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ABSTRACT 

A COMPUTER-BASED ARTICULATION TRAINING AID FOR  
SHORT WORDS (CATA) 

 
Mukund Devarajan 

Old Dominion University, 2003 
Director: Dr. Stephen A. Zahorian 

 
 
 

Several improvements in the vowel articulation training aid (VATA) are described, as 

well as the efforts to extend the visual feedback system to operate with short words in the form of 

consonant, vowel and consonant (CVC). The extended version of the visual feedback system is 

referred to as CATA (Computer-based Articulation Training Aid); the vowel version of the aid 

(VATA) only operates with ten American English monopthong vowels. Improvements in VATA 

include the use of a neural network (NN) recognizer method to prune a large database of vowel 

recordings to eliminate noisy and/or mispronounced tokens. The spectral jitter problem, 

previously present in the VATA, has also been corrected. Initial steps in the development of 

CATA involved database preparation. The training methodologies and the step-by-step procedure 

for using Hidden Markov Modeling (HMM) for recognizing and segmenting a CVC database are 

described. The signal processing and recognition steps involved in building a real-time display 

system to provide visual feedback about the quality of pronunciation of the CVCs are described 

in detail. An attempt at using a time-delay neural network (TDNN) classifier for distinguishing 

phonemes present in the CVCs is described. Experiments conducted to improve the VATA and 

the initial results obtained with the CVC display system are reported.  
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CHAPTER I 

OVERVIEW OF COMPUTER-BASED VISUAL TRAINING AIDS 

Introduction 

Teaching oral speech to hearing-impaired people has been the subject of fundamental 

importance to speech signal processing researchers and speech therapists alike for the past 

seventy years. However, methods for teaching have not yet been perfected. Hearing-impaired 

people have problems with their oral speech thus making it difficult to comprehend their speech. 

The main reason for this is because of their inability to hear what they say. As a result of this, 

they are not able to “perceive” what they speak and make corrections as needed, as can a normal 

individual with no hearing disorder. Hence, there is a need for external feedback to act as a 

substitute for hearing and complete the sequence of “sense”, “perceive” and “act”. Visual training 

aids have been proposed to act as these external elements and have been in existence for decades. 

Nevertheless, the success rate achieved for improving the speaking quality for hearing-impaired 

children is far less than phenomenal. This may be due to the fact that these visual aids failed to 

comply with one or more of the basic rules proposed by Hudgins [1]: 

“(1) The visual pattern must be simple and clear-cut so that the deaf child will have no difficulty 

in understanding it; (2) the apparatus which presents these visual patterns must be easy to operate 

and adaptable to the classroom; (3) the apparatus must present the visual patterns while the child 

is speaking”.  

Visual aids provide either “process-oriented” information or the “product-oriented” one 

[2]. Process-oriented information-based visual training aids provide information about the process 

of generating speech by providing displays of method of articulation, vocal tract etc. which serve 

as a reference for the hearing-impaired. The product-oriented ones provide speech-product 

models in the acoustic domain; the hearing-impaired try to match the models and the method of 

learning is complete when there are no discrepancies between the intended speech and that 

produced. Product-based visual training aids are found to be more useful compared to the 

process-oriented one as they are found to be a natural way of learning and easy to comprehend, 

especially for   hearing-impaired, particularly children. 

 

________________________________ 
This thesis uses journal model of IEEE Transactions on speech and audio processing for tables, figures and 
references 
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History of Visual Training Aids 

The first computer-based visual training aid was developed over 30 years ago [3][4]. 

Results indicated that, though some aspects of speech related to supra-segmental features improved, 

there were no gains as far as conversational speech is concerned. This provided the motivation for 

the future visual training aids to emphasize articulatory-phonetic training as opposed to supra-

segmental speech features. Since then quite a few visual speech training aids aimed at correcting 

articulatory behavior have been developed and documented [5] – [7]. The following is a brief 

overview of three visual speech-training aids that were developed in the late 1980’s and the early 

1990’s: 

 

Visual Speech Apparatus (VSA) 

VSA is a speaker-dependent visual speech apparatus that displays all aspects of speech 

relevant for speech training that can be learned naturally. It is easily understandable and is 

designed to augment the role of the speech therapist [2]. It consists of a Ariel DSP-16 and the 

Commodore Amiga 2000 computer with a PC/XT board based on 8088 processor emulating an 

IBM-PC computer. Microphone and Laryngograph serve as inputs of an audio-interface to the 

DSP-16 processor. The DSP-16 processor performs the sampling and computations on the 

incoming signals to produce the outputs which are displayed on the screen. 

VSA has two modes of operation viz. LESSON-mode and HOMEWORK-mode. The 

LESSON-mode is where the pupil and the therapist work together; therapist selects the exercises 

and the order of performance during a lesson. In the HOMEWORK-mode, the pupil works alone 

and performs the exercises assigned by the therapist. 

VSA uses single-dimension displays. There are two types of displays: displays for 

calibration and another for the exercises. Examples of the displays used for calibration include the 

oscillogram and the laryngogram. The one designed for exercises and training include the ones 

for timing, loudness and pitch which are displayed with time as location on the X-axis, loudness 

as the size and brightness of an object, pitch as the vertical location of the object on the screen 

and voicing as the color. VSA also includes a variant of the Vowel Corrector [7][8]. This vowel 

display gives an intuitive idea about the relation between the vowels and the vowel tract 

configurations. The individual exercises like those intended for training voicing, loudness, pitch 

etc are designed to impart subskills that are selected serially and designed towards a teaching 

target. The various subskills can be then integrated to establish the sound-meaning relation by the 

speech pathologist. 
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Indiana Speech Training Aid (ISTRA) 

ISTRA is a commercially available speaker-dependent visual speech training system 

developed to serve as a valuable tool to a speech therapist [9]. It is a product of several years of 

research and, hence, is moderately advanced. It is implemented on a PC-type microcomputer 

equipped with a speaker-dependent recognition board.  

Visual feedback is given by means of template matching that is derived from an estimate 

of the similarity between the speaker-produced sound and the stored template of the same 

utterance. These templates are continually updated with the best recent effort so that the speech 

intelligibility and the final goal of improvement of speech pronunciation are achieved. 

As in the case of any typical visual aid, speech drills are presented in the form of video 

games with a few of them having the option of being used at different training levels. The speech 

pathologist is provided with a speech-training curriculum to administer that contains a series of 

speech training drills which can be used either for diagnostic or treatment methods. Records of all 

training for a given speaker can be stored on a floppy disk and can be viewed on the screen or 

printed by the speech pathologist. 

 

IBM Speech Viewer III 

The IBM Speech Viewer III is a commercially available speaker-dependent visual speech 

training aid that consists of a collection of software programs which run on a typical PC running 

on Windows (3.X, 95, 98, ME, 2000, XP). It is intended to provide a solid tool to the speech 

therapist. It requires an IBM-supported industry soundcard (typically soundblaster 16) and uses a 

(standard) microphone as the input. It is similar to any windows-based program and, hence, easy 

to operate.  

Feedback is provided immediately by a number of visual displays intended to improve 

areas such as voicing, pitch, loudness, timing patterns and sustained vowel and consonant 

production. Several game displays have been included so that children do not loose interest 

easily. Also included are a number of calibration displays such as waveform and sound spectra. 

Loudness, for example, is taught by means of a display called “Balloons” where a boy blows up a 

red balloon in the screen with the size of the balloon proportional to the loudness of the speaker. 

Another exercise is for pitch control; the speaker must vary his or her pitch to hit a target without 

colliding with an obstacle. In order to recognize the phonemes (vowels and consonants), the 

system must first be taught so that it has a model of the phoneme. The system is included with an 

easy to use utility program where a set of templates can be generated for each phoneme either 

using the hearing-impaired child’s own productions or those of a hearing-child or those of a 
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speech therapist. This need for custom training is one of the known drawbacks in the system 

because of the difficulty involved in producing adequate data for the training process. Overall, 

Speech Viewer III does a reasonably good job of providing accurate feedback about timing, 

voicing, pitch and loudness. 

 

General Overview of Vowel Articulation Training Aid (VATA) 

VATA is a Win32 platform-based speaker-independent isolated-vowel recognizer 

designed to function as a speech therapy tool to compensate for the insufficient or missing 

auditory feedback for hearing impaired persons [10]. It is implemented on a typical PC running 

windows (95,98,Me, NT, 2000,XP) with a soundcard and a microphone. It gives a visual display 

about the quality of pronunciation of ten American English monopthong vowels /ah/, /ee/, /ue/, 

/ae/, /ur/, /ih/, /eh/, /aw/, /uh/ and /oo/. Note the vowel notation mentioned in the previous 

sentence is that used in the actual display, which was selected based on phonetic qualities. The 

ARPABET notations for these vowels are /aa/, /iy/, /uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/ and /uh/. 

 

System Description 

VATA has two main displays: a bargraph display and an ellipse display. The bargraph 

display is similar to a histogram and gives feedback about the goodness-of-fit to ten vowel 

categories with the size of the bar corresponding to the goodness of the pronunciation of the 

vowel. The ellipse display provides continuous visual feedback about the utterances. The ten 

monopthong vowels are realized as elliptical regions with their locations and sizes roughly 

resembling the F1-F2 formant space [11]. A basketball icon is placed at that region enclosed by 

the vowel category correctly recognized by the utterance. However, incorrect pronunciations 

result in the ball wandering or coming to stop at the area not enclosed by the ellipse. By 

observing the movement of the ball continuously, the user learns how to control his/her 

pronunciation to get the ball in the correct ellipse (vowel). Three game displays (to attract 

children) namely pacman, tetris and chicken crossing road have been developed. 

 

Signal Processing 

A block diagram of VATA signal processing is shown below (fig. 1). Speech segments 

are collected via the soundcard and are broken down into frames and prefiltered by a high-

frequency preemphasis filter centered at 3.2kHz. Spectral calculation is then done by calculating 

the Fast Fourier Transform (typically 512 points) and then non-linearly scaled by means of the 

logarithmic function. This log-scaled spectrum is then averaged over several frames (5-10 
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typically) and the Discrete Cosine Transform Coefficients (DCTCs) are calculated. These DCTCs 

(typically 12) are block encoded by a Discrete Cosine Series (DCS) expansion to encode the 

feature variations over time [12]. Since (at least ideally) there are no variations over time for 

steady-state vowels, the number of DCSs is generally fixed at 1. The DCTCs are then normalized 

(zero mean and standard deviation of ±0.2) and input to the neural network (NN) classifier. The 

NN is a feed-forward multi-layer perceptron and has one input node per feature (totally 12 input 

nodes), typically 25 nodes in the hidden layer and 10 output nodes corresponding to the 10 vowel 

categories and are typically trained using error backpropagation for 250,000 iterations. More 

details on the data management and real-time operation characteristics can be found in Zimmer’s 

[13] thesis. 

 

 

 

 
 

Fig. 1. VATA signal processing block diagram. 
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Thesis Goals 

The overall goal of the thesis is to improve the performance of VATA and to develop a 

system which extends the vowel displays to give feedback about the pronunciation of short 

words. The goals can be outlined as follows: 

 

1) Improve VATA to increase the performance and its spectral stability. 

2) To investigate a feature alternative to DCTC for VATA. 

3) Develop Hidden Markov Models (HMM) and NN phone models to give feedback about 

the quality of short words. 

4) Develop consonant vowel consonant (CVC) displays similar to the VATA to handle 

visual feedback of short words. 

Chapter II details the improvements brought about in VATA with respect to its performance and 

stability. Chapter III gives a detailed account of the framework that has been developed to give 

feedback of short words (CVCs). Chapter IV lists the display processing steps and few displays 

that give visual feedback about the pronunciation quality of the CVCs. Finally, Chapter V 

concludes the thesis by summarizing the results and the improvements that can be brought about 

in the future. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

CHAPTER II 

GENERAL IMPROVEMENTS IN VATA 

Introduction 

One main requirement for the development of VATA is the availability of a “good” large 

database with a minimum of extraneous noise and mispronunciation. Previous work reported the 

effects of size of the training database on both the training and test recognition results when a 

significantly large amount of speech data is available [13]. Another important issue investigated 

by Zimmer was the spectral stability of long duration sustained vowels. This point was 

investigated since the spectral stability for VATA appeared to be low as compared to spectral 

stability for vowels displays with the previous system developed using a TMS320C floating-point 

DSP platform and custom-built preamplification circuitry. Zimmer especially looked at the effect 

of the various sound cards on spectral stability of the vowels. This chapter gives an account of 

some further improvements in VATA, especially with regard to improving the quality of the 

database and some improvements in spectral stability. We also report on an attempt to use a 

different front end feature set—spectral moments.  

 

Database Pruning 

The Speech Database consists primarily of vowels spoken by three categories of speakers 

(males, females and children). This data was recorded by means of a convenient user-interface 

program in a relatively quiet room. The vowels that were collected were /ah/ (/aa/), /ee/ (/iy/), /ue/ 

(/uw/), /ae/ (/ae/), /ur/ (/er/), /ih/ (/ih/), /eh/ (/eh/), /aw/ (/ao/), /uh/ (/ah/) and /oo/ (/uh/) which 

correspond to the vowel sounds found in the words “cot,” “beet,” “boot,” “bag,”  “bird,” “pig,”  

“bed,” “dog,” “cup,” “book,” respectively. The first sets of each pair of vowel symbols are the 

Old Dominion University (ODU) phonetic vowel symbols, and the vowel symbols inside the 

parentheses are the ARPABET symbols. Up to the date of the writing of this thesis  (June, 2003), 

a total of 14069 vowel tokens from 583 speakers (146 males, 171 females, 266 children) were 

collected  (Table I). This data has then been used to train the neural-networks (NNs) for speaker-

independent recognition of vowels, thus enabling several types of displays for VATA. Even 

though most of the mispronounced and noisy vowel tokens were eliminated at the time of the 

recording by the person monitoring the recordings, (typically an ODU graduate or undergraduate 

student), unfortunately   a large number of “problem” tokens remained in the database. This 
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“bad” data was assumed to be a major factor in degrading performance of vowel recognition for 

VATA.  

 

 

 

TABLE I 
Distribution of vowel tokens by categories before and after bad data removal 

 
  No. of Speakers / No. of Recordings   
Token Description Male Female Child Total 
Vowels before bad data 
removal 

 146/4760  171/5068  266/4241  583/14069 

Vowels after bad data 
removal 

146/4215 171/4421 266/3503 583/12139 

 

 

 

Method of Removal 

The approach of manually going through all of the recorded vowel tokens to determine 

the bad ones using visual and auditory inspection was first considered. However, although this 

approach was used for some of the database, it was not feasible to thoroughly inspect the entire 

database with this method. Rather, due to the large amount of data, an automated approach was 

needed. In particular, it was decided that a feed forward perceptron NN classifier trained to 

classify the vowels could be used to sort “good” vowels from “bad” vowels. The NN used, 

consisted of 1 hidden layer with 25 nodes. The inputs to the NN were the 12 scaled discrete-

cosine transform coefficient (DCTC) features; the network was configured with 10 output nodes 

corresponding to the 10 vowels. The method of removal was implemented as follows. The 

classifier was trained on all the data for a particular speaker type (men, women, or children), and 

then used to classify all the training tokens. All tokens misclassified were noted and removed 

from the database. A total of about 12139 tokens remained (Table 1). The reduced set of tokens 

was then used for additional training of the NN classifier. This method did, of course, lead to 

almost 100% classification accuracy, since the tokens which were not classified correctly after the 

first phase of training (50,000 NN updates) were removed from the data. Note that the additional 

training  (200,000 NN updates) was done because the resultant NN appeared to function 

somewhat better in the real-time system, but did result in a slight drop in classification 
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performance on the training data. The vowel training recognition results obtained before and after 

bad data removal is shown in Table II.  

The "correctness" of the procedure just described was verified in two ways. First, about 

1000 tokens classified “bad” by the NN were listened to and about 85% of them were found to be 

either mispronounced or noisy. Secondly, NNs trained on the reduced data set appeared to result 

in better performance for the real-time VATA. As a result of these findings, it was decided that 

all the data classified “bad” by the NN would be removed completely from the database. 

 

 

 

TABLE II 
 Vowel training recognition results before and after bad data removal 

 
  RecognitionPercentages     
Token Description Male Female Child General 
Vowels before bad data 
removal 

 88.55%  87.23%  82.59%   80.13% 

Vowels after bad data 
removal 

 99.60%  99.71%  99.17%  99.47% 

 

 

 

Spectral Stability in VATA 
One assumption underlying VATA and in speech science in general is that the spectrum 

of a sustained vowel, as a long single utterance, is unchanging over time. Thus, the log magnitude 

spectrum of a vowel, as computed from consecutive frames each of duration approximately 30 

ms, should be the same from frame to frame. Similarly, the DCTC features from these 

consecutive frames should be unchanging over time. This spectral stability for vowels appeared to 

be valid for the version of VATA developed with a DSP card. However, both the spectrum and 

resultant DCTC features appeared to have much larger variations over time in the PC version of 

VATA. The reason for the spectral instability in all-PC version of VATA was assumed by 

Zimmer [13] to be one of the following: (1) Program code errors introducing jitter in the input 

speech signal (2) Sound card quality contributing to the noise (3) Inherent jitter in the speech. 

Zimmer carefully examined the code, and experimentally compared performance with that 

obtained with comparable Matlab simulations, and decided that there were no problems in the 

code leading to the spectral instability. He also experimentally verified that only very low quality 
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sound cards (such as the built in ones in a typical laptop) contributed significantly to spectral 

jitter. Zimmer concluded that the primary source of instability was due to inherent jitter in speech. 

Since this speech jitter, in terms of the spectrum computed from frame to frame, had long been 

recognized as a potential problem, time smoothing options had been incorporated in the code. The 

type of smoothing that was incorporated was peak smoothing, motivated by the idea that the 

peaks in vowel spectra are the most noise-free and also the most important for vowel perception. 

Nevertheless, even with the smoothing enabled over intervals exceeding 100 ms, considerable 

spectral and feature "jitter" remained in the display. Although impossible to confirm, it was 

thought that this "jitter" problem reduced the accuracy of the vowel displays. 

As the name itself suggests, the peak-smoothing algorithm selects the maximum log-

magnitude spectral value over a pre-specified number of time frames, over some interval ending 

in the current time frame in the time segment being processed. This particular number of time 

frames is a configurable parameter specified in the input file of VATA. This maximum spectral 

amplitude is initialized to the current time frame under consideration and this process is repeated 

for all the frequency components present. As the number of frames for time smoothing is 

increased, it was expected that the jitter in the spectrum would be reduced. However, it was noted 

that increasing the time smoothing window length did not really substantially reduce the spectral 

jitter. 

This jitter issue was again examined in this study, and it was found that some of the 

initializations needed for smoothing after each speech segment is acquired had not been done and, 

therefore the smoothing was not done correctly. These initialization issues were corrected, and 

the smoothing was fixed. A new option for time smoothing, average smoothing was also 

introduced. It employs a similar procedure as for the peak smoothing, except the average of the 

spectral amplitudes over the specified number of time frames is computed for each frequency 

component. It was decided that for the real-time display system that average time smoothing 

option should be used as it takes into account the spectral components of each frame, over the 

specified window of time frames, rather than just the maximum over these frames, which, in 

extreme cases, can be due to noise. Several informal tests were also conducted with the real-time 

system comparing the two types of smoothing, and the average smoothing method appeared to 

result in somewhat higher accuracy. 

Note that the smoothing window length is adaptively increased from 1 frame, up to the 

maximum number of frames specified, as a vowel is produced. Thus, near the beginning of each 

vowel production, there is very little smoothing, but the amount of smoothing increases if the 

vowel is sustained. This insures that silence frames are not averaged in with the vowel spectra, 



11 

which would have the effect of flattening the spectra near the beginning of each production. To 

illustrate the effect of this smoothing, the mean and the standard deviation of the spectral 

amplitude for a steady state vowel of duration 3 seconds is shown for 3 levels of average time 

smoothing— 0 (no time smoothing), 10 frames (typical) and 100 time frames (Figs. 2,3). Note 

that the corresponding smoothing times are 0, 100 ms, and 1 second. As expected the standard 

deviation is greatly reduced with the time smoothing, especially as the smoothing window 

becomes very long. 

 

 

 

 
 

 
 

Fig.  2. Spectral stability for male speaker /ee/ token without time smoothing, with average time 
smoothing over 10 frames (100 ms). 
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Fig.  3. Spectral stability for male speaker /ee/ with average time smoothing over 100 frames (1s). 
 

 

 

Spectral Moments – Feature Alternative 

 DCTCs have been used as the features for the VATA system ever since the VATA was 

initially developed. Although DCTC features do seem to perform relatively well, and are very 

similar to the Mel cepstral coefficients used in most automatic speech recognition systems, it was 

still felt that there might be a better feature set. In this direction, “Spectral Moments” were 

examined as a possible alternative to the DCTCs as features. The formula used for the calculation 

of spectral moments is given by the following equation: 

 

SM (n) = 
1

0

( ) ( ),  12 (
i N

n

i
X i X f X i n typ ica lly

= −

=

− =∑ )            (1) 

  

f(Xi) in the equation represents the scaled log-scaled spectral component obtained by dividing the 

spectral component value by the sum of the spectral components for the particular time frame for 

which the features are being computed. X  represents the mean (i.e.) the first spectral moment 

and Xi represents the various spectral components. N represents total number of frequency 

components available for the particular time frame. In total, about 12 spectral moments were 

calculated per time frame of the speech input signal. 

 



13 

Theory of Moments 

Moment generating function of a discrete random variable x is given by the following 

equation: 

x(z) = E(z ) ( ) n
n

n n
P x n z P z

+∞ +∞

=−∞ =−∞

Γ = = =∑ n∑

k

           (2) 

 

If this equation is looked into more detail, it will be seen that it has a form very close to an 

ordinary z-transform. In fact, Γ (1/z) represents the z-transform of the sequence Pn= P(x=n) [14]. 

Upon differentiation, the above equation leads to a way of producing the various moments,  

 
( ) ( ) { ( 1)( 2)...( 1) }k xz E x x x x k z −Γ = − − − +               (3) 

 

For z=1 and writing down the first two moments in the above equation gives 

 
' '  ' 2(1) { } and (1) { } { }E x E x E xΓ = Γ = −              (4) 

 

that reveals that moments are a form of autocorrelation and hence comparable to the DCTCs 

without warping. 

 

Recognition Results 

The Spectral moments were used as features to train the NN classifier in place of the 

DCTCs as explained previously. It was found that the spectral moments yielded poor results 

when compared to that when DCTCs (without warping) were used as speech features as shown in 

Table III. 

 

 

 

TABLE III  
Vowel training recognition results using spectral moments and DCTCs 

 
Features Recognition Percentage 
Spectral Moments  59% 
DCTC  90% 
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Spectral Moments Experiment Summary 

The objective of the experiment was to find out if spectral moments were a good feature 

alternative to DCTCs. The theory of moment generating functions revealed that the spectral 

moments are a form of auto-correlation and are actually quite similar to the DCTCs without 

frequency warping. NN recognition results that were obtained with spectral moment features 

were considerably lower (by 30%) than results obtained with DCTCs, as presently implemented. 

Although it is likely that improvements could be made in the method for computing the moments, 

the theoretical analysis combined with the very poor experimental result, led us to conclude that 

spectral moments are not promising as features for recognizing vowels. 

 

Sampling Frequency effects – Downsampling 

The speech database consisting of vowels used for training the NN classifier was 

recorded using two sampling rates: 11.025 kHz and 22.050 kHz. Previous work studied the 

sampling frequency effects because of the use of 2 different sampling frequencies for training and 

testing [13]. It was reported that the test results were higher by 5% to 15% if the training and test 

sampling rates match versus having training data at one sampling rate, and the test data at a 

different sampling rate. (Note, however, the DCTC features were computed over the same 

frequency range for both training and test data). This implies that for “ideal” performance of the 

VATA system, the data used to train the NN should match the “real-time” mode’s sampling rate. 

Another important result of the tests done was that there was no appreciable gain obtained by 

using the sampling rate (for both training and testing) of 22.050 kHz over 11.025 kHz. 

 

Method of Downsampling 

As a result of the findings above, it was decided that all the tokens sampled at 22.050kHz 

would be downsampled by a factor of 2 to bring the sampling rate down to 11.025 kHz. Thus, the 

entire database would be effectively sampled at 11.025 kHz.  

Figure 4 shows the steps involved prior to computing the DCTCs (features) for training 

the NN parameters. Downsampling (decimation) was achieved by averaging two samples of each 

vowel token to form the new sample. The transcription information that contains the location of 

the vowel information along with the start and end of speech is also updated to reflect the 

decimation. Note that this downsampling would not contribute to any loss of information, as the 

highest frequency component present in speech (at least for vowels) is less than 5 kHz and a 

sampling rate at twice this frequency is enough to completely represent the inherent information. 
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                                                                                                                No 

               Yes 

 

                                       

 

  

Is the sampling 
frequency = 2 * Input 

Update the transcription file to indicate the decimation 

Decimate the input vowel token data 

Feature computation for the current vowel token 

Read the vowel wave file 

 
 
 
Fig.  4. Flowchart showing the steps involved prior to computation of features if decimation is 
involved. 
 

 

 
The process of NN training was done as before with increased recognition results 

compared to the mixed-case (Table IV). Note that the results in the table are for the pruned 

database with "bad" tokens removed. The NN1 results are for the bargraph, and the NN2 results 

are for the ellipse display. The “real-time” display system input sampling rate was changed to 

11.025 kHz to take advantage of the above process. It was observed that in line with the training 

recognition results, the real-time system’s performance also improved, particularly for the 

bargraph display. 

 

 

 
 
 
 
 
 
 



16 

TABLE IV 
 Vowel training recognition results with and without downsampling 

 

  
Male 
(%)   

Female 
(%)   

Child
(%)   

All 
(%)   

  NN1 NN2 NN1 NN2 NN1 NN2 NN1 NN2 
1.No 
Downsampling 99.88 98.07 99.86 96.98 99.77 95.92 99.39 94.35
2.With 
Downsampling 99.95 98.2 99.89 97.45 99.82 96.18 99.49 94.45

 

 

 

Summary 

A summary of the work presented in this chapter, and the main conclusions of that work, 

are as follows: 

 

(1) For building any effective NN classifier “good” data is required. Pruning of the vowel 

database by removal of the bad data consisting of mispronounced and noisy speech data 

resulted in improved performance of the NN training results and also operation of the  

“real-time” (VATA) system. 

 

(2) The issue of spectral instability in VATA was "solved” using an adaptive length time-

smoothing algorithm based on either peak smoothing or average smoothing. This 

smoothing greatly reduced observed jitter in the spectrum. Average smoothing appears to 

be somewhat better than peak smoothing, and thus was incorporated into the real-time 

display. 

 

(3) An attempt at using Spectral Moments as an improved feature set in place of the existing 

DCTCs was not successful. A theoretical examination of the Spectral Moments indicated 

that the moments are actually a form of autocorrelation coefficients and thus very similar 

to the DCTCs without frequency warping. Also, the recognition results obtained with 

spectral moments were very low.  
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(4) Extending the previous work done, all the tokens sampled at 22.050 kHz were 

downsampled by a factor of 2. Though this resulted in negligible improvement in the 

training recognition results, it did improve the performance of the real-time system. 

 

The work summarized (except for the spectral moments efforts) resulted in improvements 

of the real-time system. Even though the visual speech display for the vowels has been improved 

to a large extent, an unavoidable problem still remains. Isolated vowel pronunciation is relatively 

difficult (compared to isolated words) and unintuitive. Also, the systems capability of improving 

the speech of hearing disabled children will be vastly improved if the speech display could be 

extended to CVCs (Consonant Vowel Consonant words) in addition to the vowels. The following 

chapter describes the efforts made in this regard. It describes in detail the process chosen for 

phone level labeling of the CVCs (words). Chapter IV details the displays of the extended system 

for CVCs. 
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CHAPTER III 

HMM-BASED TRIPHONE MODELS FOR SEGMENTATION AND 

LABELING OF CVC DATABASE 

Introduction 

In Chapters I and II, the signal processing steps and display options have been described 

for giving real-time feedback about the quality of pronunciation for 10 steady-state American 

English monopthong vowels (/aa/, /iy/, /uw/, /ae/, /er/, /ih/, /eh/, /ao/, /ah/, and /uh/). This vowel 

training aid is thus referred to as a Vowel Articulation Training Aid (VATA). The previous 

chapter explained in detail the improvements brought about in VATA. The non-naturalness and 

clear limited scope of vowels produced in isolation led to the exploration of a computer-based 

articulation training of CVCs (consonant-vowel-consonant). In this chapter, methods are 

described to develop a triphone-based Hidden Markov Model (HMM)/Neural Network (NN) 

recognizer such that real-time visual feedback can be given about the quality of pronunciation of 

short words and phrases [15]. Experimental results are reported which indicate a high degree of 

accuracy for labeling and segmenting the CVC database developed for  "training" the display. 

The objective of a CVC display is to visually present indicators of pronunciation 

“correctness” at the phone level in real-time, with minimum time delays, in response to short 

words produced by a speaker. Also, it is desired to provide feedback about the produced word in 

a variety of formats including game displays. In order to achieve these objectives for the display 

of phonetic information, it was first necessary to record and prepare a large database of CVC 

tokens. Preparation includes elimination of poorly pronounced tokens, determination of time 

markers for phonetic segments in the properly produced segments, and finally creation of HMM 

and NN phone models for each phone of interest. 

Since it was desired that the system provide phone correctness, it would not suffice if just 

the HMM word recognition was done. As a result, NN phone models had to be built so as to 

implement real-time NN recognition at the phone level. This motivates the need for accurate 

phone-level segmentation and labeling of words. 
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Database of CVCs 

 A CVC token consists of a consonant, vowel and consonant pronounced together as a 

single short word. Actual speech productions also sometimes have a momentary silence (closure) 

in between the vowel and the final consonant. The consonants ‘b’,’d’,’g’,’k’,’p’,’t,’ classified as 

‘plosives’ or stops, are produced by complete closure of the vocal tract followed by rapid release 

of the closure. Typically, this closure region does appear as a momentary silence and should be 

labeled by the labeling algorithm. Note, however, that this momentary silence is not always 

present, even for correctly sounding plosive consonants. In particular, for rapidly spoken 

utterances, such as some of those in the CVC database, the closure region is very short or even 

missing, and hence not feasible to label. The tokens recorded are listed in Table V as well as their 

pronunciations. For example “Bag” consists of ‘b’ (initial consonant), ‘ae’ (vowel) and ‘g’ (final 

consonant). Note that the presence of the closure (cl) region can also be labeled between the 

vowel and final consonant, but is not indicated as part of the pronunciation, since this closure is 

not phonetically significant. The labeling of the closure, when present, was however important, 

since information about the closure can be used to improve the performance of the automatic 

recognizer. 

  

 

 

TABLE V 
List of CVC tokens recorded 

 
CVC Pronunciation CVC Pronunciation 
Bag b ae g Boyd b oy d 
Bed b eh d Cake k ey k 
Beet b iy t Cot k aa t 
Bird b er d Cup k ah p 
Boat b ow t Dog d ao g 
Book b uh k Pig p ih g 
Boot b uw t   

 

 

 

A database of CVC sounds was collected from adult males (145 speakers), adult females 

(166 speakers), and children between the ages of 6 and 13 (252 speakers) as listed in Table VI by 

means of a convenient user-interface program in a relatively quiet room. All tokens were 

automatically endpointed, using an endpoint routine similar to the Evangelos [16] algorithm for 
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endpoint detection for isolated word recognition. Listeners, typically an ODU graduate or 

undergraduate student, then evaluated tokens, and those that appeared to be incorrectly 

pronounced were eliminated from the database. This data was collected over a period of several 

years during which the sampling rate was increased from 11025Hz to 22050 Hz. For all 

experimental results reported in this thesis, the 22 kHz data was smoothed with a 2-point 

smoothing window, and decimated to 11 kHz as explained in the previous chapter. 

The usefulness of phonetically labeled acoustic speech data has long been recognized in 

the speech recognition research community. In fact, standards have been developed for creating 

and managing large labeled databases. The standards include the specifications for the acoustic 

files, including a certain type of header (NIST) and format for the actual samples (typically 2's 

complement binary numbers) and standards for the companion labeling files for each acoustic 

file. The acoustic file formats, with extension "wav", are similar but not the same as windows 

multimedia "wav" files. The phonetic labeling files are ASCII, and include the phone codes 

(using a two digit ARPABET alphabetic code to replace IPA notation) for each phone in the file, 

as well as the starting and stopping sample number for each phone. The CVC database was 

developed using these established conventions. 

  

 

 
TABLE VI 

CVC database 
 

  Speakers         /   Recordings   
Token Description Male Female Child Total 
CVC Recordings  145/5566  166/6304  252/4665  563/16535 

 

 

 

Segmentation and Labeling of CVC Database 

After considerable experimentation, manual examination, and testing, the following 

multi-step approach was used for segmentation of the CVC database. 

1. A heuristic rule-based segmentation, based primarily on pitch, spectral band energies and 

endpoint detection was used as a first pass for segmentation. 

2. An HMM triphone-based word recognizer was trained as a recognizer for the entire database, 



21 

using the segmented data from step 1 to initialize HMM models. 

3. Using the models trained in step 2, recognition was performed on all the training data. All 

CVCs that were agreed to be “incorrect” at this step were eliminated from the database. 

4. HMM models were retrained using the data after step 3. 

5. The HMM models obtained in step 4 were used for forced alignment of CVC tokens. 

Each of these steps is now described in somewhat more detail below and illustrated with 

experimental data. 

 

Step 1 Heuristic Rule-Based Segmentation 

The onset and offset of speech (i.e., the endpoints) are first determined using an 

endpointing routine similar to Evangelos [16] algorithm for isolated word recognition. Next, a 

pitch track is computed for each utterance, using the pitch routine of Kasi and Zahorian [17]. 

Additionally three normalized spectral band energies were computed—low-frequency energy 

band (300-800 Hz), mid-frequency energy band (800-2000 Hz) and high-frequency energy band 

(2000-4000Hz). The vowel region of each syllable is located using a combination of the voiced 

portion of the pitch track, the normalized low-frequency band energy, and heuristic rules 

(including maximum and minimum durations for each initial and final stop). Then, the spectral 

band with the maximum value between the vowel end and the final endpoint of the CVC from all 

the 3 bands is selected as the band to be used to determine the starting point for the final 

consonant. The first point in time at which this normalized band energy exceeds an empirically 

determined threshold (typically .3) is selected as the beginning of the final consonant. In addition, 

if this energy band falls below another threshold (typically .1) for at least a certain time duration, 

in the region between the end of vowel and the beginning of the final consonant, then that low-

energy region is labeled as closure.  

Figures 4 and 5 illustrate this heuristic labeling method for two CVCs. Note that the 

method appears to give correct segmentation for the CVC depicted in fig. 5 whereas the final stop 

consonant appears to be in error in fig. 6. Visual inspection of several hundred tokens indicated 

that this heuristic segmentation appeared to be generally correct (no really large errors) for about 

80% of tokens, but did have some really large errors for the remaining 20% of tokens. Thus, the 

heuristic method was not considered accurate enough for a "final" pass of segmentation, but was 

valuable for bootstrapping HMM models. The HMM models, followed by forced alignment, 

(described below) did appear to provide more accurate segmentation.  
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Fig. 5. Example of correct heuristic segmentation for “boyd”. 
 
 
 

 
 

Fig. 6. Example of incorrect heuristic segmentation for  "boyd"(final stop problem). 
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Step 2 Bootstrap triphone models 

The heuristic labeling process just explained was used for initializing HMM triphone 

models for the CVCs. Initialization based on “flat-start” data (no segmentation used) resulted in 

lower recognition performance than initialization based on the heuristically labeled data. The 

HTK (Hidden Markov model Tool Kit ver 3.1, [18]) was used in this process to build a 

recognizer, which was used to determine the degree to which the words present in the training 

database could be automatically recognized. The HTK was configured with a dictionary which 

allowed the presence or absence of closure in each CVC. Mel frequency cepstral coefficients 

(MFCCs) derived from the FFT-based log spectra were used as the features, augmented by delta 

and acceleration coefficients (totally 39 terms). 

The HMM monophone prototype models were configured with 5 states, 39 features, and 

10 Gaussian mixtures. This number of Gaussian mixtures was determined by iteratively 

increasing the number of mixtures from 1 through 10, and observing that the best word 

recognition results were obtained with 10 mixtures. This is understandable since 10 Gaussian 

mixtures implies that each probability density functions is modeled as a weighted sum of 10 

Gaussian densities, each characterized by a mean and variance. Thus, the training process for the 

case of 10 Gaussian mixture implies that 10 means, 10 variances, and 10 mixture weights (30 

total parameters) must be determined for each state in each HMM model. Note that even this 

number is very small compared to the number of parameters that would have been needed with 

full covariance matrix models for each state. In any case, the 10 mixtures per each feature leads to 

the feature space being increased and better separation of the phonemes in the feature space as 

compared to the case of having just 1 Gaussian mixture. A larger number of mixtures were not 

used, due to the large number of parameters needed, and the possibility that the training database 

was really not large enough to adequately train for a higher number of mixtures. After the 

prototype models were established, each monophone HMM was initialized by the HTK tool 

(HINIT), which uses the Viterbi algorithm to find the most likely state sequence corresponding to 

each training sample. Note that a total of 21 monophone models were created (13 vowels, 6 

consonants, 1 silence and 1 closure model) as shown in Table VII. 
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TABLE VII 
Incomplete list of monophone models (silence and closure not shown) and CVCs which contain them 
 

Monophones  Example Monophones  Example 

aa Cot ih Pig 
ae Bag iy Beet 
ah Cup k Cake 
ao Dog ow Boat 
b Beet oy Boyd 
d Dog p Pig 
eh Bed t Boat 
er Bird uh Book 
ey Cake uw Boot 
g Bag   

 

 

 

These isolated-unit models were refined using the Baum-Welch re-estimation procedure 

(HREST tool in HTK). As isolated unit training is not sufficient for building phone models, 

embedded training (HEREST), which simultaneously updates all the HMM’s in a system using 

all of the training data, was used. This was repeated for three passes. Finally, triphone models 

were built with state tying and using reestimation (typically 3 times). Example of the triphones 

that were built is shown in Table VIII.  
 

 

 

TABLE VIII  
List showing some of triphone models and CVC examples which contain them 

 
triphones  Example triphones  Example 

b+ae Bag ih-g Pig 
b-ae+g Bag p-ih+g Pig 
ae-g Bag k+aa Cot 
b-ae Bag k-aa Cot 
g Bag k-aa+t Cot 
k+ey Cake aa-t Cot 
k-ey Cake b-er Bird 
k-ey+k Cake b+er Bird 
ey-k Cake b-er+d Bird 
  er-d Bird 
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Note that some biphones are also present as a result of the word boundary symbol 

(silence). This form of notation is known as “word internal”. In this notation a “+” is used to add 

a monophone to the right and a “-“ is used to add a monophone to the left. Thus “b-ae” represents 

a left biphone and “b+ae” represents a right biphone and “b-ae+g” represents a triphone. The 

triphone models also have the same configuration as the monophone models, that is 5 states, 39 

features and 10 Gaussian mixtures. Totally there were 71 triphone models generated. 

Total processing time needed for all the above processes including initialization and re-

estimation was approximately 45 minutes on a dual 2.38GHz xeon processor machine with 

512MB ram. Summarizing again, there were 21 monophone models, 71 triphone models and the 

CVC database contains 16535 CVCs (.wav and .phn files).  

 

Step 3 Bad data removal 

 Even though it was pointed out that listeners removed incorrectly pronounced and noisy 

tokens at the time of recording the tokens, there still remained "bad" tokens. Due to the 

tediousness and time required to listen to all tokens, an automated method was selected to identify 

and then remove the problem tokens from the database. In particular, the HMM models trained in 

the previous step were used as a recognizer. Those tokens not correctly recognized by the 

recognizer were then considered as potentially bad. Note that the database includes over 500 

speakers, including adult males, adult females, and children, thus making the recognition task 

somewhat difficult. 

 As mentioned previously in the bootstrapping section, the number of Gaussian mixtures 

was iterated from 1 to 10 and for each iteration the “bad” tokens were identified. Cumulatively 

from all these iterations, 14% (2400 tokens) of the data was classified by the HTK recognizer as 

bad by this step. In order to verify the “correctness” of the above procedure, all those tokens 

classified “bad” were listened to. Only these tokens which listeners also agreed were bad were 

removed from the database. Table IX gives a list of all the tokens remaining after this step. The 

goal was to be confident that nearly all tokens used for final training were clearly and correctly 

produced.  
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TABLE IX 
 CVC database before and after removal of “bad” tokens 

 
  Speakers         /   Recordings   
Token Description Male Female Child Total 
CVC before bad data 
removal 

 145/5566  166/6304  252/4665  563/16535 

CVC after bad data 
removal 

145/4947 166/5793 252/4118 563/14858 

 

 

 

 Note that about 70% (1677) of the tokens considered as potentially bad based on the 

HMM recognizer were also identified as bad by the listeners. Since the database was relatively 

large, it was not considered a major problem if some good tokens were also deleted. In any case, 

the original version of the database has also been saved, in case future techniques are better able 

to determine these  "bad" tokens. 

 

Step 4 Triphone model retraining 

Triphone models were recreated using the identical processing methods as described 

above for step 2, except now, only data remaining after step 3 was used. Thus, it was expected 

that these HMM models would be better representations of the phones than those created in step 

2, because of the elimination of the “bad” data. As a test, these triphone models were again used 

as a word recognizer, and approximately 99% accuracy was obtained on the training data.  

 

Step 5 Final forced alignment 

Finally, the above retrained HMM models were used to obtain a forced Viterbi 

alignment, resulting in final labeled training data. Some of the results of the labeling done by this 

method are shown in figs. 7 and 8. 
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Fig. 7. Example of force-aligned segmentation for  "boot". 
 

 

 

In fig. 7  “cl” denotes the closure which corresponds to brief period of silence between 

the utterances of the vowel and the final consonant. Manual inspection of about one-hundred 

tokens did not reveal any major labeling errors which is an indication that the HMM phone 

labeling is superior to the heuristic labeling, and hopefully would also allow more accurate 

automatic recognition. Recognition, from a NN recognizer, using both methods for labeling is 

shown in fig. 8.  

 

 



28 

 
 

Fig. 8. Example of force-aligned segmentation for  "cot". 
 

 

 

NN Training 

Three NNs were trained for possible use in the CVC display system—one each for the 

initial consonant, vowel and the final consonant. Each NN has one input node per feature 

component, 25 nodes in the hidden layer, and one output node for each phone to be recognized. 

The initial consonant network thus has 4 output nodes, the vowel network has 13 output nodes 

and the final consonant network has 5 output nodes. The NNs were trained using error 

backpropagation for (typically) 250,000 iterations. These NN classifiers resulted in the following 

recognition rates for the training data as shown in Table X. The recognition rates for the vowels 

are higher (7-10%) on the data obtained from the final forced alignment, rather than the heuristic 

algorithm alignment. However, for the initial consonants as well as the final consonants, the 

recognition results were approximately the same for the two labeling methods.  
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TABLE X  
Percent correct results for NN classification of the phones in CVC syllables based on either heuristic 

labeling of phonetic segments or HMM forced alignment  
 

 Initial 
Consonant

Vowel Final 
Consonant 

Heuristic Algorithm 87.27% 73.88% 78.12% 
HMM/NN Based 87.00% 80.85% 79.66% 

 

 

 

Summary 

The extension of the Vowel Articulation Training Aid (VATA) for use with short words 

(CVCs) has been described. In response to audio input from a user, the goal is to provide a visual 

display provide feedback about the quality of pronunciation of the phones in each CVC. The 

requirements for this display are: 

 

(1) Good Database with minimum of noise and mispronunciation. 

(2) Good Labeled phone transcriptions. 

(3) Good models for the phones. 

 

A step-by-step procedure for segmentation and labeling of the CVC database had been 

explained in detail. NN recognition shows the improved phone recognition results over the 

heuristic algorithm. In the next chapter, training issues for the CVC displays, and the displays that 

have been implemented for the CVCs, are explained. 
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CHAPTER IV 

CVC DISPLAY SYSTEM 

Introduction 

As mentioned in Chapter III, the limitations of a speech display that functions only for 

vowels produced in isolation led to the exploration of computer-based articulation training for 

Consonant-Vowel-Consonants (CVCs.) Although still far from "natural" speech, the CVCs are at 

least a step in the direction of more natural speech. The previous chapter explained in detail the 

Hidden-Markov Model (HMM)-based triphone-modeling of the phonemes present in the CVC 

and the use of the HMM for accurate labeling of the phonetic segments in each CVC. As will 

become clearer later in this chapter, this phonetic labeling step is critical in the development of a 

display of the phonetic information in CVCs. In this chapter, methods are described to develop a 

real-time visual display system giving feedback about the quality of the pronunciation of short 

words using a monophone-based Neural Network (NN) classifier. 

 

CVC Display Processing Steps 

The objective of a CVC display is to visually present indicators of pronunciation 

“correctness” at the phone level in real-time, in response to short words produced by a speaker. A 

very important consideration in the overall implementation of the display is to minimize delays 

between input speech and display changes—to make the overall system as “real-time” as 

possible. In order to understand how the "real-time" aspect of the display is implemented, it is 

useful to describe the signal acquisition/processing/ display steps from a data delay point of view. 

As to signal acquisition, the operating system interacts with the sound card to continuously 

acquire contiguous sections of data (“segments”) from the audio data stream, using a double 

buffering approach for processing. The basic data acquisition was developed with operating 

system services, rather than directly with the hardware, and therefore the overall CVC system is 

able to work with most commonly available Windows-compatible sound cards.  

The data management for the signal processing can be explained in terms of three levels 

of buffering (fig. 9). First, as mentioned above, the non-overlapping but continuous “segment” 

buffers form the interface between the data acquisition subsystem and the signal processing and 

recognition software. 

 



31 

 
 

 Fig. 9. CVC display block diagram. 
 

 

 

 The first step of processing is based on overlapping frames of data— thus, frames form 

the second level of buffering. The third and final level of buffering consists of "blocks,” with 

each block consisting of an integer number of frames, with block spacing also equal to an integer 

number of frames. All parameters ("features") used for recognition are computed from all the 

frames in a block with parameter updates based on the block spacing. Similarly, recognizer 

decisions are based on the current (and possible previous) block output parameters. For example, 

as will be explained in detail later in this chapter, the present version of the real-time system 

"computes" the top scoring phones for each block, as based on the parameters of that block. It is 



32 

anticipated that future versions of the system will also use information from previous blocks. 

Display updates are made once per each new segment, using all the block-based recognizer 

decisions which occur in that segment. In particular, average of the NN outputs are computed by 

dividing the sum of all the NN outputs for each block present in the segment by the total number 

of blocks for each phoneme category and the one that has the maximum value is then chosen as 

the phoneme category. Each of the processing and recognition modules maintain internal delay 

memories that hold all previous data and intermediate calculations that are needed. Thus, the 

"frame” and “block” level buffers can be asynchronous with respect to the segment buffers. 

Typical values for the various buffers are 50 ms for the segment buffer, 20 ms frames with a 

frame spacing of 10 ms, and blocks consisting of 3 frames with a spacing of 1 frame between 

blocks. The time delay between input speech and display changes is on the order of one segment 

time, or 50 ms for the values given.  

Note that the very low latency aspect of the real-time system is likely not needed, at least 

for the CVC displays currently implemented. That is, an approach could have been developed 

whereby the entire word was captured, analyzed, and then results displayed. The user would then 

see the results of the word, only after the word was completely uttered—or typically a delay of 

perhaps 1 second. This "whole word" approach was not used, since it would not seem to extend 

as well for the display of speech information contained in entire sentences spoken spontaneously. 

For example, most present day commercial speech recognition dictation systems are based on a 

whole word approach, and typically introduce delays of several seconds extending over several 

words. In contrast, the approach outlined above can be extended to work with continuous speech, 

with very short delays between a user production and display changes. For the purposes of speech 

training, this lower latency would appear to be very important so that the user can immediately 

see the "correctness" level of his/her productions and take corrective actions as needed. 

 

CVC Signal Processing Steps 

The signal processing itself is illustrated in fig. 10. Primary steps consist of mid-

frequency pre-emphasis, windowing, spectral magnitude calculations, discrete cosine transform 

coefficient (DCTC) computations for each spectral frame, discrete cosine series (DCS) 

calculations over the DCTCs in each block, scaling, and finally NN classifications.  
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Fig. 10. CVC signal processing block diagram. 
 

 

 

More details of this signal processing are given by Zahorian [19]. However, for 

convenience to the reader, the primary steps are summarized here. The primary spectral 

parameters, DCTCs, similar to cepstral coefficients, are computed using cosine basis vectors that 

are modified so that the frequency resolution approximates a Mel frequency scale. The DCTCs 

are block-encoded with a sliding overlapping block using another cosine transform over time that 

is used to compactly represent the trajectory of each DCTC. The cosine basis vectors in this 

second transform are also modified so that the temporal resolution is better near the middle 

portion of each block relative to the endpoints. The coefficients of this second transform are 

called Discrete Cosine Series Coefficients (DCSCs). This method is very flexible with a small 
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number of parameters that control the details of the analysis, particularly in terms of 

spectral/temporal frequency resolution tradeoffs. Currently, 12 DCTC terms are computed, 

followed by 3 DCS terms for each DCTC (36 total parameters). The NN classifier is a feed-

forward multi-layer perceptron that attempts to classify the current input (that is scaled DCS 

terms for the current block) in terms of one of 20 phonetic categories (Actually 21 phonemes, but 

for convenience purposes, closure was also classified as silence).  

In order to implement the system just described, a NN is trained as a phonetic recognizer, 

based on a large database of correctly produced CVCs. The database in use consists of 13 CVC 

words, containing 20 phones. The recognition module returns the identity of the top 3 scoring 

phones for each segment as explained in the display processing section. The goal is to use this 

information to provide feedback about the produced word in a variety of formats including game 

displays. In the following section, NN training issues are described. 

 

NN Training Considerations 

During the training phase, the NN requires a “target” label at each point in time (block 

for this case) for which a phonetic decision is to be made. This is in addition to the features 

(DCSCs) calculated for every block. Additionally, for real-time causal operations, decisions can 

be based only on present and previous blocks. In order to perform NN training in the above 

manner, a prime requisite is the availability of detailed phonetic labeling as discussed in the 

previous chapter. Additionally, each block should then be assigned a target corresponding to the 

phone category in the time interval in which the block is primarily located. The issue of assigning 

phonetic labels to blocks is made more complex due to the asynchronous relationship between 

blocks and phonetic segments. For example, a block may span 2 or more phones. Some phones 

may be much shorter than a single block, especially initial consonants. 

In consideration of the issues mentioned above, the front end analysis software that has 

been in use in the speech lab for several years has been written to be compatible with the acoustic 

("wav") and label information ("phn") files, and allows a variety of methods for selecting and 

sorting desired phonetic segments from each file in a database. In particular, phonetic segments 

are selected (and later processed) using a parameter known as the frame selection method (FSM) 

in the front-end feature calculation routine. FSM=2 is used to select the entire phonetic interval as 

given by the labels (as explained in the previous chapter), but as modified by  "start" time   and 

"stop" time parameters, which can be used to modify the labeled interval for each phone. For 

example, the front end analysis program could be configured to select each labeled phonetic 

segment (for the phone specified), beginning 50 ms before the onset label of the phone, and 
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ending 25 ms after the labeling ending time for the phone, by letting FSM = 2, start time = -50, 

stop time = 25. Alternatively, FSM=4 is used to select phonetic segments, with respect to the 

labeled midpoint of each segment. For this case, the start time is used to specify the length of the 

analysis time window prior to the midpoint and the stop time is used to specify the length of the 

time window size after the midpoint. 

One primary advantage of signal processing based on the approach mentioned above, is 

that the method is already available and it is compatible with existing NN training programs. For 

example, the front end analysis program creates one separate feature file for each phone. Each 

feature file then contains one feature vector for each block of each selected segment for the phone 

corresponding to the that file. In effect, each feature file stores a large matrix, containing all the 

training data for a particular phone category. The NN training program can then be used to 

attempt to classify the data in these files, with the assumption that data in each file corresponds to 

a different category. The alignment problem between the blocks and the phonetic segments as 

mentioned before is also solved. For all these reasons, the procedure just outlined was used for 

some testing, as described below. 

However, this procedure does have some limitations and possible drawbacks. For 

example, a disadvantage of using FSM=2 is that very short stop consonants like ‘b’,’d’,’p’ will 

not be used at all from many of the utterances. That is, for cases where selected phonetic 

segments are shorter than a block, they are ignored and hence will not be taken into consideration 

for feature computation. However, FSM=4 can be configured such that 1 block is selected for 

each phonetic segment with the block centered at the labeled midpoint. This is done by setting the 

block length equal to the phonetic segment length, as determined by the configurable start and 

stop time. 

The major perceived disadvantage of both these segment selection methods is that they 

exclude the possibility of examining previous blocks in addition to the present block while 

making phonetic decisions. The use of present and past blocks is the underlying principle behind 

a time-delay neural network (TDNN) to take advantage of the chronological history inside the 

CVC utterance. There is considerable evidence in speech science which indicates that much more 

reliable phonetic decisions can be made if coarticulation effects are taken into account, which 

implies that such a history is needed.  

Therefore, a different approach for managing data in each utterance was used to preserve 

the temporal history within each utterance, and also to handle issues involved with very short 

phones. In particular, at the front end analysis stage, the entire CVC utterance is processed as one 

chunk and the phone labeling information is not used at all at this stage (FSM = 0 in the analysis 
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program). This procedure is repeated for the entire CVC database and the result is a separate 

feature file for each utterance in the database. Each utterance feature contains feature vectors 

corresponding to total number of blocks in that utterance. Note that for this FSM, the start and 

stop times for this method refer to the ends of the CVC utterance.  

In order to accommodate the type of processing mentioned in the previous paragraph, and 

also manage and take advantage of the temporal history, the data management in the NN training 

program had to be completely changed, and one major new routine written. First, the NN routine 

reads all the utterance feature files, preserving the temporal order within each file, into one large 

two dimensional array. The routine also reads in all the original phone files, thus allowing the 

correspondence between feature vectors and phone labels (or "targets" for NN training) to be 

determined. These phoneme targets are determined by a newly written routine that determines the 

phones present in each block of each CVC utterance using this phone labeling information for 

that utterance. The phone that accounts for the major portion of the block is chosen as its target 

category. This procedure is repeated for all of the blocks present in the rest of the CVC utterances 

in the database. One difficulty is that in some cases very short phones (particularly the initial 

consonants) might not be assigned to any block in the utterance. Therefore, a "correction" 

algorithm was developed that ensures that each phoneme present in the CVC is assigned as a 

target category to at least one block. For example, in the case of absence of the initial consonant, 

one of the vowel blocks at the start of the vowel of the CVC is changed such that the block is 

assigned to the initial consonant that was previously absent. 

This phone block labeling method is applied to the entire database, such that a feature 

vector and target label is available for each block in the database. With this approach, the NN was 

configured to be trained as a classifier for each block, using the target for that block, and a 

specified number of previous blocks as features. At CVC utterance boundaries, the previous 

block feature inputs to the NN are filled with zeros, since there is no valid history present at the 

beginning of each utterance. An additional modification to the NN training was that it was found 

necessary to randomize the selection of blocks used for training, rather than to select training 

blocks consecutively. The reason for this is presumably due to the inappropriateness of using 

several consecutive blocks from the same phone (for long vowels), causing the NN to over adjust 

for that particular phone.  

 

Experimental validation and Training Results 

NNs were trained for the CVC display, using each of the methods mentioned above, and 

the entire labeled CVC database mentioned in Chapter III. Summarizing briefly, the database 
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consists of 13 unique CVCs consisting of 20 phonemes collected from adult males, adult females 

and children between the ages of 6 and 13. The CVC database size was close to 15,000 tokens 

after the HMM labeling procedure was completed as explained in the previous chapter. 

As in the case of the vowel display system (Chapter I), DCTCs were used as the frame-

level features. Typically 12 DCTC were computed for each frame. These 12 DCTCs were then 

each encoded by 3 DCS terms to encode changes over time, thus resulting in 36 features per 

frame. Typical values of some of the parameters used for this feature extraction are 20ms frame 

size, 10ms frame spacing, 3 frames in each block and 1 frame block spacing. Tests were 

conducted for each of the frame selection methods mentioned above,  (FSM values of 0,2 and 4.)    

As mentioned previously for the case of FSM=0, the number of the feature files is equal to the 

number of CVC utterances (files) in the database and for the other 2 cases (FSM = 2 or 4) the 

number of feature files is equal to the number of phones (20 for this current CVC database—for 

convenience purposes, closure was also classified as silence). 

The NN used in the CVC display system is a feed-forward multi-layer perceptron with 

one hidden layer which attempts to classify each block of each utterance as one of the 20 

phonemes. NNs were trained using each of the methods mentioned for selecting phonetic 

segments. In order to compare performance, two types of evaluations were made, as follows 

 

1) phone recognition rates were compared for the training database. 

2) Informal human evaluations were done on the real-time system for each trained NN. 

 

The first kind of NN training was performed on the same NN classifier that was used in 

the vowel-display system, but with modified front end feature calculations using parameters as 

shown in the following table (Table XI). FSM values of 2 and 4 were used for this training. The 

NN classifier used for these cases typically had 36 input nodes, 25 hidden nodes and 20 output 

nodes.  

For the other type of training (FSM = 0), the NN was modified, as mentioned above to 

take advantage of temporal history, using a TDNN. Thus, this NN bases its decision not only on 

features in the current block but also that of the previous blocks. This number of the previous 

blocks is configurable and it is typically 3. Typically, this NN has 108 (12*3*3) input nodes, 25 

hidden nodes and 20 output nodes corresponding to the 20 phones. Note that the newly labeled 

database as explained in the previous chapter was used for this training and the labels were used 

for specifying the targets separately to the NN, as explained above.  

The NN recognition training results are reported in the following table (Table 11). The 
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recognition results obtained for the case of FSM=4 gives the highest recognition rate of about 

75%. However, it also should be noted that the total number of tokens (blocks) selected (roughly 

4 times the number of CVC recordings (14858) with one block each for each of the phones in the 

CVC i.e. silence, initial consonant, vowel and the final consonant) is considerably fewer than for 

FSM=0 or 2. For the TDNN case (FSM=0), the figures show that the recognition results improve 

as the number of blocks is increased from 1 to 5. Also note that the CVC database had different 

classes of speakers — males, females and children, all of which were trained as a single group. 

Presumably higher rates could have been obtained if separate networks had been trained for each 

group. The biggest issue with all of these results is that they are based on training data only, and 

thus performance on new data (“test” data) cannot be determined.  

 

 

 

TABLE XI  
 NN training recognition results of the phones (20) present in CVC database 

 
Recognition % / No. of Tokens  

NO TDNN  TDNN Variant (FSM =0) 
FSM=2 FSM=4 No. of 

Blocks=1 
No. of  

Blocks =3 
No. of      

Blocks =5 
     

71.94 / 
635466 

74.23 / 
59164 

68.57 / 
995153 

70.14 / 
995153 

70.77 / 
995153 

 

 

 

The TDNN discussed above has not yet been implemented for the real-time system. That 

is, as present, decisions are based only on the present block, without taking history into account. 

The best performance for the real-time system appears to be for FSM = 2. In particular, the vowel 

and the final consonant are generally correctly displayed, whereas the initial consonant is often in 

error. For the case of FSM=4, the vowel information was not classified correctly and the possible 

reason for this is also not difficult to find. As mentioned previously, the number of tokens was 

less than for the cases of FSM=0 and FSM=2 with only one block selected for each component of 

the CVC including the vowel part. This leads to the case where there are as many consonant 

blocks as there are vowels. Finally, for the case of FSM=0, only the case where only the current 

block is considered (No. of Blocks = 1) was tested. The TDNN delay memory has not yet been 

implemented for the real-time system yet. In this particular case (FSM = 0) recognition of both 
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the initial and final consonants was often in error. 

 

CVC Displays 

Two phoneme-based displays have been developed wherein the recognition of the 

phonemes in the CVC is displayed. They are  

1) Whole-Word Display 

2) Phoneme Bargraph display. 

 

Whole-Word Display 

The whole-word display, primarily intended as a diagnostic display for evaluating the NN 

training methods, depicts the acoustic waveform and the top 3 phone choices for each segment, 

one below the other (fig. 11). These phone choices, as explained before, are based on the NN 

decisions for all the blocks present in the segment. This display is based on a  “flow” mode—that 

is, the waveform and the recognized decisions are represented on the screen as moving from the 

left to right as the speaker pronounces the CVC utterance over time. This gives the look and feel 

of “real-time” to the speaker. In reality, there is a delay of a segment (segment time is typically 

50ms) before the display is updated with the recognized decision for the blocks present in the 

particular segment, as mentioned previously in the explanation of the double buffering. 

The recognized decisions for each segment are represented as rectangles. The width of 

the rectangle corresponds to the length of the segment. To determine rectangle heights, the top 

three-scoring phones (that is the three largest NN outputs) are first normalized so that the sum of 

the three equals 1.0   Then each of the phones are mapped to a rectangle of height proportional to 

its normalized value, and with the top scoring phone is represented as the top rectangle, the next 

highest scoring phone as the middle rectangle, and the lowest scoring phone as the bottom 

rectangle. The identities of the top 3 choices themselves are listed below the rectangle display.  
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Fig. 11. CVC whole-word display for the word “bird”. 
 

 

 

The unique sections of the CVC, namely the consonant, vowel and the silence, are 

distinguished by the texture; while the different consonants and the vowels are distinguished 

among themselves by their color. This method of distinguishing the different parts of the CVC 

adds to the clarity as opposed to just using colors to separate each of the 20 phonemes. For 

example all the vowel segments are displayed as plain colors; all the consonant segments are 

displayed as different colors interspersed with stripes; silence is represented as horizontal and 

vertical grid lines crossing each other. 

Two figures of this display are shown (figs. 11 and 12) to illustrate the inherent difficulty 
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in recognizing the consonants. Figure 11 shows the pronunciation of the CVC “Bird”. The top 

choices for all the phonemes present in this word are correct. But the recognized decisions as 

shown in fig. 12 that represents the word “Bed” are in error with respect to the consonants. This 

could be attributed to the reason that consonants are very short in duration compared to the 

vowels and some of the consonants like “b”,”p” sound very similar. The accuracy of stop 

consonant recognition by automatic algorithms remains a difficult problem for automatic speech 

recognition software. 

 

 

 

 
Fig. 12. CVC whole-word display for the word “bed”. 
 

 

 
Phoneme Bargraph display 

The phoneme bargraph display is configured the same as the vowel bargraph display 

[13], as shown in the following fig. 13. It resembles a histogram with one bar for each of the 
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phonemes. The height of the bar signifies the pronunciation correctness. This display is relatively 

non-intuitive and cumbersome as compared to the whole-word display largely due to the fact that 

the consonants are very short in duration, and appear as only brief flashes on the screen. Thus, the 

user must remember the chronological sequence of the phones. 

 

 

 

 

 
Fig. 13. CVC bargraph display. 
 

 

 

Summary 

The visual display system giving real-time feedback about the quality of pronunciation of 
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short words (CVCs) was described. The NN training whereby the recognizer based its decision 

not only on the current block but previous blocks (TDNN) was described and results were 

compared with the results obtained by using NN similar to the ones used in the VATA. In 

addition, the CVC display processing steps, signal processing and examples of the displays were 

shown. At present, the real-time display does not make use of the past history, as the TDNN is 

capable of.  
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CHAPTER V 

CONCLUSIONS 

The improvements brought about in VATA and the attempt made to extend VATA to 

handle short words has been described. This extension of VATA was brought about as a result of 

the non-naturalness and clear limited scope of vowels produced in isolation. The training 

methodologies and the step-by-step procedure for HMM-based modeling for computer-based 

articulation and the steps involved in building a real-time display system were described in detail. 

Experiments conducted to improve the VATA and the initial results obtained with the CVC 

display system were reported. The following were the topics of those experiments: 

 

• Effect of pruning the vowel database by getting rid of mispronounced and noisy speech 

data on the training as well as the operation of the real-time system. 

• Spectral instability in VATA that resulted in jitter in the spectrum. 

• An attempt at finding a improved feature set using spectral moments instead of DCTCs. 

• Effect of using the identically sampled tokens (11khz) for NN training by downsampling 

the higher sampled ones (22khz). 

• To compare the heuristic labeling of the CVC database to that of using HMM-based 

triphone models to fix the labels of the phones present in the CVC database collection. 

• Find the effect of using a variant of TDNN on the phoneme training. 

 

These experiments were conducted and the results obtained were reported in the previous 

chapters of this thesis. Based on those results the following conclusions may be drawn: 

 

• Bad data removal greatly improved the training results as well as the operation of the 

real-time system. 

• Spectral stability was improved by using an adaptive length time-smoothing algorithm 

and this greatly decreased the jitter. 

• Spectral moments as a feature alternative to DCTCs was explored but was dropped on the 

basis that the recognition results were very low and that closer examination revealed a 

similarity to the DCTCs. 
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• Downsampling of the higher sampled tokens did result in improved recognition in 

training as well as in the operation of the real-time system. 

• The step-by-step HMM-based triphone modeling procedure improved the labeling of the 

phones in the CVC database over the heuristic algorithm and was confirmed with the 

recognition results. 

• Employing the TDNN variant did not result in an improvement in the training results but 

the results indicated that improved recognition was obtained as the time window (number 

of blocks) is increased.  

 

The real-time CVC display system is at its nascent stage and there is a lot of scope for 

improvement. A few of them are listed below: 

 

• Inclusion of the TDNN variant in the real-time system and investigate its usefulness to 

the phoneme recognition particularly with respect to the consonants. 

• Since the training recognition percentages are low, the CVC database training set need to 

be increased. 

• A combination of HMM and NN classifier could be used; this needs to be investigated in 

detail to determine if it can improve phoneme recognition. 

• A few more displays need to be built, particularly game displays that interest children 
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