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ABSTRACT: 
Neural networks are often used as a powerful discriminating classifier 
for tasks in automatic speech recognition.  They have several 
advantages over parametric classifiers such as those based on a 
Mahalanbois distance measure, since no (possibly invalid) 
assumptions are made about data distributions.  However there are 
disadvantages in terms of amount of training data required, and length 
of training time. In this paper, we compare three neural network 
architectures--two layer feedforward perceptrons trained with back 
propagation, Radial Basis Function (RBF) networks, and Learning 
Vector Quantization (LVQ) networks--with respect to these issues.  
These networks were also experimentally evaluated with vowel 
classification experiments using a Binary Pair Partitioned scheme, 
requiring a total of 120 pairwise sub-networks for a 16 category vowel 
classifier.  Although the three network architectures give similar 
average classification performance (i.e., for the 120 sub-networks), 
there are large differences in terms of training time, performance of 
individual sub-networks, and amount of training data required.  These 
results, and the implications for choosing network architectures in a 
larger speech recognition system are presented.    

 
INTRODUCTION 
 
Neural networks trained with backpropagation have been used to accurately classify 
vowel sounds in continuous speech recognition systems.   However, the length of 
time required to train the networks can present  problems,  particularly when 
investigating a variety of  feature sets to represent speech data.   This paper  
compares the performance of multi-layer feedforward perceptrons trained with 
backpropagation  versus that of two alternative neural network paradigms-- Radial 
Basis Function (RBF) networks, and Learning Vector Quantization (LVQ) 
networks.  Classification accuracy, training speed and network evaluation speed are 
considered.  The effect of reduced training data is also compared for each of the 
three networks. 
 



DESCRIPTION OF DATA SET 
 
All networks were evaluated on the same data set, which consisted of a ten feature 
cepstral coefficient representation of vowel sounds extracted from continuous 
speech (TIMIT database).  All coefficients were scaled for a mean of  0.0 and a 
standard deviation of 0.2.  For each of 16 vowel sounds, a training set and an 
evaluation set were used for training and testing.  The relative sizes of these sets 
corresponded to the frequency of occurrence of the vowels in the speech samples.  
The number of vowel tokens per set ranged from approximately 500 to 2500 for 
training with about 1/10 as much data for testing. 
 For the tests conducted in this study, the task of each neural network is to 
classify an input vector as one of only two vowel sounds on which it was trained.   
This method has been found to have advantages over a single large network 
(Zahorian and Nossair, 1993.  Since there are 16 vowels sounds, 120 networks are 
required to cover all possible vowel combinations.  Performance of network 
paradigms was evaluated using average results over all 120 networks. 
 
BACKPROPAGATION MODEL 
 
 Backpropagation uses a gradient descent approach to minimize output error in a 
feed-forward network.  The algorithm involves presenting an input vector, 
comparing the network output to the desired output for that vector, and updating 
each weight by an amount corresponding to the derivative of the error with respect 
to that weight times some learning rate, and adjusted by a “momentum” factor. 
  The architecture used in these experiments consisted of five tan-sigmoid hidden 
units and one output tan-sigmoid output unit. Weights were updated after 
presentation of each training vector using a variable learning rate and momentum to 
speed training .   After each epoch, i.e. all tokens from each vowel set processed, the 
learning rate was reduced by a factor of .89 and processing continued using random 
starting indexing for each set.  Training continued until 160,000 training vectors had 
been processed.  Classification results for backpropagation, for both training and 
test data, are presented along with the best results of the other network paradigms in 
table 3 as an average for all 120 networks.  
 The backpropagation networks displayed good classification, and more 
importantly, good generalization to the test set.  The major drawback was the 77 
million floating point operations required to train the network. 
 
 
RADIAL BASIS FUNCTION MODEL 
 
 The radial basis function network uses hidden units with localized receptor 
fields.  The RBF network hidden unit can be thought of as representing a point in N-
dimensional space which responds to input vectors  whose Cartesian coordinates are 
close to those of the hidden unit, where N is the number of features in the data 
representation.   Many transfer functions may be used for the hidden units -- but the 
most common is Gaussian, which gives a response that drops off rapidly as the 
distance between the hidden unit and the input vector increases and is symmetrical 
about the radial axis-- hence the name Radial Basis Function.   The rate with which 



the response drops is determined by the “spread” of the hidden unit.   The output 
layer of an RBF network is linear.  The challenge of designing an RBF network lies 
in properly placing hidden layer neurons and choosing an optimal value for the 
spread constant such that the entire input space of interest is covered with minimum 
overlap.  These decisions are usually made empirically, rather than through 
automatic training methods.  
  Like feedforward  perceptron networks trained with backpropagation, radial 
basis function networks are capable of approximating any continuous function with 
arbitrary accuracy given enough hidden units.   A major advantage of the radial 
basis function network is usually considered to be its short training time in 
comparison to backpropagation, although the computation and storage requirements  
for classification of  inputs after the network is trained is usually greater. 
 
LEARNING VECTOR QUANTIZATION MODEL 
 
Learning vector quantization employs a self-organizing network approach which 
uses the training vectors to recursively “tune” placement of competitive hidden units 
that represent categories of the inputs.  Once the network is trained, an input vector 
is categorized as belonging to the class represented by the nearest hidden unit. 
 The hidden units may be thought of as having inhibitory connections between 
each other so that the unit with the largest input “wins” and inhibits all other units to 
such an extent that only the winning unit generates an output.  In the computer 
simulation there are no actual inhibitory connections and the winner is simply the 
hidden unit  “closest” to the input vector 
 As with the RBF network, each hidden unit can be thought of as representing a 
point in N-dimensional space.  In both network types the output of the hidden units 
are based on the proximity of the input vector - the difference between the two is 
that in an RBF network, several Gaussian hidden units can have significant outputs, 
while in the LVQ network the output of all but one competitive unit is zero.  The 
final output of both network types is determined by the weights of the linear output 
unit.  These weights are computed by solving the linear network equation Wo=T/P, 
where Wo is the linear weight vector, P is a matrix of inputs into the output layer 
corresponding to all training vectors, and T is a vector containing  target outputs 
associated with the training vectors. 
 Training an LVQ network is accomplished by presenting input vectors and 
adjusting the location of hidden units based on their proximity to the input vector.  
The nearest hidden unit is moved a distance proportional to the learning rate, toward 
the training vector if the class of the hidden unit and the training vector match, and 
away if they do not.  The hidden layer weights are trained in this manner for an 
arbitrary number of iterations, usually with the learning rate decreasing as training 
progresses.   The objective is to place the hidden units so as to cover the decision 
regions of the training set. 
 LVQ networks have been found to perform well in pattern classification 
(Kohonen, 1990).  As with RBF networks, they tend to have shorter training time 
requirements than feedforward networks trained with backpropagation, but 
processing required for input classification may be larger since more hidden units 
are often required. 
EXPERIMENTAL RESULTS 



 
 All networks were simulated using the neural network toolbox of  the software 
package MATLAB,  by Mathsoft Inc. The programming language is not compiled 
and therefore rather inefficient in execution. The intent of these experiments was to 
compare the relative performance of the three network types, not to produce 
efficient neural network code.   
 
RBF  
The method used to train the hidden layer of the RBF was to evaluate every input as 
a possible location for a hidden unit, then choose the location which resulted in the 
least number of misclassifications.  The process was repeated until the desired 
number of hidden units were found.  A Vector Quantization algorithm was used to 
reduce the training sets to 256 codewords per vowel, then the networks were trained 
on the codewords.  The trained networks were evaluated on the original training sets 
as well as the evaluation sets. 
 The two primary variables which affected performance were the number of 
hidden units used and the Gaussian spread.  The best value for the spread constant 
changed as the number of hidden units increased, since the density of hidden units in 
vector space increased.  For networks of less than 20 hidden units, a spread value of 
.8 produced the best classification accuracy for most vowel pairs. 
 
 

TABLE 1:  EFFECT OF NUMBER OF HIDDEN UNITS ON RBF 
 

Vowel Pair “OY-UH” 
 

Classification Accuracy 
   Training Set        Evaluation Set    

Computation Required  
Training-MFLOPS   Evaluation-FLOPS 

2 hidden units   77.3%   82.4%       16      94      
8 hidden units   83.2%   80.7%       31     370 
16 hidden units   81.5%   80.7%       52     738 
100 hidden units   91.5%    79.0%      700    4602 
 
 
The accuracy of classification of the training set increased with  the number of 
hidden units; however, generalization degraded with large numbers of hidden units 
and the amount of computation required for both training and evaluation was also 
greatly increased. Eight hidden units produced the best compromise of classification 
accuracy and computation burden. 
 
LVQ 
The primary factors which controlled the behavior of the LVQ network were the 
number of hidden units,  learning rate and training time.  Two different schemes for 
initial placement of the hidden units were tried -- random placement and  placement 
of all units at the mean value of the training set.  The networks seemed to stabilize 
to the same solution regardless of the initialization of the hidden layer weights.  The 
number of hidden units had a greater effect , as shown in table 2 for one vowel pair 
with a learning rate of .03 decreasing by .98 every 100th of 5000 cycles. 
 
 

TABLE 2:  EFFECT OF NUMBER OF HIDDEN UNITS ON LVQ NETWORK 



 

Vowel Pair “OY-UH” 
 

Classification Accuracy 
   Training Set        Evaluation Set  

Computation Required 
Training-MFLOPS      Evaluation-FLOPS 

2 hidden units       78.8%     84.2%               .8       82 
8 hidden units       77.7%     75.4%             2.7     322 
16 hidden units       77.9%     75.4%             5.1     642 
100 hidden units       77.9%     70.1%           28.9   4002 

 
 
The generalization capacity of the networks seemed to decrease as hidden units 
were added.  Experiments run over all 120 vowel pairs indicated that the best LVQ 
performance for this application was achieved with only 2 hidden units trained with 
1000 input vector presentations.    
 
COMPARISON OF BEST RESULTS FOR THE THREE NETWORKS 
 The best results for RBF and LVQ are summarized in table 3 along with the 
backpropagation results.  Classification accuracy is presented as an average of all 
120 vowel-pair networks. 
 
 

TABLE 3: BEST PERFORMANCE OF THREE NETWORK TYPES 
 

Average Performance for 120 
Networks 

Classification Accuracy 
 Training Set    Evaluation Set      

Computation Required  
Training-MFLOPS  Evaluation-FLOPS 

RBF - 8 hidden units     89.9%     90.6%               32.9     370 
LVQ - 2 hidden units     88.8%     89.7%        0.2       82 
Backpropagation - 5 hidden units     91.9%                  92.5%      77.4             152 

 
 
 An examination of the performance of individual networks revealed that in cases 
in which one vowel in a pair had a many more input vectors than the other, the 
backpropagation networks tended to favor the vowel with more inputs, classifying a 
much greater percentage of the smaller set incorrectly than the larger.  Neither the 
RBF or the LVQ networks suffered from this problem. 
 The number of MFLOPS displayed above is somewhat misleading in terms of 
execution time.  MATLAB reported roughly twice the number of floating point 
operations to train each network for backpropagation compared to RBF; however, 
the time required to train a network with backpropagation was about ten times that 
required for an RBF network.  The cause of this discrepancy appears to be that the 
RBF code used large matrix operations which seemed to be the most efficient 
processing mode for MATLAB.  The backpropagation  code used a large amount of 
looping, which was apparently very inefficient in the uncompiled MATLAB code. 
 
EFFECT OF SMALLER TRAINING SETS 
 The size of the available training set is often less than what is desired in 
automated speech recognition applications.  In order to compare the effects of a 
smaller training set on classification accuracy, the best performing networks of the 
three types were trained on much smaller input sets, reduced by selecting every 
thirtieth input vector and discarding the rest.  These tests represent the average of 



six vowel-pair networks chosen arbitrarily.   Note that these six vowel pairs were 
more difficult to discriminate than the average of all 120 vowel pairs. 
 
 

TABLE 4: EFFECT OF REDUCED TRAINING SET 
 

Average Performance for 6  networks   
 

Classification Accuracy 
 Training Set      Evaluation Set    

Backpropagation                     Full Set 
                                         Reduced Set 

  84.3% 
  87.3% 

   85.2% 
   80.7% 

LVQ                                        Full Set 
                                        Reduced Set 

  80.4% 
  83.9% 

   82.5% 
   77.4% 

RBF                                        Full Set 
                                        Reduced Set 

  83.5% 
  89.8 %                            

   83.2% 
   82.1%     

 
 
In all three cases, the networks were able to learn the much smaller training sets 
with a greater degree of accuracy; however, the RBF networks appear to have 
maintained a higher degree of generalization than the other two networks. 
 
CONCLUSIONS 
 
 Neither of the two network paradigms under consideration were superior in 
terms of classification accuracy to feedforward perceptrons trained with 
backpropagation; however, some interesting characteristics were observed. 
 The RBF network came very close to matching the accuracy of backpropagation 
with a much shorter training time, and seemed to retain its generalization capacity 
better than backpropagation when trained on a drastically reduced input set.  These 
are both important considerations in speech processing applications. 
 The LVQ network was less accurate than feedforward multi-layer perceptrons 
trained with backpropagation and it was somewhat surprising that the best 
performance was achieved with only two hidden units..  Although it is not as 
accurate as the backpropagation or RBF networks, an LVQ network with two 
hidden units may be useful in evaluation of speech data feature sets since both 
training time and evaluation time are extremely short. 
 Neither RBF nor LVQ shared the backpropagation problem of favoring the 
larger set in vowel pairs with mismatched input set sizes.  However, the 
backpropagation can also be modified to eliminate this discrepancy. 
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