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Absolute value energy and Teager energy are two widely used approaches in 

word endpoint detection. Both have been used recently for locating the endpoints for 

isolated words. However, each of them has some drawbacks for speech in noisy 

environments. This work proposes a novel method to combine these two approaches to 

locate endpoint intervals and yet make a final decision based on energy, which requires 

far less time than the feature based methods. After introducing the background of isolated 

word endpoint detection and some important literature from several typical algorithms, 

the new algorithm description is given in detail. Then an experimental evaluation which 

compares the automatically determined endpoints with those determined by skilled 

personnel is presented. It is shown that the accuracy of this algorithm is quite satisfactory 

and acceptable. However, improvement is still possible to increase the performance of 

this algorithm.  Suggestions for future work are included in this final part of this thesis. 
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 The Importance of Endpoint Detection 
 

Endpoint detection, which aims to distinguish the speech and non-speech segments of a 

digital speech signal, is considered as one of the key preprocessing steps in automatic 

speech recognition (ASR) systems. One major factor in overall recognition performance 

is endpoint accuracy. Proper estimation of the start and end of the speech (versus silence 

or background noise) avoids the waste of ASR evaluations on preceding or ensuing 

silence.   Conversely, accurate endpoint detection leads to efficient computation and, 

more importantly, to accurate recognition since proper endpoints will result in good 

alignment for template comparison [1, 8]. 

 

In general, for either isolated word or continuous speech recognition systems, incorrect 

endpoint detection of an utterance can produce two negative effects [2]: 

1) Recognition errors because of the incorrect boundaries; 

2) Increased computations “wasted” on the non-speech events in the utterance. 

 

Currently, research on continuous speech recognition is a more focused discipline than 

research in other areas, such as isolated word recognition. Nevertheless, there are still 

numerous areas that require the application of the isolated word recognition systems. 
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Accurate endpoint detection is particularly important for these isolated word recognition 

systems.  

 

Among various endpoint detection approaches, energy-based methods are the most 

widely used to solve the problem. The basic idea of using energy to detect endpoints is 

that, in a clean environment, the energy (or power) of a speech segment is higher than a 

non-speech one in a speaker’s utterance. In these methods, a fixed-length window is 

defined first. It is then “slid” over the duration of the input utterance, usually with a frame 

spacing less than the frame length. By continuously monitoring the utterance through the 

window, the starting point can be found once when the short-time energy of the window 

is higher than some beginning threshold. Similarly, the ending point can be located when 

the short-time energy of the window is lower than some ending threshold [3, 7].  

 

In this thesis, our research goal is to present, develop and test a robust algorithm for 

reliably determining endpoints of isolated words, even in the presence of some noise.   

This algorithm should also be based on computationally-efficient energy based 

parameters, rather than   features which are a more computationally demanding [1]. The 

endpoint detection can be viewed as a speech/background-noise classification. For ASR 

systems, the ideal characteristics for such classification are: reliability, robustness, 

accuracy, adaptation, simplicity, real-time processing and no a priori knowledge of the 

noise [8].  

One of the specific applications of isolated word recognition is the Visual Speech 

Articulation Training Aid under development in the Speech Lab of the Electrical and 
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Computer Engineering Department of Old Dominion University.   The process for 

“training” this aid requires the collection and processing of a large database of isolated 

words, which must be properly endpointed to enable accurate training. 

 

1.2 Research Objective 
 

Isolated word recognition is one basic class of speech important for satisfactory speech 

recognition. There are many potential applications, such as remote data entry via voice 

commands, that would be enabled by very accurate isolated word recognition.    

However, except for vowels, most isolated words, such as digits and CVCs (consonant-

vowel-consonants), are difficult to accurately determine endpoints for, since many 

consonants are very low energy.    However, most practical speech-recognition systems 

rely heavily on isolated word recognition for these difficult words.   For example, for the 

digit “eight,” the final endpoint detection could easily miss the final weak portion (“t”), 

especially in strong noise background. Therefore, the detection of the weak points of an 

utterance and the separation from the background noise is the real challenge.  

 

The main objective of this research is to develop a good general endpoint detection 

method, which will be accurate, or any type of speech utterance.  However, since 

endpoint detection accuracy is most important for isolated words, and because the 

immediate application of this algorithm is for isolated words, the focus of our work is an 

algorithm for isolated words. In this work, we wish to emphasize good endpoint detection 

for sounds which begin, and/or end with weak consonants. The data of particular interest 



 4
   

includes the spoken versions of the 10 digits, 26 letters of the alphabet, 12 CVC sounds  

(Consonant Vowel Consonant) and 13 vowels.  An important goal of this research work 

is to support the development of the  “Visual Speech Articulation Training Aid,” a 

project undertaken by the Speech Communication Lab in the Electrical and Computer 

Engineering Department of Old Dominion University. The software is able to run on a 

Windows Multimedia Personal Computer without any specialized hardware. The 

articulation training aid was developed using neural networks trained to recognize 

“correct” productions from a large database of speakers.  A critical step in the training 

process is endpoint detection of the training database.   The version of endpoint detection 

used for this database (the method will be discussed in details in chapter two), previous to 

the routines developed in this thesis, was found to have frequent errors, which provided 

the motivation for the current work. 

 

This thesis presents a simple and fast algorithm for accurately locating the endpoints of 

isolated words spoken in an office environment. This algorithm is based on two 

approaches, Teager Energy and absolute value, which have recently been used for 

locating the endpoints of an utterance. Since each of them has some drawbacks for 

speech in noisy environments, our algorithm is a novel method to combine these two 

approaches to locate endpoint intervals and yet make a final decision based on energy, 

which requires far less time than the feature based methods. After the algorithm 

description, an experimental evaluation is also presented, comparing the automatically 

determined endpoints with those determined by skilled personnel. It is shown that the 

accuracy of this algorithm is quite satisfactory and acceptable. 
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A large portion of this research and the most obvious achievement is the improvement of 

the software for signal processing algorithms for the Visual Speech Articulation Training 

Aid.  The work also includes the improved endpointing of the entire VATA training base 

(over 10000 files), and the retraining of the VATA with the neural network software.   

Thus, the final result along these lines is better performance for VATA. 

 

1.3 Overview of Automatic Speech Recognition 
 

Automatic recognition of speech by machine has been a goal of research for more than 

four decades. However, in spite of the glamour of designing an intelligent machine that 

can recognize the spoken word and comprehend its meaning, and in spite of the 

enormous research efforts spent in trying to create such a machine, we are far from 

achieving the desired goal of a machine that can understand spoken discourse on any 

subject by all speakers in all environments.  Dr. Stephen Zahorian summarized this state 

of affairs as: “The average 3-year-old kid still understands speech better than the best 

software program.” Because we don’t know how to solve the complete challenge of 

speech recognition, ODU’s speech lab’s goal is to conduct a series of research tasks on 

the fundamental principles underlying speech-recognition systems so as to provide a 

framework from which researchers can expand the frontier.   Also, as mentioned before, a 

specific goal at ODU is to improve the Visual Speech Articulation Training Aid software 

as much as possible, so that it can really benefit the hearing impaired. 
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A general model for speech recognition [30], shown in Figure 1, is commonly used. The 

model begins with a user creating a speech signal to accomplish a given task. The spoken 

output is first recognized in that the speech signal is decoded into a series of words that 

are meaningful according to the syntax, semantics and pragmatics of the recognition task. 

The meaning of the recognized words is obtained by a higher-level processor, which uses 

a dynamic knowledge representation to modify the syntax, semantics, and pragmatics 

according to the context of what it has previously recognized. In this manner, things such 

as nonsequitors are omitted from consideration at the risk of misunderstanding, but at the 

gain of minimizing errors for sequentially meaningful inputs. The feedback from the 

higher-level processing box reduces the complexity of the recognition model by limiting 

the search for valid input sentences from the user. The recognition system responds to the 

user in the form of a voice output, or equivalently, in the form of the requested action 

being performed, with the user being prompted for more input. 

 

 

Figure 1: General Block Diagram of a Task-oriented Speech-recognition System 
[30] 
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Figure 2 gives a basis overview of a traditional endpoint detection scheme. First, the 

input utterance is changed from an analog signal to discrete-time data through an A/D 

converter with a fixed sampling frequency. Then the signal is segmented into overlapping 

frames.   Then endpoints are computed, usually using some empirically determined 

thresholds, for the beginning and end of the utterance [3].  

 

 

 

Figure 2: A Block Diagram for the Energy-based methods [3] 
 

1.4 A Brief Introduction to the Development on Speech Recognition 
 

Research in automatic speech recognition by machine has been done for almost four 

decades. To gain an appreciation for the amount of progress achieved over this period, it 

is worthwhile to briefly review some research highlights. 

 

The earliest attempts to devise systems for automatic speech recognition by machine 

were made in the 1950s, when various researchers tried to exploit the fundamental ideas 

of acoustic-phonetics. In 1952, at Bell Laboratories, Davis, Biddulph, and Balashek built 

a system for isolated digit recognition for a single speaker. The system relied heavily on 

measuring spectral resonances during the vowel region of each digit [24].  
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In the 1960s several fundamental ideas in speech recognition surfaced and were 

published. The first of these achievements is owed to Martin and his colleagues at RCA 

Laboratories, who develop realistic solutions to the problems associated with 

nonuniformity of time scales in speech events. The second happened in USSR, where 

Vintsyuk proposed the use of dynamic programming methods for time aligning a pair of 

speech utterances. The final achievement of note in the 1960s was the pioneering 

research of Reddy in the field of continuous speech recognition by dynamic tracking of 

phonemes [24]. 

 

In the 1970s speech-recognition research resulted in a number of significant milestones. 

First, isolated word or discrete utterance recognition became a viable and usable 

technology based on fundamental studies by the researchers in Russia, Japan and U.S.A. 

The now well-known technique of Linear Predictive Coding (LPC) was first used in that 

decade, as well as important pattern recognition techniques. At the same time, the 

research on large vocabulary speech recognition was also in its infancy [24]. 

 

Just as isolated word recognition was a key focus of research in the 1970s, the problem of 

connected word recognition was a focus of research in the 1980s and 1990s. In these two 

decades, new milestones have been reached one by one. Statistical modeling methods, 

especially hidden Markov model approach and the new use of neural networks, were the 

source of most of the improvements.  Accuracy of both isolated word recognition and 

continuous-speech slowly but continuously improved. This whole field of research was 
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fueled by the dramatic improvements in computer power and reduction in price.  Along 

the way, many new ideas for isolated word recognition research emerged, and this type of 

ASR also reached a new level [24]. 

 

To the particular topic of endpoint detection for isolated words, there have many attempts 

to “solve” the problem over the past several decades. Computing the energy of speech 

signal is a computationally simple operation compared to extracting other features, such 

as LPC derived cepstrum coefficients (LPCC), mel-frequency cepstrum coefficients 

(MFCC) and so on, which have been found to work well for endpoint detection but are 

time and computationally intensive. As for energy-based methods, most of the algorithms 

are based on simple parameters such as energy contours and zero crossings [1]. Thus, a 

remaining challenge is to retain the computational advantages of energy based methods 

while preserving and even improving accuracy. 

 

1.5 Overview of the Following Chapters 
 

In this section, we give an overview of the following chapters in this thesis. 

 

The main point of chapter two is a review of the existing endpoint detection algorithms 

for isolated words as well as the basic concepts of endpoint detection and the problems 

we need to solve. 
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In Chapter three, the “heart” of this thesis, the new endpoint detection algorithm, which is 

based on the Teager energy and absolute value methods, is presented. 

 

Chapter four presents a series of experiments designed to evaluate the effectiveness of the 

isolated words recognition and the results are evaluated.    

 

In the last chapter, chapter five, conclusions and suggestions for further research are 

offered. 
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CHAPTER TWO 

 

TECHNICAL BACKGROUND 
 

2.1 The Process of Speech Production and Perception in Human Beings 
 

Before we proceed with the main portion of this chapter, a brief summary of some of the 

existing isolated words endpoint detection algorithms, we will discuss the basic process 

for the production of speech signals and some basic concepts of endpoint detection. 

 

Sound waves are caused when a vibrating body causes a mechanical oscillation that 

disturbs the surrounding air causing variations in air pressure. Although sound is 

sometimes defined as the air vibrations audible to man, this definition may be restrictive, 

especially when dealing with applications for the hearing impaired [30] (Figure 3). 
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Figure 3: Speech Production and Perception Process [30] 

 

The objective of speech production is to generate meaningful sound combinations. 

Speech sounds are created by air passing through our sound production organs. The 

stream of air is modified by movements of our jaw, lips, tongue, pharynx and vocal folds 

in a way that it becomes audible and meaningful to a listener.  

 

Speech sounds are usually classified as vowels and consonants. Generally vowels are 

voiced sounds whose spectral characteristics are determined by the size and shape of the 

vocal tract. Modifying the shape of the vocal tract changes its filtering characteristics, 

which in turn changes the frequencies at which the speech signal is enhanced or de-

emphasized. Consonants are produced by a partial or complete obstruction somewhere 
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along the vocal tract. The turbulence that is generated causes the sound to be quasi-

periodic or aperiodic and noise-like (Gelfand, 1981) [30]. 

 

The speech wave generated by the speech organs is transmitted through the air to the ears 

of listeners. At the ear, it activates the hearing organs to produce nerve impulses, which 

are transmitted to the listener’s brain through the auditory nerve system. The same speech 

is transmitted to the speaker’s ears as well, allowing him to continuously control his 

vocal organs by receiving his own speech as feedback. The critical importance of this 

feedback mechanism is clearly apparent for people whose hearing has become disabled 

for over a year or two (Furui, 1989). It is also evident by the fact that is very hard to 

speak when our own speech is fed back to our ear with a certain amount of time delay 

[30]. 

 

2.2 Endpoint Detection Problems 
 

The goal of speech detection is to separate acoustic events of interest in a continuously 

recorded signal from other parts of the signal. A key question in speech recognition is 

how accurately speech must be detected so as to provide the “best” speech patterns for 

recognition. The definition of “best” here is the pragmatic one---namely, the patterns that 

provide highest recognition accuracy. 

 

For speech produced in the most benign circumstances---that is, carefully articulated and 

spoken in a relatively noise-free environment---accurate detection of speech is a simple 
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problem. However, this is not usually the case. In practice, one or more problems usually 

make accurate endpoint detection difficult. One particular class of problems is those 

attributed to the speaker and to the manner of producing the speech. For example, during 

articulation, the speaker often produces sound artifacts, including lip smacks, heavy 

breathing and mouth clicks and pops. Figure 4 and Figure 5 show examples of this type 

of humanly produced sound artifact. The top part of each figure is the energy contour of 

the utterance on a logarithmic (dB) scale, and the lower part is the time waveform of the 

corresponding utterance [30]. 

 

 

Figure 4: Example of Click Noise [30] 
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Figure 5: Example of Breath Noise [30] 

 

A second factor making reliable speech endpoint detection difficult is the environmental 

conditions in which the speech is produced. The ideal environment for talking is a quiet 

room with on acoustic noise or signal generators other than that produced by the speaker. 

Such an ideal environment is not always practical; hence, one must consider speech 

produced in noisy backgrounds, in non-stationary environments, with speech 

interference, and in hostile circumstances. Some of these interfering signals possess as 

much speech-like quality as the desired speech signal itself, making accurate endpoint 

detection quite difficult [17, 30]. 
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A final source of signal degradation is the distortion introduced by the transmission 

system over which the speech is sent. Factors like cross talk, inter-modulation distortion, 

and various types of tonal interference arise to various degrees in the communications 

channel, again adding to the inherent difficulties in reliably detecting speech endpoints 

[17, 30]. 

 

The following portion of this chapter summarizes several robust or milestone algorithms 

which have relatively successful in combating   the above-mentioned endpoint detection 

problems.  The new robust algorithm of this thesis, which will be presented in the third 

chapter, is based on four of these existing algorithms and combines advantages from 

them to obtain an even better overall algorithm.     

 

2.3 Algorithms for Endpoint Detection 
 

Many of the published works deal with the problem of voiced-unvoiced-silence detection, 

which is sometimes dealt with as a part of speech segmentations (Rabiner and Sambur, 

1977; Ramamoorthy, 1980; DeSouza, 1983; Mwangi and Xydeas, 1985; Biing-Hwang 

Juang, 1993; Chin-Hui Lee, 1995; Owen Kimball, 1996; John Hansen, 1999). A lesser 

number of published works deals with endpoint detection for isolated word recognition 

(Rabiner and Sambur, 1975; Lamel et al., 1981; Wilpon et al., 1984; Savoji, 1989; 

Chollet, 1995; Loizou and Spanias, 1996; Rahim and Biing-Hwang Juang, 1997; Kim 

and Kil, 1999). Voice activation and silence detection have been included in effective 

coding schemes (Cho and Un, 1982; Don Vito and Schoenherr, 1985; Lynch et al., 1987, 
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Compernolle, 1998) while some endpoint detectors have been devised based on coding 

techniques (Das and Tappert, 1978; Tsao and Gray, 1984; Kim and Un, 1995; Womack 

and Hansen, 1999). 

 

When we search the literature for endpoint detection, the paper most widely referenced is 

that by L.R. Rabiner and M.R. Sambur in 1975 [17]. In this paper, the author proposes a 

fairly simple algorithm for locating the beginning and end of an utterance, which can be 

used in almost any background environment with signal-to-noise ratio of at least 30 dB. 

The algorithm is based on two measures of speech: short-time energy and the zero 

crossing rate. The algorithm possesses the feature that it has somewhat self-adapting 

thresholds for its decision criteria from measurements made directly on the recorded 

interval. The first step of this algorithm is to define how the energy and zero crossing rate 

are measured. The speech energy is defined as the sum of the magnitudes of 10 ms of 

speech centered on the measurement interval. The choice of a 10-ms window for 

computing the energy and the use of a magnitude function rather than a squared-

magnitude function were dictated by the desire to perform the computations in integer 

arithmetic and, thus, to increase speed of computation. Further, the use of a magnitude 

de-emphasizes large-amplitude speech variations and produces a smoother energy 

function. The zero crossing rate of the speech is defined as the number of zero crossings 

per 10-ms interval. Although the zero crossing rate is highly susceptible to 60-Hz hum, 

dc offset, etc., in most cases it is a reasonably good measure of the presence or absence of 

unvoiced speech. Then, it is assumed that during the first 100ms of the recording interval 

there is no speech present. Thus, during this interval, the statistics of the background 
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silence are measured. These measurements include the average and standard deviation of 

the zero crossing rate and the average energy. If any of these measurements are 

excessive, the algorithm halts and warns the user. Otherwise, a zero crossing threshold, 

IZCT, is chosen as the minimum of a fixed threshold for unvoiced speech. The values 

used are IF (25 crossings per 10ms), and the sum of the mean zero crossing rate during 

silence, IZC, plus twice the standard deviation of the zero crossing rate during silence. 

Then, the peak energy, IMX, and the silence energy, IMN, are used to set two thresholds, 

ITL and ITU.  A value I1 is set to be at a level which is 3 percent of the peak energy, 

whereas, I2 is set to be at a level which is four times the silence energy. The lower 

threshold, ITL, is the minimum of these two conservative energy thresholds, and the 

upper threshold, ITU, is five times the lower threshold. The algorithm begins by 

searching from the beginning of the interval until the lower thresholds is exceeded. This 

point is preliminarily labeled as the beginning of the utterance unless the energy falls 

below ITL before it rises above ITU. Should this occur, a new beginning point is 

obtained by finding the first point at which the energy exceeds ITL, and then exceeds 

ITU before falling below ITL; eventually such a beginning point must exist.  A similar 

algorithm is used to define a preliminary estimate of the endpoint of the utterance. We 

call these beginning and ending points N1 and N2, respectively. By using the zero 

crossing rate, the algorithm proceeds to examine the interval from N1 to N1-25 and counts 

the number of intervals where the zero crossing rate exceeds the threshold IZCT. If the 

number of times the threshold was exceeded was three or more, the starting point is set 

back to the first point (in time) at which the threshold was exceeded. Otherwise, the 

beginning point is kept at N1. A similar search procedure is used on the endpoint of the 
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utterance to determine if there is unvoiced energy in the interval from N2 to N2 + 25. 

Then the endpoint is readjusted based on the zero crossing test results in this interval. 

This algorithm is fast since it requires few computations. However, it is unable to 

compete with the noise even in benign environments and sometimes it is not reliable to 

distinguish a weak fricative from background noise. 

 

The reason we give so many details about the above algorithm is because it is the basis of 

all the algorithms based on energy. Now, we will present three additional algorithms, 

which are modified versions of the Rabiner/Sambur one. 

 

In 1991, Evangelos S. Dermatas, Nikos D. Fakotakis and George K. Kokkinakis 

presented a simple and fast algorithm for accurately locating the endpoints of isolated 

words spoken in an office environment [4]. This algorithm is based on energy measures 

and threshold logic and is adaptive to almost any low noise acoustic environment. The 

proposed algorithm consists of four steps. In the first, the speech signal corresponding to 

a single word is preprocessed and the background noise is estimated which is used to 

adapt the decision threshold values of the following step. In this step, the input signal is 

pre-emphasized, to eliminate the d-c component and to emphasize the higher frequency 

components, using an one-zero filter. Then, from samples taken at the beginning and the 

ending of the input signal, the background noise is estimated. To this end, the energy 

levels of two wide-length non-overlapping frames at the beginning and two at the ending 

of the signal are calculated. The noise level at the front-end of the signal (EF) is estimated 

using the first two  frames. If the difference between the energy levels of the two frames 
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is equal or less than twice the value of one frame, the noise level is taken to be equal to 

the mean value of the two frames, otherwise to be the minimum of the energy levels of 

the two frames. The noise level at the back-end of the signal (EB) is estimated in the same 

way, using the last two frames. Finally, the background noise of the input signal (EN) is 

estimated using the noise levels at the front and back ends. If the difference between the 

two values is equal to or less than twice the value of one level, the background noise is 

taken to be equal to the mean value of the two noise levels, otherwise the background 

noise cannot be estimated. In the second case, this algorithm is to locate the first and the 

last voiced sound. Searching the amplitude-time function from left to right with an 80 

msec frame, in a 0.1 msec step, the first frame with V peaks above an amplitude 

threshold TA is assumed to lie at the beginning of the first speech  sound of the utterance. 

In the same way, the ending-point can be found. In the third, the  focus is on the location 

of low energy areas. An 80 msec frame is moved backwards, from the front voiced sound 

starting-point, in a 0.1 msec step, to calculate the energy contour of the signal. This 

energy function is compared to two thresholds in order to locate the boundaries of the 

front low energy area. The two experimentally derived energy thresholds are 1.1 EN and 

2.2 EN, yielding the corresponding points tF1 and tF2.  The same method is used to find the  

low energy area at the end, except  the two experimentally derived energy thresholds are 

3.33 EN and 3.0 EN, resulting in  corresponding points tB2 and tB1. The final step of this 

algorithm is the endpoint detection. At the front area, from point tF1 to tF2, the contour of 

the energy ratio of two successive non-overlapping 30 ms frames is estimated, in a 0.1 ms 

step. The actual beginning of the speech signal is chosen as the maximum value of the 

energy ratio contour.  The ending point is obtained by the same method using the interval 
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from point tB2 to tB1. This algorithm is also fast, requiring few computations. However, it 

must estimate the background noise. The requirement sometimes is not satisfied when 

there is not “enough” silence at the beginning or ending. 

 

In 1993, G.S. Ying, C.D. Mitchell and L.H. Jamieson presented a novel algorithm to 

detect the endpoints by using the Teager Frame Energy [2]. In this paper, the new 

algorithm is based on a new energy measure, Teager Frame Energy, which replaces the 

two traditional features, ZCR (Zero Crossing Rate) and energy in an endpoint detection 

algorithm. Teager showed that the “voiced part” signal energy is not only determined by 

the amplitude of the signal samples, but also by the oscillation frequency, which is 

capable of responding rapidly to changes for fricatives and plosives with very low 

amplitude. The algorithm is quite simple. First, the power spectrum is calculated. 

Secondly, each sample in the power spectrum is weighted by the square of the frequency.  

Thirdly, the square root of the sum of the weighted power spectrum is computed.  The 

result after the third step is the Teager Frame Energy, from which a pair of thresholds can 

be used to make the final decision. This algorithm performs quite well in a mild noise 

background; however, it still fails in strong noise, especially if the main part is 

mechanical noise.    This algorithm also requires more computations than the previous 

two, since a power spectrum must be computed. 

 

In 1997, Yiying Zhang, Xiaoyan Zhu, Yu Hao and Yupin Luo [5] extended the algorithm 

mentioned above by Evangelos S. Dermatas, etc., in 1991.  In this paper, they use the 

same method to estimate the background energy given in [4].  However, the background 
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ZCR is also estimated as one parameter. Then, they search the energy function from left 

to right using frame intervals. The first frame whose energy is above an energy threshold 

TE is assumed to lie at the beginning of the first voiced sound of the utterance. The point 

is named PF3. Searching the energy function from right to left, we get the last voiced 

point PB3. Then, they use the parameter ZCR to relax the endpoints. Searching the ZCR 

function from point PF3 backwards, the reference starting point PF2 is obtained with its 

ZCR greater than a ZCR threshold Zk. Using the same approach, they find the   reference 

ending point PB2. Finally, they use the Variable Frame Rate (VFR) technique to compute 

the Euclidean distance D(i, j) between the current frame i and the last retained frame j 

and to compare this distance to some threshold T. Searching from frame PF2 to PB2, if the 

Euclidean distances between the current frame and the next, the second next and the third 

next are all greater than a experimental threshold TD,  they find a  starting-point PF1. 

Then, searching from frame PB2 to PF2, they find the  ending-point PB1. This algorithm is 

implemented easily. However, this algorithm uses the unreliable parameter ZCR to make 

interim decision. Therefore, it is not very robust to combat strong background noise. 

 

The last algorithm we will summarize was introduced in 2000 by Liang-sheng Huang and 

Chung-ho Yang [3]. In this algorithm, they use a novel and powerful parameter, entropy, 

which is used widely in communications, to help make the final decision. First, the author 

calculates each frame’s energy Ei by the sum of each sample’s square, which is very 

familiar to readers. Secondly, by computing the FFT for each frame, they calculate the 

spectrum pdf by normalizing each amplitude of frequency component with the sum of the 

total frequency component’s amplitude in each frame. We call this new parameter pi for 
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each frame i as the corresponding probability density.  Then the negative entropy Hi of 

frame i can be obtained by taking the sum of product of pj and log(pj) for all j in the 

frame i. Thirdly, after obtaining the  negative entropy Hi, they use the formula: 

                                                               Mi = (Ei-CE)*(Hi-CH) 

                                                               EE-Feature = (1+|Mi|)1/2 

to define the final parameter EE-Feature. Then, simple decision logic is used with a pair 

of thresholds to determine the final endpoints. This algorithm combats background noise 

quite well, especially the mechanical noise. However, it needs to estimate the background 

noise and energy, which is sometimes not possible, as mentioned above. 

 

In this thesis, the new endpoint detection algorithm is a simple and accurate algorithm for 

the detection of the endpoints of isolated words spoken in noise environment. This 

algorithm is based on Teager Frame energy measures and absolute value approach. In our 

new algorithm, it is sensitive to the fricative and plosive with low amplitude and has a 

great shape to combat with the background noise.  It also achieves satisfactory and 

acceptable accuracy for all alphabets, digits, vowels and most CVCs. 
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CHAPTER THREE 

 

ALGORITHM DESPCRIPTION 
 

3.1 Introduction 
 

As mentioned before, each of the existing algorithms has both advantages and some 

disadvantages. In this chapter, we will present a new algorithm, which combines several 

merits of the algorithms discussed in chapter two, and which has good performance, such 

as high sensitivity for the beginnings of fricatives and plosives, good performance to 

combat noise, etc.  However, there are still some shortcomings, which we will discuss 

and compare with those of the other algorithms. 

 

This algorithm developed in this thesis combines the Teager Energy and absolute energy 

methods (AETE algorithm). This is a fast, accurate algorithm intended for use in 

moderate noise environments. In this thesis, we describe our implementation of this 

algorithm, including several steps not used in previous implementations.  

 

3.2 Basic Structure for AETE Algorithm 
 

In this algorithm, there are three main parts. The first part is the pre-processing and 

computations used to determine the smoothed absolute value and Teager energy of the 
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speech signal. The second stage of the algorithm is the computation and decision logic 

used to estimate the background noise and determine the beginning and ending region. 

The end result of this second stage of processing consists of four pairs of endpoints 

(boundaries for beginning region and ending region using the absolute value, and 

boundaries for beginning regions and ending region using the Teager energy).   The 

“true” endpoints are presumed to be within the regions determined by these parameters. 

Finally, based on these four pairs of endpoints, the final endpoint decisions are made. In 

the following subsections, we will develop these steps, combining the discussions for the 

absolute value and Teager energy, so that we can compare the methods more easily.  

 

3.3 The Algorithm Description 
 

3.3.1 Signal  Pre-Emphasis 
 

First, we use a single pole-pair filter to pre-emphasize the speech signal, which has 

previously been found to be effective for pre-filtering of speech data prior to automatic 

speech recognition.  The center frequency is typically 3000 Hz and the radius of the pole-

pair is 0.8. Second, a bandpass filter (FIR filter of order 150) with a low cutoff frequency 

of 375 Hz and high cutoff frequency of 5000 Hz is applied to the signal, after using the 

pre-emphasis filter. This band, very similar to the band of telephone lines, is generally 

considered to contain the most overall speech information. This type of fixed filtering is 

reasonably effective for improving the signal to noise ratio of speech to non-speech. For 

example, for most cases of recorded wave files in the speech lab at ODU, many kinds of 
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Start point: TB,  
End point: TF 

Final Decision Logic 

Start point: Tea_TB, 
End point: Tea_TF 

Start point: Abs_TB, 
End point: Abs_TF 

Teager’s Energy 
calculation 
approach 

Absolute Value 
calculation approach 

Pre-emphasizing 

A/D Converter 

Input Utterance 

 

Figure 6: Block diagram of AETE algorithm 
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noise, such as the heating/cooling system and other machinery noises, tended to be either 

low frequency noise or high frequency.  A big source of unwanted acoustic signals such 

as breath noises were largely eliminated by this filtering.   Thus overall much of the noise 

from office environments was removed by this filtering approach.  This filtering is 

illustrated for a typical speech signal in Figure 7.   Note that the very high amplitude but 

very low frequency breath noise at the beginning of the signal is eliminated. This filtered 

signal was used for computing both the absolute value and Teager Energy parameters. 

Figure 7 depicts an example, which illustrates the benefits of the pre-emphasizing 

procedure. 

 

3.3.2 Absolute Value and Teager Energy Computation 
  

In this step, we will show the computation of absolute value and Teager energy 

respectively.  We compute the absolute value first for each point of the given signal as 

 

isiE =  

where, si is the value for each sampling point. After calculating the absolute value, we 

lowpass filter it using a 250 point FIR filter with a cutoff frequency of 30 Hz. The 

resultant signal, after the low-pass filtering, is essentially the envelope of the magnitude 

of the original speech signal. After this filtering, each speech signal (typically ranging 

from .5 seconds to 2 seconds in total length for our database of isolated words), was 
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Figure 7: Signal comparison before and after pre-emphasizing and bandpass 
filtering for Word ‘three’ 

 

decimated/interpolated to a fixed length of 1000 points.   This fixed length is somewhat 

more convenient for use in the following steps and more than adequate for the required 

time resolution; it also greatly reduced computations for the following steps. Finally, we 

also normalize the amplitude of the smoothed absolute value to lie between 0 and 1, using 

an offset and linear scaling.  

 



 29
   

After introducing the absolute value computation, we will give some details about the 

Teager energy computation. In modeling speech production, Teager developed a new 

algorithm for computing the energy of a signal. This algorithm has been presented by 

Kasier as Teager’s Energy Algorithm [2].  Given a signal with the motion of an 

oscillatory body, sample xi is given below: 

 

)cos( Φ+Ω= iAix  

 

Where A is the amplitude of the oscillation, Ω is the digital frequency, and φ is the initial 

phase. In Teager’s algorithm, the instantaneous energy Ti of the sample xi is: 

 

11
2

−+−= ixixixiT  

)(2sin2 Ω= A  

22Ω= A  

 

From the above equation, we can see that the output of Teager’s algorithm is affected not 

only by the amplitude of the signal samples, but also by the oscillation frequency. This 

new measure is therefore capable of responding rapidly to changes in both A and Ω. 

Therefore, the ability of the measure to track rapid change improves dramatically. In the 

following sub-sections, we use the Teager energy as another point-based energy measure 

for “solving” for the endpoint detection problem. From the examples depicted below, we 
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observe that fricatives and plosives have very low amplitude, but unlike most vowels, 

these sounds have energy distributed at higher frequencies. A more suitable way to 

calculate the energy of producing the fricatives is to consider not only the amplitude of 

the acoustic signal, but also the frequency at which the acoustic energy is located. 

Therefore, the advantage of the Teager Energy operator appears. 

 
Again using the pre-emphasized sequence as explained in section 3.3.1, we compute the 

normalized Teager energy.   We also nonlinearly compress the Teager energy.    The 

overall equation used for this calculation is: 

 
3.0

11
2 )( +−−= iiii xxxT  

 
This compression was needed due to the very large dynamic range of the Teager energy. 

In order that the same methods can used to first find beginning and ending intervals, we 

also normalize the Teager energy contour to lie between 0 and 1, and smooth with the 

same filter as used to smooth the absolute value energy. Figure 8, Figure 9 and Figure 10 

show three tokens with original acoustic signal, filtered acoustic signal, absolute value 

and Teager energy curves. 
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Figure 8: Original acoustic signal, filtered acoustic signal, absolute value and Teager 
energy curves for digit “three” 
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Figure 9: original acoustic signal, filtered acoustic signal, absolute value and Teager 

energy curves for CVC “beet” 
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Figure 10: original acoustic signal, filtered acoustic signal, absolute value and 

Teager energy curves for vowel “UH” 

 

 

3.3.3 Background Noise Estimation and Computation of Decision Thresholds 
 

Since background noise plays an important role in endpoint detection thresholds, good 

estimation of background noise is an essential step in endpoint detection algorithms. 

Based on the normalized smoothed signal energy described above, we first apply yet 

another smoothing filter (using a 75-point simple running average) on both the absolute 

energy and Teager energy.  The minima of these very smooth signals are used as the 
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primary estimate of the background noise reference values: Thres_N (for absolute energy 

approach) and Thres_T (for Teager energy approach).  

 
With these two noise references, we then define four decision thresholds.    Two of these 

decision thresholds are used to determine an interval of the signal in the beginning 

region, within which the speech signal is presumed to start.    The other two of these 

decision thresholds are used to determine the interval of the signal in the ending region, 

within which the speech signal is presumed to end.  To obtain the first of these decision 

thresholds, Thres_B1, let us use the absolute value as an example. The following decision 

logic is used: 

 

)13,11_max(1_
)12,_11min(11_

cBThresBThres
cNThrescBThres

=
×=

 

 
The constants, c11, c12 and c13 are empirically determined to improve overall starting 

region endpoint accuracy  (Typical values are 1.3, 0.1 and 0.00055 respectively).   Note 

that the basic idea is that the threshold is c11 times the background noise, but also limited 

to a range determined by c12 and c13.   In a similar manner, we determine the ending 

threshold Thres_B2 of the start region, the beginning threshold Thres_E1 of the end 

region and the ending threshold Thresh_E2 of the end region, using the following 

expressions: 

 

)23,21_max(2_
)22,_21min(21_

cBThresBThres
cNThrescBThres

=
×=

 

)33,11_max(1_
)32,_31min(11_

cEThresEThres
cNThrescEThres

=
×=
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)43,21_max(2_
)42,_41min(21_

cEThresEThres
cNThrescEThres

=
×=

 

 
The typical values, all empirically determined are c21=8.0, c22=0.2, c23=0.01, 

c31=15.0, c32=0.20, c33=0.05, c41=3.0, c42=0.1 and c43=0.0025.   Note that the same 

constants were used for both the absolute value and Teager Energy Signals.    The basic 

logic was to choose these parameters is be sure the true endpoints are almost certainly in 

the interval determined by these thresholds. For the Teager energy approach, the 

equations are identical, with the same constants, except that we use Thres_T instead of 

Thres_N as the different reference threshold. 

 

3.3.4 Locating the Beginning and Ending Regions  
 
As described above, we have four thresholds for each of these two methods, each of 

which depends on the background noise level.  As for the discussion above, we illustrate 

this method for the absolute value approach as an example.  The extension to the Teager 

energy is straightforward. Here, we use the thresholds to determine starting and ending 

“regions” for the speech signal. At the beginning of the input signal, we will use the first 

pair of thresholds (Thresh_B1, Thesh_B2) to locate the start region, within which the 

actual beginning endpoint is presumed to lie.  At the end of the signal, we will also use 

the second pair of thresholds (Thres_E1, Thresh_E2) to locate the ending region, within 

which the actual ending endpoint is presumed to lie. 
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Using the normalized and smoothed absolute value sequence, we index forwards (from 

the beginning to the end) point by point. Each energy point Ei is compared to the 

thresholds to locate the beginning endpoint interval using the following expression. 

 

NiBThresiE
i

Bt ≤≤≤= 1),1_(maxarg1  

NiBtBThresiE
i

Bt ≤≤≤= 1),2_(maxarg2  

With the same approach, we index move backwards (from the end to beginning) point by 

point. Each energy point Ei is compared to the other two thresholds to locate the ending 

endpoint interval using the following expression. 

 

1),2_(minarg2 ≥≥≤= iNEThresiE
iEt  

12),1_(minarg1 ≥≥≤= iEtEThresiE
iEt  

 

An additional refinement on the determination of these intervals was as follows. This 

refinement was implemented since it was noted, that sometimes, a noise spike early in the 

recording would cause the beginning time tB1 to be much too soon, and sometimes noise 

bursts late in the recording would cause the final end time tE2 to be much too late. These 

errors could generally be spotted by visual inspection of the filtered waveforms. 

Generally, if these type errors occurred for the beginning time, there would be a “long” 
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very low amplitude signal, prior to the main part of the speech signal. Similarly, if these 

errors occurred for the end time, there would be a “long” interval of very low amplitude 

signal after the main part of the speech signal, and before the final end time.    

 

Therefore, after the initial beginning time was determined, the number of the low energy 

points  (Energy threshold = .95*Thresh_B1 + .05*Thresh_B2) between tB1 and the point 

at which the maximum of the signal occurred were counted.    If the number of such 

points exceeded 50 ms, the time tB1 was advanced by the number of the low energy 

points. The time tB2 was left unchanged, unless it was less than 50 points ahead of tB1, in 

which case was changed to be tB1+50.  

 

A very similar procedure was used to check, and possibly modify tE1 and tE2.    For this 

case, the time threshold for low energy intervals prior to tF2was set to 200 ms, and tE1 was 

made to be at least 75 points earlier than tE1. Figure 11, Figure 12 and Figure 13 show the 

beginning and ending region obtained by the absolute value and Teager energy 

separately. 
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Figure 11: Beginning and ending region using  absolute value and Teager energy for 
digit “three” 
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Figure 12: Beginning and ending region using by absolute value and Teager energy 
for CVC “beet” 
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Figure 13: Beginning and ending region using by absolute value and Teager energy 
for vowel “UH” 

 

3.3.5 Final Endpoints for Absolute Value and Teager Energy Approaches 
 

From the literature [4, 17], we know that the boundary between non-speech and speech is 

usually accompanied by a large change in some energy-based parameter. Therefore, in 

the low area of the beginning, from the point tB1 to tB2, we calculate the first order 

difference of the given energy between the two adjacent points one by one forwards. The 

actual beginning of the speech signal corresponds to the maximum value of this energy 

difference.  
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In the same way, in the ending region described above, from point tE2 to tE1, the end of 

the speech signal is determined as the minimum value of the energy difference of 

adjacent points in the energy contour.  

 

By applying the exactly same logic on both absolute value approach and Teager energy 

approach, we have the final pair of endpoints, respectively. 

 

3.3.6 Final Decision Logic 
 

So far, by using the absolute value and Teager energy parameters, we determine two pairs 

of endpoints individually. One we call Abs_TB and Abs_TF (for the ones obtained with 

the absolute value signal), and the other pair is called Tea_TB and Tea_TF (for the ones 

obtained from the Teager energy signal).  From these two pairs, we choose the averages 

for both estimates using the following simple equations. 

 

2/)__( TBTeaTBAbsTB +=  

 

2/)__( TFTeaTFAbsTF +=  

 

Figure 14, Figure 15 and Figure 16 illustrates the endpoints obtained with the absolute 

value energy, Teager energy and final logic. The corresponding original signal and 

filtered signals were already shown above. The first panel depicts the endpoints as 
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determined from the smoothed absolute value. The second panel depicts endpoints 

obtained from the smoothed Teager energy. The third panel depicts the endpoints, after 

combining the results of the first two panels. 

 

 

Figure 14: Endpoints from absolute value, Teager energy and final logic for digit 
“three” 
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Figure 15: Endpoints from absolute value, Teager energy and final logic for CVC 
“beet” 
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Figure 16: Endpoints from absolute value, Teager energy and final logic for vowel 
“UH” 

 

From the figures above, this algorithm appears to perform very well to eliminate noise.  

In Figure 14, we can see the final endpoints are still correct even though the plosive part 

is very weak. From Figure 15, we find that after 0.63 s, the noise is successfully removed 

while the beginning and ending plosives are successfully kept.  

 

In the following chapter we will compare this AETE algorithm with another algorithm 

presented in 1991 and give a thorough analysis of the errors made. 



 45
   

 

CHAPTER FOUR 

 

EXPERIMENTAL VALIDATION 
 

4.1 Brief Description of Test Database  
 

The endpoint algorithm has been tested with a database that was collected by the Speech 

Communication Lab in the Electrical and Computer Engineering Department at Old 

Dominion University. In this database, we have several kinds of word recorded, including 

vowels, consonant-vowel-consonants (CVCs), spoken digits and the spoken letters of the 

alphabet. From the database, we chose two male speakers, two female speakers and two 

children speakers to test 10 digits, 26 alphabet letters, 13 CVCs and 13 vowels for a total 

of 512 wave files.  Table 1 is a list and count of all the words we used for testing.  A 

sampling rate of 22.05 KHz was used for all data. All recordings were made in a 

“normal” computer lab environment; for some of the recordings there was significant 

background and/or breath noise. We used this database to evaluate the algorithm 

presented in this thesis, and to compare its performance with the PE algorithm [4] 

discussed in chapter 2, where “PE” denotes pure energy algorithm.   We also use the 

database to evaluate the two portions of the AETE algorithm—one based on the absolute 

value parameter only (AE), and the other based on the Teager Energy parameter only 

(TE).  This additional evaluation is useful to help assess the relative usefulness of the AE 

and TE parameters for endpoint determination. 
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Alphabet Number CVC Number Vowel Number Digit Number 
A 7 bag 10 ae 10 one 7 
B 7 bed 10 ah 10 two 7 
C 7 beet 10 aw 10 three 7 
D 7 bird 10 ay 10 four 7 
E 7 boat 10 ee 10 five 7 
F 7 book 10 eh 10 six 7 
G 7 boot 10 ih 10 seven 7 
H 7 boyd 10 oh 10 eight 7 
I 7 cake 10 oo 10 nine 7 
J 7 cot 10 oy 10 ten 7 
K 7 cup 10 ue 10 
L 7 dog 10 uh 10 
M 7 pig 10 ur 10 

 

N 7  
O 7 
P 7 
Q 7 
R 7 
S 7 
T 7 
U 7 
V 7 
W 7 
X 7 
Y 7 
Z 7 

 

Table 1: List of test words and number of occurrences of each. Database was used to 
evaluate the endpoint detection algorithm 

 

4.2 General Comments  
 

In order to compare the performance of the two algorithms, we performed the test in the 

following steps.  First, each algorithm was used for all of these test words to compute 



 47
   

both the beginning and ending endpoints. The endpoints results obtained from 

algorithmic methods were then compared with the endpoints determined manually using 

visual and auditory inspections by skilled personnel. The manual endpoints were 

determined by a gradual segmentation of the speech signal and careful listening and 

visual inspection of the waveforms to locate the endpoints. The errors were also separated 

into several different categories, such as beginning and ending errors of various lengths, 

and also the “signs” of errors (identified start or end point before or after actual start or 

end point).     Errors were also analyzed in terms of vocabulary type:  digit, alphabet, 

CVC and vowel.   More details are presented in the following sections. 

 

4.3 Method of Manual Endpoints Detection 
 

In this section, we will summarize the method used to determine the endpoints manually.  

For the entire test, Cool Edit 2000 (from Syntrillium Software Corporation) software was 

used to help determine the final endpoints manually. Cool Edit 2000 has more than 

twenty audio effects and tools such as Echo, Flange, Compression, Amplify, Noise 

Reduction, Reverb, Time/Pitch stretch, and so on.  More importantly, for the present 

application, it also has powerful analysis tools.  For example, the frequency components 

and other details about our audio files could be examined with the Frequency Analysis, 

Statistics and Spectral View features. 

 

For each test word, after using Cool Edit to open it, the total duration (length) is given 

and the entire file can be viewed as an acoustic waveform. Then, we used two 
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independent ways to examine each word and to determine the endpoints. The first way 

was by acoustical (listening) examination. For this approach, we chose the waveform 

view from Cool Edit and listened carefully to the whole word. Sometimes, we also used 

the mouse to highlight parts of the given word to check whether it was speech or not. By 

carefully performing this step, we could determine accurate endpoints for both the 

beginning and end. To further verify that the reference endpoints obtained by this manual 

method were reliable, we also used another way to check the each word. This second 

approach was by examination of the spectrogram of each word by using the spectral view 

from Cool Edit.  Generally the transitions from background noise to speech, and from the 

end of the speech to background noise were quite obvious from the spectrogram. 

Generally speaking, the speech part of the signal was red, whereas the non-speech part 

was blue or green. Therefore, by verifying the results with the spectral view, and 

correcting as necessary, we were reasonably sure that the manually determined endpoints 

formed a good reference.   As yet one additional check, manual endpoints were 

independently determined by two people for one set of 512 waveforms, and the results 

compared.   The average difference in results for the two people were less than 10 ms for 

the starting point, and less than 20 ms for the ending point. Thus these manually 

determined  “reference” endpoints were used to evaluate the endpoint algorithm 

presented in this thesis, and to compare them with another control automatic method. 
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4.4 Algorithm Performance Comparison and Analysis 
 

In this section, we will first define several kinds of errors and arrange them in a table to 

evaluate the new algorithm and compare it to an existing algorithm 

 

4.4.1 Mean and Variance 
 

One way to systematically evaluate and describe the performance of an endpoint 

detection algorithm is to compute and show the mean and standard deviation of errors of 

detected endpoints as compared to reference values. That is, we first compute the 

differences between computed and reference endpoints, and then calculate the mean and 

standard deviation of these error values.  This results in four useful variables: mean for 

beginning endpoints, standard deviation for beginning endpoints, mean for final 

endpoints and standard deviation for final endpoints.  In this chapter we refer to the 

algorithm we presented in chapter two as the “PE,” as mentioned above.  With the 

notation mentioned in the beginning of the chapter, and also using the error analysis 

discussed above, the following overall performance results are obtained, as shown in 

Table 2.    
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 AE only (ms) TE only (ms) 
AETE 

Algorithm (ms) 

PE Algorithm 

(ms) 

Mean for 

beginning 
5.3 4.6 0.0 -4.270 

Standard 

deviation for 

beginning 

26.6 30.2 26.8 43.07 

Mean for end 34.9 40.4 0.0 31.66 

Standard 

deviation for 

end 

60.7 70.7 58.1 109.1 

 

Table 2: Mean and standard deviation for two algorithms 
 

From Table 2, we can see all of the four performance measures for the AETE algorithm 

are much better than for the PE algorithm. Both the mean values for the beginning and 

end obtained from the AETE algorithm are essentially zero.    However, the mean error is 

not really significant since the mean can always be  “adjusted” to zero by adding or 

subtracting from the originally obtained endpoint, using the original mean from a large 
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amount of data as the “correction” factor. It is the standard deviation, or variability in the 

error which is much more significant, since it cannot easily be reduced. In this regard, the 

standard deviations, at both the beginning and the end, are approximately half the values 

obtained from the PE algorithm. We also note that both the AE method and TE method 

(each based on one parameter) are better than the PE algorithm, but do not perform as 

well as the combination AETE algorithm. However, if only one parameter were to be 

used, it appears that the absolute value energy is a better choice than the Teager Energy. 

 

4.4.2 Beginning Errors 
 

Here, we will show in more detail six different kinds of error that occurred at the 

beginning of an utterance. They are: (1) more than 50 ms and less than 100 ms (too 

soon), (2) more than 100 ms and less than 200 (too soon), (3) more than 200 ms (too 

soon), (4) more than 50 ms and less than 100 ms (too late), (5) more than 100 ms and less 

than 200 ms (too late) and (6) more than 200 ms (too late). Here, “too soon” means the 

endpoints detected by the algorithm are earlier than the reference endpoints. Similarly, 

“too late” means the endpoints detected by the algorithms are later than the reference 

endpoints. Through the following table, we can find the performance of the AETE and 

PE algorithms, as well as the routines working only with one parameter absolute 

algorithm-AE and Teager algorithm-TE. In general, we consider a “significant” endpoint 

error has occurred if the beginning difference is greater in magnitude than 50 ms or the 

end difference is greater than 100 ms in magnitude. 
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AE 

Beginning 

TE 

Beginning 

AETE 

Beginning 

PE algorithm 

Beginning 

More than 50 

ms (too soon) 
13 15 12 5 

More than 100 

ms (too soon) 
7 9 7 8 

More than 200 

ms (too soon) 
1 1 1 4 

More than 50 

ms (too late) 
9 11 12 0 

More than 100 

ms (too late) 
2 3 2 0 

More than 200 

ms (too late) 
0 0 0 0 

Total errors 32 39 34 17 

Total corrects 

(less than 50 ms) 
478 471 476 493 

 

Table 3: Distribution of beginning errors for four methods 
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From Table 3, we can see the number of errors obtained from the PE algorithm is slightly 

less than the number obtained from the AETE algorithm. However, for the error case of  

beginning too soon, the number of serious errors, that is errors s greater than 100 ms, the 

AETE algorithm’s performance is much better than for the PE algorithm. For the error of 

beginning too late, the PE algorithm is better than the AETE algorithm. 

 

4.4.3 Ending  Errors 
 

In this section, we will show six different kinds of error that occurred at the end of an 

utterance, using the same type of analysis as for the beginning error. These error 

categories (also as mentioned  in section 4.4.2)  are  1)  more than 50 ms and less than 

100 ms (too soon), 2) more than 100 ms and less than 100 ms (too soon), 3) more than 

200 ms (too soon), 4) more than 50 ms and less than 100 ms (too late), 5) more than 100 

ms and less than 200 ms (too late) and 6) more than 200 ms (too late). Using the 

following table, we can examine the performance and observe the differences between  

these two algorithms, including the two “partial” algorithms (absolute algorithm-AE and 

Teager algorithm-TE). 
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 AE End TE End AETE End 
PE algorithm 

End 

More than 50 ms 

(too soon) 
102 123 49 20 

More than 100 ms 

(too soon) 
49 65 18 7 

More than 200 ms 

(too soon) 
9 9 2 2 

More than 50 ms 

(too late) 
14 5 47 70 

More than 100 ms 

(too late) 
6 3 9 42 

More than 200 ms 

(too late) 
0 2 1 12 

Total errors 180 207 126 153 

Significant errors 

(more than 100 ms) 
64 79 30 63 

Total corrects (less 

than 50 ms) 
330 303 384 357 

 

Table 4: End error analysis 
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From Table 4, we can see both of algorithms have their advantages and disadvantages. 

However, the overall performance of the AETE algorithm is much better than for that of 

the PE algorithm. For the error case of beginning too soon, the PE algorithm performance 

is better than for the AETE algorithm. The total number of errors is 29 for the PE 

algorithm as compared to 69 for the AETE algorithm. However, for the error case of 

ending too late, the AETE algorithm performance is much better than that of the PE 

algorithm. The total number of errors is 57 for the AETE algorithm as compared to 124 

for the PE algorithm.  We can also see that there are many more serious errors (greater 

than 100 ms in either direction) for the PE algorithm than for the AETE algorithm. As 

pointed out from the data in Table 4, in the overall evaluation of the ending errors, 

including both detecting too soon and detecting too late, the AETE algorithm is much 

better than the PE since the standard deviation is 58 ms for AETE compared with 109.1 

ms for PE.  Also, as shown in Table 4 above, there are 126 total errors for AETE versus 

153 for PE. However, the results from AE or PE purely are 180 and 207, both of which 

are inferior to PE and AETE. 

 

4.4.4 Errors according to word type 
 

In this section, we present a table which sorts the errors according to different types of 

words, for both beginning and ending errors. This gives another view of the relative 

performance of the AETE and PE algorithm.    
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AETE (beginning) PE Algorithm (beginning) 

 

Vowel Word Vowel Word 

More than 50 

ms (too soon) 
3 9 1 4 

More than 100 

ms (too soon) 
4 3 3 5 

More than 200 

ms (too soon) 
1 0 2 2 

More than 50 

ms (too late) 
0 12 0 0 

More than 100 

ms (too late) 
0 2 0 0 

More than 200 

ms (too late) 
0 0 0 0 

Total errors 8 26 6 11 

Total corrects 

(less than 50 ms) 
122 354 124 369 

 

Table 5: Beginning error analysis for different kinds of words 
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From Table 5, we can see that for detecting vowels, the performance of PE algorithm and 

the performance of AETE algorithm are almost same. However, for detecting words, the 

performance of the PE algorithm is better than the performance of the AETE algorithm. 

 

AETE (end) PE Algorithm (end) 

 
Vowel Word Vowel Word 

More than 50 ms 

(too soon) 
8 41 2 18 

More than 100 ms 

(too soon) 
2 16 0 7 

More than 200 ms 

(too soon) 
0 2 0 2 

More than 50 ms 

(too late) 
15 32 31 39 

More than 100 ms 

(too late) 
3 6 23 19 

More than 200 ms 

(too late) 
1 0 6 6 

Total errors 29 97 62 91 

Significant errors 

(more than 100 ms) 
6 24 29 34 

Total corrects (less 

than 50 ms) 
101 283 68 289 

 

Table 6: End error analysis for different kinds of words 
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From Table 6, we can see that AETE algorithm performance is much better in 

determining endpoints for vowels than is the PE algorithm. The two algorithms perform 

approximately the same for determining endpoints for words. Overall, there are fewer 

errors for the AETE algorithm than for the PE algorithm. 

 

4.5 Error Examples 
 

In this section, we will show several figures to illustrate some correct endpoint 

determinations and some error endpoints.  Figure 17 shows an example of detecting too 

soon at the beginning.  From the intermediate experimental results, we find that both the 

AE and TE algorithms make some errors  due to  beginning breath noise. Therefore, the 

final results contain too much silence. 
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Figure 17: Example of detecting too soon at beginning for word “cake” 

 

Figure 18 shows an example of detecting too late at the beginning. In this case, TE 

algorithm gives the correct reference points, however, the AE algorithm is in error by 

nearly 100 ms. Therefore, based on the final decision logic, it also gives us a wrong 

decision. 
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Figure 18: Example of detecting too late at beginning for word “four” 

 

Figure 19 shows an example of detecting too soon at the end. At the end, it loses the part 

“v” of word “five.” By examining the intermediate experimental results, we find both the 

AE and TE endpoints contain major  errors. The reason is likely that the fricative part “v” 

of “five” is very weak and considered as noise by the detecting algorithm. 
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Figure 19: Example of detecting too soon at the end for word “five” 

 

Figure 20 shows an example of detecting too late at the end. From this case, we see that 

the final part contains strong noise with high frequency components.  Therefore, both the 

AE and TE algorithms fail. Part of the noise is considered as speech. 
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Figure 20: Example of detecting too late at the end for word “book” 

 

Figure 21 shows a correct detection for word “boat,” which successfully keeps the weak 

voiced part and rejects the noise.  
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Figure 21: A correct detection for word “boat” 

 

Figure 22 shows a correct detection for vowel “oo.” Although the vowel is easily 

endpoint detected compared with other kinds of words, our algorithm still successfully 

rejected the moderate background noise in this example. 
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Figure 22: A correct detection for vowel “oo” 

 

4.6 Discussion of Remaining Problems 
 

From the tables and examples we presented above, we can see the error rate, error mean 

and error standard deviation of end detection are all much higher or bigger than the ones 

for beginning detection. That means it is much easier to detect the beginning endpoint 

than the final endpoint. The reason is that ending fricatives or plosives which occur at the 

end of words, are generally much weaker than the same phonemes at the beginning of 

words. This kind of fricative or plosive has a low energy level and sometimes is lower 

than the background noise. Often these phonemes also reduce in amplitude very 
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gradually, rather than abruptly.  In some case, the Teager energy approach can solve such 

a problem due to presence of high frequency components. However, in some cases, the 

background noise also has high frequency and energy, and both the absolute value 

method and Teager energy method will fail.  All of these problems remain as challenges 

for future endpoint detection algorithms. 
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CHAPTER FIVE 

 

CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 
 

The general contribution of this thesis is the introduction of a new algorithm to endpoint 

isolated words.  It is a combination method using the smoothed contours of absolute 

value and Teager energy as two separate parameters as indicators of the endpoints.  In 

this combination approach, we perform several important steps, which are not applied in 

other algorithms. 

 

1) In general, the new algorithm discussed in this thesis is fast, accurate and easily 

implemental for isolated words endpoint detection. Two separate approaches are 

employed in this new algorithm: they are absolute value approach and Teager 

energy approach. For the absolute value approach, the biggest  advantages are the 

smoothed absolute value is reasonably measure of short time speech energy, and 

therefore this method has been widely used since the end of 1970s. However, the 

method does have problems in combating  background noise, and does have 

problems with weak fricatives and plosives at the beginning and ends of 

utterances.  For the Teager energy method, the most distinguishing property is the 

sensitivity to fricatives and plosives with high frequency components. Both 
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methods are computationally efficient.  By combining these two algorithms 

properly, we can achieve satisfactory results for isolated words endpoint 

detection, with a low computational burden. 

 

2) The performance of this new algorithm is also very promising. Comparing with 

the PE algorithm, discussed in detail in chapter 2, the accuracy of our new 

algorithm is 87.3% in a moderate noise environment, while the accuracy of the PE 

algorithm is 84.3% in quite office environment. These numbers are based on the 

percentage of tokens with endpoint errors below a certain threshold, as discussed 

in chapter 4.   At the same time, not only the overall performance, but also the 

detection performance for both beginning and end are improved. For the PE 

algorithm, the standard deviation of the error for the beginning is 43.07 ms, and 

the ending error has a standard deviation of 109.12 ms. Compared with the above 

performance, our new algorithm errors have a standard deviation of 26.3 ms and 

53.3 ms for the beginning and ending respectively.   Thus the average errors are 

about the magnitude of those for the PE method.  

 

3) The signal pre-emphasis is different from other approaches. We apply two 

different filters for the signal pre-processing.  First is a single pole filter controlled 

by two parameters (in our algorithm, the typical value is 3000 Hz for the center 

frequency and 0.8 for the radius) to emphasize part of the bandwidth in frequency 

domain.  This filter is followed by 150-point band pass FIR from 375 Hz to 5000 
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Hz. From the experimental results, we find the system performance for 

discriminating speech from office noise is improved by using these filters. 

 

4) In our algorithm, the biggest difference from previous algorithms is that all 

processing is based on individual points, rather than frames. This enables better 

resolution, since decisions are made based these individual points. Note, however, 

that smoothing low pass filter at 30 Hz was used to smooth both the absolute 

value and Teager energy, prior to decision making.    

  

5) The final decision is made by combing the results of two individual decisions 

rather than using one method only. The experimental results did show that the 

combination method was better than using either method alone. 

 

From a performance point of view, the method introduced in this thesis did give 

significantly better performance for identifying both the start point and end point of 

isolated utterances, at least in terms of the mean and standard deviation of the error. 

 

5.2 Future Work 
 

However, this algorithm is still far from perfect. There are several suggestions and 

possible ways to achieve the desired performance and accuracy. 
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1) Better knowledge and modeling of typical beginning and ending patterns could be 

used to determine better detection schemes. As we discussed in chapter 3, 

background noise is sometimes strong enough to cause the algorithm to make the 

wrong start point, sooner than the true starting point, or cause the algorithm to 

make the wrong end point, that is later than the true end point. In our solution, we 

calculate the number of sample points between the endpoints algorithm made and 

the peak value. If this number is too big, it suggests that that the endpoints are 

triggered by background noise. Therefore, we move start point forwards and 

move end point backwards by the experimental values. However, sometimes, this 

approach is not exactly correct.  Hence, a better method to summarize some 

patterns to describe the beginning and ending speech “mode” will improve the 

decision making between background noise and the onset of speech. 

 

2) In the signal pre-emphasizing step, we can still try different parameters for the 

lowpass and signal pole filter to improve the performance. Theoretical speaking, 

we can increase the cutoff frequency of the lowpass filter a little bit as long as it 

does not degrade the useful signals severely. 

 

3) For the step both of absolute value method and Teager energy method, we can 

still try other values for the parameters which determine the threshold for the low 

energy area, where the true endpoints are supposed to be. To modify this step, the 

most important criteria we must follow is to be sure that the low energy area 
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always contains the true endpoints, while simultaneously being as short as 

possible.   

 

4) We might change the final logic a little bit to make the detection performance 

much better. Since sometimes one set of the final endpoints from one original 

approach is already correct, and the other set is incorrect, thus making the final 

endpoints based on mean value incorrect.   Although this kind of case doesn’t 

occur very often, we can improve the system performance greatly if we can solve 

such a problem. 

 

In summary the endpoint detection algorithm introduced in this thesis is fast and accurate, 

and compares favorable with the best reported algorithms from the literature.   However, 

the method can be improved even more by taking into account the points mentioned 

above. 
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