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ABSTRACT 
 
Teager Energy and Energy-Entropy Features are two approaches, 
which have recently been used for locating the endpoints of an 
utterance. However, each of them has some drawbacks for 
speech in noisy environments. This paper proposes a novel 
method to combine these two approaches to locate endpoint 
intervals and yet make a final decision based on energy, which 
requires far less time than the feature based methods. After the 
algorithm description, an experimental evaluation is presented, 
comparing the automatically determined endpoints with those 
determined by skilled personnel. It is shown that the accuracy of 
this algorithm is quite satisfactory and acceptable.  
 

1. INTRODUCTION 
 

Endpoint detection, which aims at distinguishing speech and 
non-speech segments using signal processing and pattern 
recognition, is considered as one of the key preprocessing 
components in automatic speech recognition (ASR) systems. The 
incorrect determination of endpoints for an utterance results in at 
least two negative effects [1]: 

 
1. Recognition errors are introduced; 
2. Computations increase. 
 

There have many attempts to “solve” the endpoint detection 
problems over the past several decades. Computing the energy of 
speech signal is a computationally simple operation compared to 
extracting other features, such as LPC derived cepstrum 
coefficients (LPCC), mel-frequency cepstrum coefficients 
(MFCC) and so on, which have been found to work well but are 
time and computationally intensive [4]. As for energy-based 
methods, most of the algorithms are based on simple parameters 
such as energy contours and zero crossings [3]. The Teager 
Energy approach considers not only energy, but also frequency 
effects.  It can be very effective when the speech signal is very 
weak but has frequency components different than background 
noise. As for the Energy-Entropy Features approach, it 
emphasizes the parts of an utterance, which have a spectrum with 
high variability. Entropy is a measure of unexpected information. 
The more “unexpected” information is contained, the larger the 
entropy value will be. Therefore, it is a very useful tool to take 

the place of a widely used but unreliable parameter, Zero 
Crossing Rate (ZCR), to locate beginning and ending for an 
utterance [1, 2, 3, 5].  Both of these methods have been shown to 
be effective for endpoint detection. However, sometimes, they 
still fail, especially in a high noise environment.  
 
In this paper, we integrate the modified Teager approach with the 
Energy-Entropy (EE) Features. In our new algorithm, the Teager 
Energy is used to determine crude endpoints, and the EE 
Features are used to make a final decision.  The new algorithm is 
a simple and accurate one for the detection endpoints for isolated 
words spoken in a noisy environment. At the same time, it does 
not use the ZCR, which sometimes is not reliable.  Another 
advantage is that there is no need to estimate the background 
noise. Therefore, it is very helpful for environments when the 
beginning or ending noise is very strong or there is not enough 
“silence” at the beginning or ending of the utterance. In the 
absence of sufficient beginning or ending silence, algorithms, 
which require the estimation of background noise, will have 
great difficulties, and resultant errors in endpoints. 

 
2. THE ALGORITHM DESCRIPTION 

 
2.1.Teager Energy Algorithm 

 
In modeling speech production, Teager [1] presented a new 
algorithm to compute the energy of the signal. This is the so-
called Teager Energy Algorithm. If a signal sample is given as 

)cos( φ+Ω= iAxi , where  is the amplitude of the 
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Ω  is the discrete time frequency and φ  is the initial 
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From equation 1, we can easily observe that the energy 
expression is based not only on the signal amplitude, but also on 
the corresponding frequency component. 
 



A modification to the basic Teager Energy Algorithm is the 
Teager Frame Energy Algorithm.   In this method, instead of 
calculating the instantaneous energy for each sampling point, a 
frame-based frequency domain approach is used, which weights 
each sample in a frame by the square of its associated frequency 
component. The Teager Frame Energy Algorithm has been found 
to be very useful for endpoint detection of fricatives and 
plosives, which have very low amplitude but high frequency [1]. 
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Finally, the modified Teager Energy T  for one frame, is 

computed as the square root of the sum of the  in Equation 3  
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2.2.Energy-Entropy Features Algorithm 

 
In equation 4, the sum is computed over a range of 250 Hz to 
3750Hz.  

Although the Teager Frame Energy works well in the presence of 
babble noise and background music, it has been found to fail if 
the non-stationary noise consists of mechanical sounds, such as 
closing or opening a door or engine shaking noise [2]. In these 
cases, the EE Features Algorithm is more reliable than pure 
energy-based methods and is more tolerant to the kinds of noise 
mentioned above. In addition, it can be really effective in overall 
high noise environments. In the EE Feature approach, both 
energy and entropy are first calculated for each frame.  Then, 
average values of each of these components are removed, and 
adjusted values are multiplied, point-by-point for each frame.  
The multiplication emphasizes the speech region and attenuates 
the non-speech region, thus making this overall approach well 
suited to endpoint detection  [2]. 

 
2.3.3.Computing the modified Energy-Entropy Feature 

 
In this section we summarize the calculation of the modified 
Energy-Entropy (EE) Features, as given in [2],   and  also  point 
out some of the details of our implementation.  First, for each 
frame , the frame energy  is computed as the sum of the 
squares of each point in the frame (using the same frame length 
and frame spacing as mentioned above). 
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2.3.The New Algorithm for Endpoint Detection Using the results of the DFT already computed for the modified 

Teager Energy, we compute the pdf (probability distributed 
function) for the spectrum by normalizing the frequency 
components: 

 
In this section, an algorithm for endpoint detection that uses both 
the modified Teager Energy and modified EE Feature algorithm 
is presented below. 
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2.3.1.Pre-emphasizing the input signal 
 

The input signal is first filtered with a bandpass filter from 
250Hz to 3750Hz  (FIR filter of order 50).   This band, very 
similar to the band of telephone lines, is generally considered to 
contain the most overall speech information.   Thus this type of 
fixed filtering is reasonably effective for improving the signal to 
noise ratio of speech to non-speech.    

In this equation, )( iX ω  represents the magnitude of the 

spectral of frequency component iω ,  is the corresponding 

probability density, 
ip

K is the total point number of FFT in each 
frame.  

2.3.2.Calculation of the modified Teager Energy 
Then, the entropy  for each frame  is defined as following: iH i 

The modified Teager Energy is computed according to the 
method mentioned in [1].    This algorithm is briefly summarized 
here.   First the signal A is partitioned into overlapping frames 
(with frame length 20 msec and frame space 8 msec).   Denote 
the window width as  and let  denote the i th sample data 
point.  As noted above, the main modification for using the 
modified Teager Energy, versus the version given in Equation 1, 
is to more strongly consider the spectrum of the signal.  In 
particular, for each fixed-length frame, we first compute the Fast 
Fourier Transform (FFT),   
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In contrast to previously reported uses of the EE Feature 
algorithm, which usually subtracts the average from the first 10 
frames in an attempt to reduce the effects of background noise, 
we bypass this step, since the modified Teager energy presented 
above will help to make a crude endpoint detection without the 
background noise estimation.  Finally the EE Feature is defined 
as: 
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2.3.4.Locating the low energy areas Then, the magnitudes of these spectral points are weighted by the 

square of the corresponding frequency component to denote the 
th component in the frequency domain . i

 
The next, and final step of the endpoint detection, is to apply a 
set of decision rules to the features mentioned above—Teager 
Energy (T) and Energy-Entropy Feature (EEF). The first step is 



to normalize T (with the result called T1), and EEF (with the 
result called EEF1). The normalization of each feature is 
accomplished by a scaling and offset so that each of the 
normalized parameters has a range of 0 to 1.    

Note that typical values for the thresholds, which apply to the 
normalized parameters, are 0.14, 0.16 for Thres_B1, Thres_B2 
and 0.15, 0.17 for Thres_E1, Thres_E2.    
 

 Now, we have the low energy interval at the beginning and 
ending with ( t , t ) and ( , t ).  Figure 1 depicts typical 
results for determination of the two intervals. 
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The first part of the decision logic is based on two pairs of 
thresholds, both of which are applied with respect to the 
normalized Teager Feature, T1. We denote the thresholds for the 
beginning part of the utterance as (Thres_B1, Thres_B2), and the 
thresholds for the ending part of the utterance as (Thres_E1, 
Thres_E2).  The idea is that the interval between  (Thres_B1, 
Thres_B2) will be the low area for the beginning of an utterance, 
and the interval between (Thres_E1, Thres_E2) will be the low 
area for the ending of an utterance.   By “low” interval, we mean 
the interval that contains the actual endpoints.    Thus these two 
thresholds are intended to find the approximate interval that 
contains the endpoints.  Note the thresholds which end in “2” are 
greater than the thresholds which end in “1”.   The search 
method is summarized below. 

 
Thus, the modified Teager energy is used to find the approximate 
endpoints, in terms of intervals at the beginning and end of the 
utterance.   The EE Feature is used to find the actual endpoint, as 
described below.     
 
2.3.5.Final Endpoint Detection 

 
For the two low energy intervals, as mentioned above, we use 
another set of thresholds (Thres_B, Thres_E), which are applied 
to 1EEF  to make the final endpoint decision.   Thresh_B is 
used for the beginning interval, and Thresh_E is used for the 
ending interval. From the experimental results, we find these two 
thresholds value are really small, which are little bit sensitive 
when setting a fixed value to them. 

 
Searching all the frames in an utterance from the beginning to 
the end, we define: 

NiBThresiTbt ≤≤≥= 1},1_)(1min{arg1          (9) 
 

     i In the beginning low energy interval, searching from  to , 
the beginning endpoint is simply defined as: 

1bt 2bt
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           i   
  t 21},_)(1min{arg bbb titBThresiEEF ≤≤≥=  In this equation, note that  is the total number of frames in 

the utterance.  
N

                   i  
 In the end region low energy interval, searching from  to 

, the ending endpoint is obtained as: 
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Similarly, searching from the end of an utterance to the 
beginning, we define : 

NiEThresiTet ≤≤≥= 1},1_)(1max{arg1       (11) 
12},_)(1max{arg eee titEThresiEEFt ≤≤≤=  
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                  i  
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3. EXPERIMENTS           i     The described algorithm has been tested with a database, which 

was collected by the Speech Communication Lab in the 
Electrical and Computer Engineering Department at Old 
Dominion University. From the database, we chose two male 
speakers, two female speakers and two children speakers to test 
10 digits, 26 alphabets, 12 CVCs and 13 vowels for a total of 732 
wave files (each word was repeated twice by the speakers).   A 
sampling rate of 22.5 kHz was used for all data.   All recordings 
were made in a “normal” computer lab environment; for some of 
the recordings there is significant background and/or breath 
noise. 

 

 
For these experiments, the frame length was 20 msec, and the 
frame spacing was 8 msec (or frame overlap of 12 msec. With 
the sampling rate used, there are 450 points in each frame, and 
the frame spacing is 170 points.  In the results presented here, the 
endpoint detection is defined to be correct if the time difference 
between the visual and auditory test, and the algorithm results 
are less than 50 msec. Figure1: Thres_B1, Thres_B2, Thres_E2 and Thres_E1 are 

represented from left to right respectively  
 The following figures and table depict the performance of this 

algorithm. The algorithm is especially good even when the 



utterance begins or ends with fricatives or plosives, and for the 
noise present in this data.   Note that for about 10% of the 
recordings, the background noise (mainly breath noise), was 
larger than the offset or onset of the speech.  The table below 
gives an error summary of the algorithm, both in terms of total 
errors and distribution of errors.    

 

 Number of 
files 

Incorrect 
number Accuracy 

Male speaker 244 5 97.95% 
Female speaker 244 9 96.31% 

Children 
speaker 244 8 96.72% 

Table2: Overall accuracy summary for entire database 
 
 

4. CONCLUSION 
 

The new algorithm for isolated words endpoint detection has 
been proposed in this paper. This algorithm combines the 
modified Teager Energy operator and EE Feature approach, to 
achieve good overall results.   In particular this method is able to 
reliably detect the onset and offset of speech even for weak 
beginnings and endings, in the presence of noise, which has 
greater energy than the initial and final speech. 
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 Male speaker Female 
speaker 

Children 
speaker 

Number of 
files 244 244 244 

Incorrect 
number 5 9 8 

Error at 
beginning 3 6 6 

Error at 
ending 2 3 2 

Error missing 
signal 2 4 3 

Error with too 
much silence 3 5 5 
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