varying the frame length and frame spacing.  Typical values are a 
frame length of 20 ms (Hamming window) and a 10ms frame 
spacing.  In order to approximate the frequency resolution 
properties of human hearing, the FFT spectrum is sometimes 
resampled according to a mel or Bark scale frequency “warping” 
function.  Alternatively, FFT values are summed to form an 
auditory scale based filter bank. Although these methods do 
provide a good approximation to auditory frequency scales, they 
do so primarily via additional smoothing at higher frequencies, 
and do not take advantage of the higher time resolution which is 
then theoretically possible at these higher frequencies. 
Approaches to take advantage of variable time-frequency 
resolution include auditory models and wavelet analysis.   
Although these two methods (particularly auditory models) 
undoubtedly better match human hearing sensitivity both 
temporally and spectrally, they have not yet been shown to be 
clearly superior to FFT-based methods for automatic speech 
recognition and are not widely used.  Problems include 
computational complexity and difficulties in extracting a small 
number of features from the initial analysis.  In this paper we 
describe an FFT-based method for speech spectral analysis, which 

begins with an “over-sampled FFT,” and converts the results of 
the FFT magnitude spectrum to a small number of features which 
represent the spectrum with  frequency resolution approximating 
an auditory frequency scale, and time resolution which is better at 
high frequencies than low frequencies.   Implicit in the method is 
the use of speech segments, each consisting of several frames 
spanning an interval containing most of the acoustic information 
for a single phone, for feature calculations.  
 

2. PRINCIPLE 
 
The principle of this method is that an original log spectrum, X(t, 
f), computed with uniform (and high) time/frequency resolution 
over the duration of a speech segment, is transformed to a 
"perceptual" time t' and frequency f' domain, to achieve the 
desired time-frequency resolution.  The transformed frequency f' 
depends on physical frequency f only, but the transformed time t' 
depends on both t and f. These transformations can be represented 
by a time-independent frequency "warping" function  and 
frequency-dependent time "warping" function.  The methods for 
computing features from this perceptual time/frequency spectrum 
are described in this section. 
 
Let X(t, f) denote the original log spectrum, computed with a 
uniform time/frequency resolution, where, for convenience,  t and 
f  both are normalized to the range [0,1]. Also define "perceptual" 
time and frequency variables t' and f' in  the interval [0,1] which 
are related to t and f  by  
 

t'   =  h(t, f) and f'  = g(f). 
 
In this equation, g is a typical warping function over frequency, 
such as Bark or mel function.  Notice that h, the time warping 
function, depends on both time and frequency.  The motivation for 
h is to enable variable resolution as function of both position 
within a segment and frequency. h is typically selected to achieve 
higher resolution at the middle of a segment relative to the 
beginning and endpoints and also better resolution at high 
frequencies than at low frequencies.  The "perceptual" spectrum X' 
, is then the transformed version of the original spectrum X, which 
incorporate the g and h warping functions, according to  
 

X'(t', f')  =  X(t, f). 
 
In the perceptual frequency ( f’) domain, if  more details are 
preserved in one interval than in another interval, then we say that 
the frequency resolution is higher in that interval.  In terms of the 



relationship between f’ and f, the resolution in f’ is proportional to 
| dg/df |.   Thus if f’ is sampled uniformly,  higher resolution with 
respect to f is obtained for those intervals with a large value of 
dg/df , or close sampling with respect to f.   For example a Bark 
warping function has much higher derivatives at low frequencies 
than high frequencies.  Similarly, the resolution of t’ is 
proportional to  | dh/dt |.   Thus time and frequency resolution can 
be controlled by the choice of h and g functions. For speech 
processing high frequency resolution is desired at low frequencies, 
 while high time resolution is desired (or at least possible) at high 
frequencies.   There are of course limits on the “real” time and 
frequency resolution in t’ and f’, dependent on the initial 
resolutions in f and t.  Typically g is an approximation to a Bark 
function, such as a bilinear warping function with a warping 
coefficient of about .5.  Typically  h is a function with a smooth 
derivative, symmetric about the center and with highest values in 
the center of the segment.  In this paper a family of integrated 
Kaiser windows was used for h, with a different window at each 
frequency .  That is, for each f, dh/dt was a Kaiser window.  By 
adjusting each Kaiser window's  β,  with highest β ’s at highest 
frequencies,  we obtained better time resolution at the middle of a 
segment and at high frequencies.  
 
A very important  aspect of the material presented in this section 
is that acoustic features Feat(i, j) for compactly representing 
spectral/temporal information can be computed using a cosine 
expansion of X' over t' and f', using 
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With a change of variables, Equation 1 can be rewritten in terms 
of linear t and f, and with the functions g and h, as 
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Equation 2 can be more conveniently interpreted by defining 
frequency-dependent basis vectors over time as 
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and modified basis vectors over frequency as 
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Using the basis vectors defined in Equations 3 and 4, and by 
rearranging terms, Equation 2 can be rewritten as 
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3. IMPLEMENTATION ISSUES 

 
In order to compute features for speech analysis as per Eq. 5,  the 
log magnitude spectrum is originally computed using an FFT for 
each of several frames over a segment.   For the experiments 
reported in the next section,  a Hamming-windowed frame length 
of 10 ms and a frame spacing of 2 ms were used,  providing an 
initial frequency resolution on the order of 100 Hz and time 

resolution on the order of 10 ms.   These values thus represent the 
limiting resolutions possible in subsequent representations. All 
integrations above were replaced with sums.   For computational 
efficiency, the basis vectors were precomputed and stored.  We 
refer to the basis vectors over time Φj(t, f) as Discrete Cosine 
Series (DCS) basis vectors and the basis vectors over frequency 
Θi(f) as Discrete Cosine Transform (DCT) basis vectors.  Unlike 
most spectral/temporal speech processing methods, the 
calculations over time were done first, and the calculations over 
frequency secondly.   Also note that several sets of basis vectors 
over time were used, one set for each frequency.  
 
For typical analysis conditions the total computations required for 
these features are slightly less than if an expansion is performed 
over frequency first, and then over time. The computations are 
much less than those required  using a two-dimensional non-
partitioned basis vectors set . For example, assuming a 300 ms 
segment, 150 total frames, and 200 frequency samples the total 
calculations (in terms of multiply-adds needed after the original 
spectrum is computed) to compute 50 features (10 DCTs and 5 
DCSs) are 160,000 for the method presented in this paper, versus 
307,500 if sums over frequency are computed first, versus 
1,500,000 if 2-D basis vectors are used ( Silsbee, et al., 1994).  
 
The features Feat(i, j) computed with Equation 5 effectively 
smooth the original spectrum, in the sense that a smoothed version 
of X can be reconstructed from Feat(i, j) . However, the degree of 
smoothing depends on position in time and frequency, as specified 
by g and h.  A series of time/frequency plots are shown in Fig. 1 
to illustrate this, using an 80 ms section of speech signal centered 
at the burst of a /d/ extracted from a sentence.  Panel 1 is the 
original  log spectrum computed using  a series of FFT spectra (40 
frames, 5 ms frame length, 2 ms frame spacing). Panel 2 is the 
smoothed spectrum  reconstructed from the data of panel 1, using  
10 basis vectors over frequency (DCTs) and 5 basis vectors over 
time (DCSs) without any warping (50 total “features”).  Thus, on 
the average, panel 2 illustrates good frequency resolution and poor 
time resolution, since it was derived from a large number of DCTs 
and a small number of DCSs. Panel 3 is also a smoothed spectrum 
computed from 50 features,  but with 5 DCT basis vectors and 10 
DCS basis vectors. Therefore panel 3 contains more time 
information and less frequency information than does panel 2.  
Panel 4 is the spectrum smoothed by the method described in this 
paper, with the Kaiser window time warping varying from 0 at 
low frequencies to 6 at high frequencies.  Thus, although ten DCT 
terms and five  DCS terms were still  used, the low frequency 
spectrum contains more frequency resolution, whereas the high 
frequency spectrum has more temporal resolution.   
 

4. EXPERIMENTS 
 
In order to evaluate the method described in this paper, several 
experiments were conducted for the speaker and context 
independent classification of the six stops /b, d, g, p, t, k /.  The 
SX sentences from  the TIMIT database were used.  A small 
number of experiments were also performed using the telephone 
version of TIMIT (NTIMIT).  The analysis was based on a 
specified segment length centered at the onset of the stop burst. 
For the initial experiments which were used for parameter tuning 



and general refinement of the method, 450 speakers were used for 
training and 49 speakers for testing.  For the experiments with 
numerical results reported in this paper, the training set consisted 
of 499 speakers (357 male, 142 female) for a total of 2495 
sentences.   The training set contained 1384, 1388, 811, 1699, 
2365, 2412 phone tokens respectively for the 6 stops in the order 
mentioned above.   The test set contained 50 speakers (33 male, 
17 female), or 250 total sentences,  and 141, 134, 77, 155, 205, 
246 phone tokens.   This particular speaker arrangement was the 
same as that used in some  previously reported work (Goldenthal 
and Glass , 1993). 
 
The classifier used in these experiments was a binary-pair  
partitioned  (BPP) neural network  (Zahorian et al, 1993) .  For the 
BPP classifier, an individual network is trained for each pair of 
categories, with final decisions based on the output of all 
classifiers.  For the results reported in this paper a total of 15 
pairwise networks were used for the six stops.  Each network was 
a fully interconnected feed-forward perceptron structure with 
unipolar sigmoidal nonlinearities, with one hidden layer (25 
nodes), and a single output node.   Each network was trained with 
backpropagation for 100,000 network updates, beginning with an 
initial learning rate of  .25,  reduced by a factor of .96 after every 
5,000 iterations.   In our previous work with vowels, we achieved 
slightly higher rates with this classifier as compared to a single 
large network. 
 
For the primary experiments reported in this paper, the initial 
spectrum was computed with a frame length of 10 ms (after 
multiplication by a Hamming window) and a frame spacing of 2 
ms, using a 512 point FFT.  The frequency range used for feature 
calculations was 100 Hz to 6000 Hz. Frequency warping was 
accomplished with bilinear warping, using a  coefficient of .45. 
Time "warping" was accomplished such that the derivative of the 
h function mentioned above was a Kaiser window with different 
β-values controlled by two parameters: Time warp begin and Time 
warp end.   The time warping factor was then linearly scaled 
according to frequency position between these beginning and 
ending values.   
 
Numerous preliminary experiments were done with the 450 
speaker training set to determine the general performance of this 
method and to determine “good” values for several of the arbitrary 
parameters.   The objective was also to determine which options 
or parameter settings had very little effect on classification 
accuracy.   For example, the use of a segment window to first 
multiply all  frames in the original spectrum over  time using the 
first time basis vector, (as was used to generate Figure 3 had 
almost no effect.  Similarly, results obtained with and without 
orthonormalization of the basis vectors were nearly identical.   
Therefore neither the window multiplication nor 
orthonormalization were used in the primary experiments.   
Results based on an FFT length of 512 were found to be slightly 
superior to those obtained with a 256 point FFT, thus motivating 
the use of the 512 point FFT.    The frame length of 10 ms and 
frame spacing of 2 ms was found to be somewhat better than 
either 5 ms frame length (and 1 ms spacing) or 10 ms length (1 ms 
spacing), thus motivating the use of the 10 ms frames.   The 
frequency warping factor was  varied from 0.25 to 0.75 and the 

biggest difference was only 0.8%. Windows other than  the Kaiser 
window were investigated to control the time warping.  In general 
the Kaiser window was slightly better than the others tried. Based 
on these preliminary experiments we chose and fixed some of  the 
parameters which we thought would give the “best” results. In the 
next few paragraphs we describe and summarize  results for some 
of these experiments, all conducted with the data mentioned 
above. 
 
4.1. Experiment 1 
 
This experiment was conducted to determine the effects of 
segment length on classification rate for the six stops.   The 
general conditions were as previously mentioned.  For each case 
50 features were computed  (10 DCT terms and 5 DCS terms) .   
The segment length was varied from 25 ms (13 frames) to 300 ms 
(150 frames).    For each case, various values for the beginning 
and end values of the time warping parameters were used.   The 
test results for three cases are given in Table 1 – time warp of 0:0 
(no time warping), time warp of 10:10 (best fixed time warping), 
and time warp of (5:30) (best variable resolution time warping).   
For the shortest segments, the best results was obtained with no 
time warping.  The best overall results were obtained with the 
longest segment length of 300 ms.  The overall best result of 
81.2% was obtained with 300 ms and the variable resolution 
warping.     
 

  Seg. 
Length 

 25   
 ms 

  50    
   ms 

100
ms 

150 
ms 

200
ms 

300 
ms 

time warp 
0:0 

62.5 73.8 78.3 78.8 79.3 75.9 

time warp 
10:10 

56.2 69.2 75.6 79.0 78.6 80.8 

time warp 
5:30 

54.2 68.3 74.8 78.5 78.5 81.2 

Table 1: Classification rates for six stops for various segment  
lengths and various time warping conditions. 

 
4.2. Experiment 2 
 
The first experiment indicated that the best results are possible 
with a long segment.  In this experiment, focusing on the 300 ms 
segment, we examined in more detail the classification results for 
several different values of beginning and ending values of the time 
warping parameter.  Results are presented in Table 2.   The results 
vary by only a small amount for all conditions tested, except for 
no time warping.  However, three of the variable warping 
conditions are better than the best fixed warping condition. 
 
a. Fixed time warping: 

time-warp    0:0    5:5  10:10   15:15 
classification rate   75.9   79.4   80.8    78.7 

 
b. Frequency-dependent time warping: 

time-warp  3:30  3:45 5:15  5:30  5:45 



classification rate  80.9  80.4  80.6  81.2  81.0 

Table 2:  Classification rates for six stops using a 300 ms segment 
and various warping conditions. 

 
5. CONCLUSION 

 
 A variable time/frequency resolution method for computing a set 
of acoustic speech features was presented along with experimental 
results for the classification of stop consonants.  Several 
experimental conditions were tested with  different numbers of 
features, different segment lengths, different time warping 
functions, and different amounts of time warping.   The best 
variable time warping was better than the best fixed time warping 
by a small amount.   Substantially higher results are obtained 
using long segments (300 ms) versus short segments (25 ms).  The 
best test results  (81.2% for regular TIMIT and 68.2% for 
NTIMIT) are, to our knowledge, the best reported results for stops 
from TIMIT.   These results were also obtained with a relatively 
small number of features (50) and with less computational 
complexity than is usually required with an auditory model 
implementation.  In general this method emphasizes the need for 
and enhances segment-based speech feature processing relative to 
frame-based analysis.        
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Xihong   some points 
 
    Do all references match up using dates? 
    Do we mention the frequency warping value we actually used for main tests ? 
    Are we using italics for all g and h in equations? 
 
Do we actually reference   no  5? 
      
Equations i,j ordering should be consistent. 
 
Are there any other important conditions for experiments that we accidentally removed? 
 


