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Vibration energy harvesting converts mechanical energy from ambient sources to electric-
ity to power remote sensors. Compared to linear resonators that have poor performance
away from their natural frequency, nonlinear vibration energy harvesters perform better
because they use vibration energy over a broader spectrum. We present a hybrid nonlinear
energy harvester that combines bi-stability with internal resonance to increase the fre-
quency bandwidth. A two-fold increase in the frequency bandwidth can be obtained com-
pared to a bi-stable system with fixed magnets. The harvester consists of a piezoelectric
cantilever beam carrying a movable magnet facing a fixed magnet. A spring allows the
magnet to move along the beam and it provides an extra stored energy to further increase
the amplitude of vibration acting as a mechanical amplifier. An electromechanically cou-
pled mathematical model of the system is presented to obtain the dynamic response of
the cantilever beam, the movable magnet and the output voltage. The perturbation method
of multiple scales is applied to solve these equations and obtain approximate analytical
solutions. The effects of various system parameters on the frequency responses are inves-
tigated. The numerical approaches of the long time integration (Runge-Kutta method) and
the shooting technique are used to verify the analytical results. The results of this study can
be used to improve efficiency in converting wasted mechanical vibration to useful electri-
cal energy by broadening the frequency bandwidth.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The growth of ultra-low-power sensor technologies inspires the use of alternative energies. One of the most ubiquitous
sources of energy is ambient mechanical vibration, which can be converted to useful electrical energy. This renewable source
of energy can replace batteries, which have short lives and high maintenance costs. Most of the current vibration energy har-
vesters are linear resonators that have a narrow bandwidth, which causes a significant drop in the output once the excitation
frequency differs from the resonant frequency. As ambient vibrations have a wide spectrum at the low-frequency range, that
defect defeats attempts to use linear resonators as convenient energy harvesters [1].

Increasing the frequency bandwidth of resonators will increase the efficiency of converting mechanical energy to electric-
ity. To increase the bandwidth, several methods introduced nonlinearities into the energy harvesting system [2] such as
using stoppers to realize a spring hardening effect [3–5] and using axial static preload to stiffen or soften the structure
[6,7]. Researchers also applied parametric excitation to trigger nonlinearity for energy harvesting. Yildirim et al. [8] recently
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Nomenclature

D3 electric displacement
e31 piezoelectric constant
S1 mechanical strain
�s33 piezoelectric material permittivity constant
Ez electric field
T1s mechanical stress
c11 compliance of piezoelectric
kðtÞ flux linkage
Lp length of piezoelectric
bp width of piezoelectric
hp thickness of piezoelectric
L length of beam
b width of beam
hs thickness of beam
L length of entire piezoelectric beam
A cross sectional area of entire piezoelectric beam
q volume density of entire piezoelectric beam
I moment of inertia
E modulus of elasticity
k stiffness of spring
wðx; tÞ lateral deflection of the beam
sðtÞ position of movable magnet measured from the fixed support
SðtÞ position of movable magnet measured from equilibrium position
se equilibrium position of movable magnet
k1 normalize first natural frequency of cantilever beam
Umag magnetic potential energy
y base excitation
b slope angle of the beam deflection curve with horizontal line
R resistance load
/1ðxÞ the first mode shape for cantilever beam
aðtÞ dynamic response of cantilever beam
Fmagx magnetic force tangential to the beam length
Fmagy magnetic force normal to the beam length
l0 permeability of space
d distance between the tip of the cantilever and fixed magnet
D horizontal distance between two magnets
N magnetization moment of magnet
xs natural frequency of the spring
m mass of movable magnet
s0 original length of spring
ln damping terms
vðtÞ voltage
T0; T1 two time scales
� scaling parameter
P1; P2 complex variables
EðT1Þ a variable
r1;r2 small detuning parameters
X frequency of excitation
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designed a clamped-clamped beam with a movable central magnet inside a coil. The experiment showed frequency soften-
ing and a broader bandwidth close to the primary and principal parametric resonances.

Nonlinearity from bi-stable systems can also broaden the frequency bandwidth. Such systems use two magnets (one
stationary and one moving) for piezoelectric energy harvesters [9–11] to create a double-well potential function. Their per-
formance was studied under base vibrations of harmonic [11] and random natures [12–16]. Across various excitation levels,
bi-stable systems outperformed linear ones. Bi-stable systems also were employed in electromagnetic generators [17,18].
The magnetic force adds cubic stiffness nonlinearity and makes the oscillator a Duffing type with frequency hardening
behavior [17,19–22]. Daqaq [23] investigated the response of such harvesters as a unimodal Duffing-type oscillator exposed
to White Gaussian and Colored excitation. Combining piezoelectric and electromagnetic energy harvesting mechanisms, a
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hybrid nonlinear system was studied by Karami and Inman [24] who introduced a unified model to predict the system
behavior. Zou et al. [25] proposed a compressive-mode wideband vibration energy harvester using a combination of bi-
stable and flextensional mechanisms.

Most vibration energy harvesters use a single degree-of-freedom system. However, to increase the frequency bandwidth,
several multi-degree-of-freedom approaches have been proposed. Wu et al. [26] reported that a two degrees-of-freedom
harvester can achieve two close resonant frequencies with significant power outputs by using two cantilever beams with
magnetic tips. Tang et al. [27] proposed a piezoelectric harvester composed of a cantilever with a magnetic tip facing a mov-
able magnet, replacing the fixed magnet in typical bi-stable harvesters. The power output had a large amplitude over a broad
bandwidth. Using two orthogonal cantilever beams with magnetic tips, Ando et al. [28] presented a coupled bi-stable system
that showed high outputs at low frequencies for bi-directional vibrations. Increasing degrees of freedom by adding multiple
coiled cantilever beams nearby a fixed magnet was also investigated by Sari et al. [29] that showed increase of the frequency
bandwidth for micro electromagnetic generators.

Internal resonance is another nonlinear phenomenon that can be used to broaden the bandwidth [30]. An internal res-
onator acts as a mechanical amplifier to pump energy from other regions of the frequency spectrum to the harvesting band-
width. Amplitude frequency responses of internal resonators bend to two opposite frequency directions causing an increase
in the frequency bandwidth for energy harvesting. This advantage of internal resonance recently attracted some researchers.
Lan et al. [31] investigated the energy harvesting of a vertical piezoelectric beam with its tip mass under vertical excitations.
Static and dynamic instabilities was used to create large amplitudes. Strong internal resonance of the system improved
energy conversion efficiency under harmonic and random excitations. Adding a mechanical oscillator to an electromagnetic
energy harvester, Chen and Jiang [32] demonstrated that energy harvesting based on internal resonance produces more
power compared to a linear system through a numerical and analytical study. Using an L-shaped piezoelectric structure with
quadratic nonlinearity, Cao et al. [33] showed exploitation of its two-to-one internal resonance increased significant fre-
quency bandwidth compared to its 2-DOF counterpart. This increase was achieved for excitation frequencies near the first
and second linear natural frequencies. In addition to an L-shaped piezoelectric beam, Chen et al. [34] used magnets to
improve the performance by increasing the bandwidth of energy harvesting. By changing the distance between twomagnets,
the harvester can apply internal resonance to broaden bandwidth and increase output. Compared to a traditional nonlinear
energy harvester including a cantilever with tip magnet facing fixed magnet, Xiong et al. [35] introduced an auxiliary oscil-
lator that produces internal resonance with the main cantilever. It demonstrated that the nonlinearity of internal resonance
increases the operating bandwidth by experiment and simulation.

The contributions of this paper is to combine bi-stability and internal resonance effects to broaden the frequency band-
width of nonlinear vibration energy harvesting. This is achieved by employing a system that is composed of a cantilever
beam with a movable magnet facing a fixed magnet. Bi-stability is introduced by the magnetic interactions, while the mov-
able magnet generates internal resonance. Bi-stability can broaden the frequency bandwidth, but the increase is not substan-
tial. Combining the two effects results in a larger frequency bandwidth that can increase energy conversion efficiency. In our
preliminary study [36], we developed a mathematical model for a movable magnet on a cantilever beam. In this paper, we
add a piezoelectric strip to the beam for energy harvesting and develop an electromechanical coupled mathematical model
of the system. We present an approximate analytical solution and numerical verification.

The content of this article is organized as follows. Section 2 describes a mathematical modeling of the combined resonator
followed by the perturbation method of multiple scales in Section 3 to solve for the steady-state frequency response. A lin-
earized piezoelectric coupling was used to simulate the electromechanical performance. The obtained solutions are
described in Section 4. The effects of various system parameters on the electromechanical frequency responses are investi-
gated in this section and analytical solutions are verified with the numerical solutions. Section 5 concludes the paper.
2. Mathematical modeling

The vibration energy harvester consists of a piezoelectric cantilever beam with a movable magnet attached to a spring,
and another fixed magnet with the arrangement of repulsive magnetic force that is depicted in Fig. 1. The cantilever beam
is fully covered by the piezoelectric material as the active transducer. The spring on the beam allows the movable magnet to
slide along the beam. The whole structure is attached to a parent host that generates a mechanical vibration in the horizontal
plane making the beam vibrate in the same plane. Our goal is to increase the vibration amplitude of the cantilever beam to
maximize the piezoelectric voltage output. This goal is achieved using the movable magnet and the working principle is
explained in the next subsection.
2.1. Working principle

The initial position of beam and magnets is shown in Fig. 1. The vibration of the base normal to the beam length causes
two terminal positions of the beam in the horizontal plane (Fig. 2). At the initial, centered, position of the beam, the tangen-
tial component of the magnetic force compresses the spring (Fig. 1). As the beam vibrates away from the center position, the
effect of the tangential component wanes while the normal component becomes stronger (Fig. 3a). The reduction in the tan-
gential component makes the spring stretch, reducing the horizontal distance between the magnets. The normal component



Fig. 1. Nonlinear vibration energy harvesting with internal resonance.

Fig. 2. Beam is in two terminal positions.

Fig. 3. (a) Schematic of a beam with movable magnet from the top view, (b) variable double well potential function concept.
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of the magnetic force increases with this distance reduction, hence bending the beam to its largest displacement. At this ter-
minal position, the restoring force of the beam overcomes the normal magnetic force, the beam vibration reverses, and the
spring compresses again. The increase in the beam displacement caused by the increase of the normal magnetic force is
unique for this movable magnet configuration. The larger the displacement, the larger the piezoelectric output voltage.

The working principle of the system can also be explained by a variable potential function. The potential energy of the
system is a double-well function when the distance between two magnets is below a threshold value, which is shown in
Fig. 3b. The motion of the cantilever beam resembles the motion of a heavy ball oscillating in a double well potential function
with a flexible bump standing on a spring in the middle. Position 1 shows the ball compressing the spring that represents the
beam in its initial position with the solid line potential function. As the ball moves down (as the beam vibrates), the spring
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releases the stored energy to create a new potential function (dashed line). The release of spring’s energy helps the ball gain
higher velocity at position 2 that pushes the ball to position 3, where the velocity of the ball slows to zero. At position 3, the
ball has more potential energy than at the starting position (position 1) because of the added restoring energy of the spring.
Then the ball starts moving back. On the way back (from position 2 to position 1), the heavy ball compresses the spring and
the potential function will be the solid line again. In this variable potential concept, the key for increasing the height of the
ball (equivalent to the beam amplitude) is therefore the added potential energy of the spring. This results in larger electrical
energy output.

2.2. Governing equations

To predict the dynamic response and output voltage of the resonator, a mathematical coupled model for the cantilever
under the influence of magnets and the piezoelectric strip is derived. The electromechanical model of the piezoelectric
behavior is governed by the following constitutive laws relating the mechanical stress to the electric field generated within
a layer:
D3 ¼ e31T1s þ �s33Ez

S1 ¼ c11T1s þ e31Ez
ð1Þ
Because of the parallel connection of piezoelectric layers, the electric field can be written in terms of flux linkage kðtÞ as:
Ez ¼ �
_kðtÞ
hp

ð2Þ
The electric energy for one piezoelectric strip is 1
2

R
EzD3dv , where v is the volume of piezoelectric strip. Therefore, the elec-

tric energy in the system is [11]
2� 1
2

Z
EzD3dv ¼ e31bpðhp þ hsÞ _kðtÞwxðLp; tÞ þ �s33

bpLp
hp

_kðtÞ2 ð3Þ
We write the total energy of the system and use Hamilton’s Principle and variational calculus to derive the equations of
motion. Our model builds on the work by Siddiqui et al. [37] who studied the dynamics of a cantilever beam with a moving
mass. Here we convert the moving mass to a moving magnet facing a fixed magnet and add the piezoelectric strip

The total kinetic energy of the proposed system is:
T ¼ 1
2

Z L

0
qAð _wþ _yÞ2dxþ 1

2
m½_s sinbþ ð _wþ _yÞ�2 þ 1

2
mð_s cosbÞ2 ð4Þ
where b is the slope angle of the beam deflection curve with the horizontal line assuming sinb ¼ @w
@x . Because the width of the

beam is aligned along the vertical direction, it has a low moment of inertia about that axis and causes the beam to vibrate
only in the horizontal plane. Hence, we can ignore the potential energy from gravity on the movable magnet as it has a neg-
ligible effect on the motion of the beam in the horizontal plane. The total potential energy of the system including the electric
energy is:
V ¼ 1
2

Z L

0
EIw2

xxdxþ
1
2
ks2 þ Umag � he _kðtÞwxðLp; tÞ � 1

2
cp _kðtÞ2 ð5Þ
where
he ¼ e31bpðhp þ hsÞ

cp ¼ �s33
2bpLp
hp
To obtain the governing equations of motion, the extended Hamilton’s Principle,
Z t2

t1

dðT � VÞ þ Idk½ �dt ¼ 0
is used where t1 and t2 are two instants of time in which the variation, d, is calculated. The variations are determined for
kinetic, potential energy, and virtual work of the generalized current (I, rate of change of flux linkage over resistive load
R), respectively that yields
Z Z

�qA €wdxdw�
Z

EIwxxxxdxdw� EIwxxdwxjL0 þ EIwxxxdwjL0 þm_sd_s� ksds� dUmag þmð _wþ _yÞd _wþmdwxð _wþ _yÞ_s
�

þhed _kðtÞwxðLp; tÞ þ cp _kðtÞd _kðtÞ �
_kðtÞ
R

dkðtÞ
#
dt ¼ 0 ð6Þ
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To use Galerkin’s decomposition method, the mode shapes need to be determined. The mode shape of the beamwith moving
mass is different from that of a regular cantilever beam, but it is not significantly different. The difference is certainly not
going to be as much as the difference between a cantilever beam mode and that of a beam with an end-mass. So we use
a trial function generated from an eigenvalue problem similar to that of our system rather than the actual eigenvalue prob-
lem. This will work and produce a reasonably accurate Galerkin expansion, if the trial function and the actual mode shape are
close enough [38,39], which is the case here. Hence, the boundary conditions of a cantilever beam is used as
@3wðx; tÞ
@x3

¼ 0 at x ¼ L ð7Þ
@2wðx; tÞ

@x2
¼ 0 at x ¼ L

@wðx; tÞ
@x

¼ 0 at x ¼ 0

wðx; tÞ ¼ 0 at x ¼ 0
To obtain the ordinary differential equations from the partial differential equations, Galerkin’s method with a trial function
of the form
wðx; tÞ ¼
Xn
i¼1

/iðxÞaiðtÞ
is used, where i indicates the mode shape number. To simplify the derivations, only the first mode shape of the cantilever is
used (i ¼ 1). The normalized first mode shape is given by
/1ðxÞ ¼ coshðk1xÞ � cosðk1xÞ

� cosðk1Þ þ coshðk1Þ
sinðk1Þ þ sinhðk1Þ ðsinhðk1xÞ � sinðk1xÞÞ
where k1 is the normalized first natural frequency of cantilever beam. Therefore, we have dw ¼ /ðxÞaðtÞ and dwx ¼ /0ðxÞaðtÞ.
Integrating every terms in Eq. (6) by parts and dropping terms for boundary conditions, we obtain
Z

/
Z

�qA €w� EIwxxxxdx
� �

da�m€sds� ksdsþ /Fmagydaþ Fmagxdsþmð _wþ _yÞd _wþmwxdð _wþ _yÞ_sþ hedwxðLp; tÞ _kðtÞ
�

þcp _kðtÞd _kðtÞ �
_kðtÞ
R

dkðtÞ
#
dt ¼ 0 ð8Þ
where Fmagx and Fmagy are the magnetic force tangential and normal to the beam directions, respectively and
Z
mð _wþ _yÞd _wdt ¼

Z
ð�m/ð €wþ €yÞda�m/ _wx _sdaÞdt

Z
mwxdð _wþ _yÞ_sdt ¼

Z
ðmwx _sd _wþmwxð _wþ _yÞd_sÞdt ¼

Z
ð�m/wx€sda�m/ _wx _sda�m/wxx _s2da�mwxð €wþ €yÞdsÞdt

Z
hedwxðLp; tÞ _kðtÞ þ cp _kðtÞd _kðtÞ �

_kðtÞ
R

dkðtÞ
" #

dt ¼
Z

�he _wxðLp; tÞdkðtÞ þ he/
0ðLpÞ _kðtÞda� cp€kðtÞdkðtÞ �

_kðtÞ
R

dkðtÞ
" #

dt
Then set terms of ds; da and dkðtÞ in Eq. (8) to be zero respectively. Governing equations are obtained by three coupled
differential equations as
m€sðtÞ þ ksðtÞ þmwxðx; tÞ €wðx; tÞ þmwxðx; tÞ€yðtÞ � Fmagx ¼ 0 ð9Þ

/
Z L

0
qA €wðx; tÞ þ EIwxxxxðx; tÞdx

� �
þm/f a þ /

Z L

0
qAdx€yðtÞ þm/€yðtÞ � /Fmagy � h _kðtÞ ¼ 0 ð10Þ

cp€kðtÞ þ he _wxðLp; tÞ þ
_kðtÞ
R

¼ 0 ð11Þ
where the coupled acceleration term for the mass is
f a ¼ €wþ 2 _wx _sþwxx _s2 þwx€s
The first term in the above equation is the acceleration of the beam in the lateral direction, the second term is the Coriolis
acceleration, the third is centripetal acceleration and the fourth term is the acceleration of the mass projected in the lateral
direction. It should be noted that the above equations are written for small oscillations of the beam around equilibrium
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points caused by small excitation levels, which is a reasonable assumption for a vibration energy harvester. Nonlinearity
from strain displacement relationships is not included in the governing equations. The magnetic force terms are
Fmagx ¼ FR

D4 1� 5w2

2D2

� �

Fmagy ¼ FRw

D5 1� 5w2

2D2

� �

FR ¼ 3l0N
2

2p

D ¼ DðtÞ ¼ Lþ d� sðtÞ

N is the magnetization moment of magnet. N depends on the physical property and size of magnet. We use a cubic magnet
with length of 8 mm. The electromechanical coupling term is
h ¼ he/
0ðLÞ
The static equilibrium equation is obtained by setting the time derivative terms equal to zero in Eq. (9):
x2
s ðs0 � seÞ � FR

mD4 ¼ 0 ð12Þ
Assuming parameters of the system as listed in Table 1, Eq. (12) is solved to obtain the static equilibrium positions.
In order to obtain the solution to dynamic equations of Eqs. (9)–(11), perturbation method of multiple scales is used. To

further simplify the equations, the governing Eqs. (9) and (10) are expanded about their equilibrium points (se for the mov-
able magnet and a ¼ 0 for the cantilever beam). A Taylor series expansion about the equilibrium position and including
terms up to the first derivatives are used for the expansion as
1
Dn ¼ 1

Dn
e

þ nS

Dnþ1
e

/ðxÞx¼sðtÞ ¼ /e þ /0
eS
where S ¼ SðtÞ ¼ sðtÞ � se is the dynamic response of the movable magnet about the equilibrium point. De ¼ Lþ d� se and
/e ¼ /ðseÞ;/0

e ¼ /0ðseÞ. The mode shape of the cantilever is expanded using Taylor series around the equilibrium position
of the movable magnet and is substituted into governing Eqs. (9) and (10). Dropping static terms yields
€Sþx2
s Sþ /e/

0
e
€aaþ a/0

e€y�
FR

mD4
e

4S
De

þ�5
2

1
D2

e

þ 6S
D3

e

 !
a2ð/e þ /0

eSÞ2
( )

¼ 0 ð13Þ
Table 1
Energy harvester parameters used in simulation.

Parameters Values

Mass of moving magnet, m 4 g
Magnet size 8 mm � 8 mm � 8 mm
Mass of beam 5.6 g
Length of beam, L 75 mm
Width of beam, b 10 mm
Thickness of beam, hs 1 mm
Flexural rigidity, EI 0.003 Pa �m4

Damping ratio, l1 and l2 0.1
Stiffness of the spring, k 250 N/m
Original length of the spring, s0 57.75 mm
Distance between the beam tip and fixed magnet, d 4.5 mm
Magnetization moment, N 0.53 A m2

Length of piezoelectric, Lp 75 mm
Width of piezoelectric, bp 10 mm
Thickness of piezoelectric, hp 0.254 mm
Permittivity of free space, �0 8:854� 10�12 F/m
Laminate permittivity, �33 3200�0
Coupling coefficient, e31 �20
Equivalent resistive load, R 500 X
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Z L

0
EI/002dxaþ

Z L

0
qA/2dx€aþ ð/e þ /0

eSÞ
Z L

0
qAdxþm

� �
€yþm/2

e
€aþ 2mS/e/

0
e
€aþm//0€Saþ 2m//0 _S _a

þm _S2a//00 þmS2€a/0
e
2 � h _kðtÞ � FRað/e þ /0

eSÞ2
D5

e

1þ 5S
De

� �
þ�5

2
1
D2

e

þ 7S
D3

e

 !
a2ð/e þ /0

eSÞ2
( )

¼ 0 ð14Þ

where 0 denotes the derivative with respect to x and
Z L

0
EI/002dx ¼

Z L

0
EI//

0000
dx
Nonlinear terms with orders higher than quadratic in Eqs. (13) and (14) are dropped. Assuming the contact surface of the
beam and the magnet is lubricated, viscous friction between the two is modeled. For the vibration of the beam, air viscous
damping is considered. Adding two damping terms ln results in
€Sþx2Sþ 2l1
_Sþ c1€aaþ c2a2 þ /0a€y ¼ 0 ð15Þ

€aþx2
1aþ 2l2 _aþ 2mc4s€aþ 2mc4 _S _aþmc4€Saþ c5sa� h _kðtÞ þ ð/e þ S/0

eÞcy€y ¼ 0 ð16Þ

cp€kðtÞ þ h _aþ
_kðtÞ
R

¼ 0 ð17Þ
where
x2 ¼ x2
s þ c3 ð18Þ

c1 ¼ //0 ð19Þ

c2 ¼ 5FR/2
e

2mD6
e

ð20Þ

c3 ¼ � 4FR
mD5

e

ð21Þ

x2
1 ¼

R L
0 EI/

002dxR L
0 qA/

2dxþm/2
e

� FR/2
eR L

0 qA/
2dxþm/2

e

� �
D5

e

ð22Þ

c4 ¼ /e/
0
eR L

0 qA/
2dxþm/2

e

ð23Þ

c5 ¼ � FRR L
0 qA/

2dxþm/2
e

2/e/
0
e

D5
e

þ 5/2
e

D6
e

 !
ð24Þ

cy ¼
R L
0 qAdxþmR L

0 qA/
2dxþm/2

e

ð25Þ
It is noted that the last term in Eqs. (15) and (16) are parametric excitation terms. A parametric counterpart has a zero
steady-state response below the initiation threshold amplitude and a small non-zero initial displacement condition is
required [40]. The initiation threshold depends on the damping and level of excitation. However, in practice, the ambient
vibration available for energy harvesting is very small. Direct excitation always yields a response regardless of the excitation
level. Therefore, in our case, direct excitation is investigated while ignoring the parametric excitation condition. The relation-
ship between voltage vðtÞ and flux linkage kðtÞ is vðtÞ ¼ _kðtÞ. Considering only the direct excitation, the two governing Eqs.
(15)–(17) become
€Sþx2Sþ 2l1
_Sþ c1€aaþ c2a2 ¼ 0 ð26Þ

€aþx2
1aþ 2l2 _aþ 2mc4s€aþ 2mc4 _S _aþmc4€Saþ c5sa� hvðtÞ ¼ F cosðXt þ sÞ ð27Þ
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cp _vðtÞ þ vðtÞ
R

þ h _a ¼ 0 ð28Þ
where F cosðXt þ sÞ ¼ �/ecy€y.

3. Perturbation method of multiple scales

The method of multiple scales is used to obtain an analytical solution to the governing equations and to study the quan-
titative behavior of the system under various parameters. Two time scales T0 (fast) and T1 (slow) are used:
T0 ¼ t

T1 ¼ et
where e is a scaling parameter. Let F ¼ ef , the governing equations become
€Sþx2Sþ eð2l1
_Sþ c1€aaþ c2a2Þ ¼ 0 ð29Þ

€aþx2
1aþ eð2l2 _aþ 2mc4S€aþ 2mc4 _S _aþmc4€Saþ c5Sa� hvðtÞÞ ¼ ef cosðXt þ sÞ ð30Þ

cp _vðtÞ þ vðtÞ
R

þ h _a ¼ 0 ð31Þ
The next step is to assume an asymptotic series solution for SðtÞ;aðtÞ and vðtÞ. In this case, a two term expansion is assumed
as:
SðtÞ ¼ S1ðT0; T1Þ þ eS2ðT0; T1Þ
aðtÞ ¼ u1ðT0; T1Þ þ eu2ðT0; T1Þ
vðtÞ ¼ v1ðT0; T1Þ þ ev2ðT0; T1Þ ð32Þ
Dropping second and higher order terms, time derivatives are written as
@

@t
¼ @

@T0
þ e

@

@T1

@2

@t2
¼ @2

@T2
0

þ 2e
@2

@T0@T1
Substituting the asymptotic series solution into the time derivatives gives
_S ¼ @S1
@T0

þ e
@S2
@T0

þ e
@S1
@T1

þ e2
@S2
@T1

€S ¼ @2S1
@T2

0

þ e
@2S2
@T2

0

þ 2e
@2S1

@T0@T1
þ 2e2

@2S2
@T0@T1

_a ¼ @u1

@T0
þ e

@u2

@T0
þ e

@u1

@T1
þ e2

@u2

@T1

€a ¼ @2u1

@T2
0

þ e
@2u2

@T2
0

þ 2e
@2u1

@T0@T1
þ 2e2

@2u2

@T0@T1

_v ¼ @v1

@T0
þ e

@v2

@T0
þ e

@v1

@T1
þ e2

@v2

@T1
Plugging the above equations into Eqs. (29)–(31), and equating the coefficient of e0 and e1 to zero, obtains
e0 order:
@2S1
@T2

0

þx2S1 ¼ 0 ð33Þ

@2u1

@T2
0

þx2
1u1 ¼ 0 ð34Þ
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cp
@v1

@T0
þ v1

R
¼ �h

@u1

@T0
ð35Þ
e1 order:
@2S2
@T2

0

þx2S2 ¼ �2l1
@S1
@T0

� 2
@2S1

@T0@T1
� c1

@2u1

@T2
0

u1 � c2u2
1 ð36Þ

@2u2

@T2
0

þx2
1u2 ¼ �2l2

@u1

@T0
� 2

@2u1

@T0@T1
� 2mc4

@2u1

@T2
0

S1

� 2mc4
@S1
@T0

@u1

@T0
�mc4

@2S1
@T2

0

u1

� c5S1u1 þ f cosðXT0 þ sÞ þ hv1

ð37Þ

cp
@v2

@T0
þ v2

R
¼ �cp

@v1

@T1
� h

@u2

@T0
þ @u1

@T0

� �
ð38Þ
The solutions of Eqs. (33)–(35) are given by
S1 ¼ P1ðT1ÞeixT0 þ �P1ðT1Þe�ixT0 ð39Þ

u1 ¼ P2ðT1Þeix1T0 þ �P2ðT1Þe�ix1T0 ð40Þ

v1 ¼ �ix1hP2eix1T0

1
R þ ix1cp

þ ix1h �P2e�ix1T0

1
R � ix1cp

þ EðT1Þe�
T0
Rcp ð41Þ
where P1 and P2 are complex variables and EðT1Þ is a variable. The overbars denote the complex conjugates. Substituting Eqs.
(39)–(41) into the right hand sides of Eqs. (36) and (37) results in
rhsð36Þ ¼ �2l1ixP1eixT0 þ 2l1ix �P1e�ixT0

� 2ix
@P1

@T1
e�ixT0 þ 2ix

@ �P1

@T1
e�ixT0 þ c1x2

1P2eix1T0
�

þc1x2
1
�P2e�ix1T0

�
P2eix1T0 þ �P2e�ix1T0
� �

� c2P
2
2e

2ix1T0 � 2c2P2
�P2 � c2 �P2

2e�2ix1T0

ð42Þ

rhsð37Þ ¼ �2l2ix1P2eixT0 þ 2l2ix1
�P2e�ixT0

� 2ix1
@P2

@T1
eix1T0 þ 2ix1

@ �P2

@T1
e�ix1T0

þmc4ð2x2
1 þx2 þ 2xx1ÞP1P2eiðx1þxÞT0

þmc4ð2x2
1 þx2 � 2xx1Þ �P1P2eiðx1�xÞT0

þmc4ð2x2
1 þx2 þ 2xx1Þ �P1

�P2e�iðx1þxÞT0

þmc4ð2x2
1 þx2 � 2xx1ÞP1

�P2e�iðx1�xÞT0

� c5ðP1eixT0 þ �P1e�ix1T0 ÞðP2eixT0 þ �P2e�ix1T0Þ

þ 1
2
eiðXT0þsÞ þ 1

2
e�iðXT0þsÞ

þ h
�ix1hP2eix1T0

1
R þ ix1cp

þ ix1h �P2e�ix1T0

1
R � ix1cp

þ EðT1Þe�
T0
Rcp

 !

ð43Þ
To eliminate the secular terms, the coefficients of eixT0 and eix1T0 in Eqs. (42) and (43) are set to zero. The linear solution is
not significant because under these conditions the coupling between the movable magnet and the cantilever beam is very
weak. To study the solution for the coupled motion, we investigate the internal resonance case, assuming
x ¼ 2x1 þ er2 ð44Þ

where r2 is small detuning parameters. When r2 is zero, we have internal resonance of 1:2 ratio (the ratio of the first fre-
quency of the system to the frequency of the moving magnet). For the frequency of excitation, X, there are several cases. We
consider the case when X is near to x1:
X ¼ x1 þ er1 ð45Þ
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where r1 is small detuning parameters. Applying the internal resonance relationship (44) and the condition (45), the elim-
ination of secular terms no longer gives a linear solution. We have more nonlinear terms as
�2l1ixP1 � 2ix
@P1

@T1
þ c1P

2
2x

2
1e

�ir2T1 � c2P
2
2e

�ir2T1 ¼ 0 ð46Þ
�2l2ix1P2 � 2ix1
@P2

@T1
þ 1
2
feiðr1T1þsÞ � i

x1P2h
2

1
R þ ix1cp

þ ð2mc4x2
1 þmc4x2 � 2mc4xx1 � c5ÞP1

�P2eir2T1 ¼ 0 ð47Þ
The complex variable P1 and P2 are described in polar form as
P1ðT1Þ ¼ 1
2
p1ðT1Þeiu1ðT1Þ

P2ðT1Þ ¼ 1
2
p2ðT1Þeiu2ðT1Þ
Setting the real and imaginary parts of Eqs. (46) and (47) to zero respectively yields
@p1

@T1
¼ �l1p1 þ

a11
4x

p2
2 sin c1 ð48Þ

p1
@u1

@T1
¼ � a11

4x
p2
2 cos c1 ð49Þ

@p2

@T1
¼ �l2p2 �

a22
4x1

p1p2 sin c1 þ
f

2x1
sin c2 þ E1p2 ð50Þ

p2
@u2

@T1
¼ � a22

4x1
p1p2 cos c1 �

f
2x1

cos c2 þ E2p2 ð51Þ
where
a11 ¼ c1x2
1 � c2

a22 ¼ 2mc4x2
1 � 2mc4xx1 þmc4x2 � c5

c1 ¼ 2u2 �u1 � r2T1

c2 ¼ r1T1 þ s�u2

E1 ¼ �
h2

2R
1
R2
þx2

1c2p

E2 ¼
h2x1cp

2
1
R2
þx2

1c2p
In Eqs. (48)–(51), p1 and p2 are modal amplitudes and u1 and u2 are corresponding phases. For the steady-state response,
we set @p1

@T1
¼ @p2

@T1
¼ @c1

@T1
¼ @c2

@T1
¼ 0 to obtain
½a222x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ ð2r1 � r2Þ2
q

�p3
1

þ ½8a22xx1ðl1ðl2 � E1Þ � ðr1 � E2Þð2r1 � r2ÞÞ�p2
1

þ 16xx2
1ððl2 � E1Þ2 þ ðr1 � E2Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ ð2r1 � r2Þ2
q� 


p1

� a11f
2 ¼ 0

ð52Þ

p2
2 ¼ 4x

a11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ ð2r1 � r2Þ2
q� 


p1 ð53Þ
Solving Eqs. (52) and (53) gives the amplitude frequency response. The amplitude of output voltage is given by
v ¼ x1hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R2
þx2

1c2p
q p2 ð54Þ
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The stability of the steady-state response can be determined by examining the eigenvalues. If all the eigenvalues of a Jaco-
bian matrix have negative real parts, the corresponding steady state response is stable. If not, the corresponding steady-state
response is unstable.
4. Results and discussions

4.1. Simulation results

The response of the energy harvester with the parameters listed in Table 1, is obtained by solving Eqs. (52)–(54). The
parameters are chosen to have symmetric internal resonance of 1:2 at x1 ¼ 16 Hz and x ¼ 32 Hz (detuning parameter
r2 ¼ 0 in Eq. (44)). The default value of base excitation is set to 1 g. The corresponding frequency response is shown in
Fig. 4a and the output voltage frequency response is shown in Fig. 4b. Solid lines represent the stable solution and dashed
line represent the unstable solution. There are two branches that are tilted to two opposite directions leading to a broad
bandwidth frequency response with a jumping phenomenon observed from varying the frequency of excitation, X. The
new structure applying internal resonance shows that the frequency bandwidth is two times larger than the original non-
linear system using fixed magnets that has only a branch tilted to one direction. The response of the beam correlates to the
voltage production of a piezoelectric strip as shown in Fig. 4b. As it can be deduced from these figures, there is a region near
the central frequency where the solution is unstable.

Fig. 5 depicts the vibration amplitudes of the beam and movable magnet as functions of the excitation level for different
detuning parameters r1 (in Eqs. (45)) respectively. A smaller r1 means the system works near the resonant frequency. On
the contrary, a large value of r1 indicates that the system works far from the resonant frequency. Solid lines represent the
stable response and dashed lines represent the unstable response. There are two regimes for single and multiple solutions
depending on the excitation level. In the multiple solution region, two solutions are stable and one is unstable based on the
sign of the eigenvalues. In this region, the response at higher or lower stable branches depends on the initial condition of the
system. In the single solution region, regardless of the initial conditions, there is only one solution.

4.2. Parametric study

This section studies the effects on energy harvesting by varying system parameters. Because the beam, but not the mov-
able magnet, response affects the output voltage, for the rest of analysis, only the beam response and output voltage are illus-
trated. The displacement and voltage frequency responses are depicted in Fig. 6 for different levels of base excitation. They
reveal the effect of the external excitation amplitude on the frequency response curves. The response amplitude and fre-
quency bandwidth increase with the excitation level, but it does not affect the tilting of the frequency response unlike bi-
stable resonators. It is observed that the unstable frequency range in the middle increases with the excitation amplitude.

The displacement and output voltage frequency responses for different stiffness values of spring k are plotted in Fig. 7.
The value of spring stiffness 250 N/m results in symmetric internal resonance (r2 ¼ 0 in Eqs. (44)). Results show that as k
decreases below 250 N/m, the central frequency of the frequency response shifts to the left, r2 < 0 orx < 2x1. Furthermore,
the peak of right branch is larger than the left peak and will have a larger bandwidth on the right side of the central fre-
quency. On the contrary, when k increases beyond 250 N/m, the curve shifts to the right, r2 > 0 or x > 2x1. In this case,
the left branch outperforms the right branch. The stiffness of the spring breaks symmetry and changes the position of the
Fig. 4. (a) Frequency response for the beam and moving magnet, (b) output voltage frequency response.



Fig. 5. (a) Beam vibration amplitudes versus excitation level, (b) moving magnet vibration amplitudes versus excitation level.

Fig. 6. (a) Frequency response for different excitation levels f(g), (b) Output voltage for different excitation levels f(g).
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central frequency with different performances on two branches. Once the symmetry is broken in the frequency response, the
frequency bandwidth decreases from 2.3 Hz to 1.6 Hz.

The initial distance between the beam tip and the fixed magnet, d, also affects the frequency responses as shown in Fig. 8.
Results show that when d decreases, a broader bandwidth response is obtained with a shift of the central frequency to the
left compared to original curve. The bandwidth increases from 2.3 Hz to 2.9 Hz when the distance d decreases from 4.5 mm
to 2.5 mm. At smaller d values, the magnetic force is larger making a stronger bi-stability effect that causes larger tilting in
the frequency response and output voltage while maintaining a large amplitude in the response.

The magnetization moment effect on the frequency responses is depicted in Fig. 9. The effect is analogous to changing d.
In both cases, as the magnetic force strengthens, more tilting occurs in the frequency response. The stronger nonlinear effect
on the system creates a broader bandwidth frequency spectrum. We also observe that increasing magnetization moment
shifts the central frequency to the left.

4.3. Numerical validations

In order to verify the approximated analytical solutions, two numerical methods are employed to solve Eqs. (26)–(28).
The first method is the long time integration (Runge-Kutta method) and the second one is the shooting method [41]. A
set of parameters used for making this comparison is listed in the Table 1. The shooting method is a useful way to record
periodic solutions of a nonlinear system, and it is computationally more time efficient than the Runge-Kutta method. The
procedure of shooting is explained as follows. We let x1 ¼ S; x2 ¼ _S; x3 ¼ a; x4 ¼ _a and x5 ¼ vðtÞ. Then, we set _x2 ¼ €S and
_x4 ¼ €a, which yields



Fig. 7. (a) Frequency response for different excitation levels k (N/m), (b) output voltage for different excitation levels k (N/m).

Fig. 8. (a) Frequency response for different distance d (mm), (b) output voltage for different distance d (mm).

Fig. 9. (a) Frequency response for different magnetization moment N (A m2), (b) output voltage for different magnetization moment N (A m2).
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_x1 ¼ x2 ð55Þ
_x2 ¼ �x2x1 � 2l1x2 � c1 _x4x3 � c2x23 ð56Þ
_x3 ¼ x4 ð57Þ
_x4 ¼ �x2
1x3 � 2l2x4 � 2mc4x1 _x4 � 2mc4x2x4 �mc4 _x2x3 � c5x1x3 þ hx5 þ f cosXt ð58Þ
_x5 ¼ � x5
R
� hx4

� �
=cp ð59Þ
To proceed with the shooting technique, for convenience, we define the following variables:
@x1
@g1

¼ x6;
@x1
@g2

¼ x7;
@x1
@g3

¼ x8;
@x1
@g4

¼ x9;
@x1
@g5

¼ x10;

@x2
@g1

¼ x11;
@x2
@g2

¼ x12;
@x2
@g3

¼ x13;
@x2
@g4

¼ x14;
@x2
@g5

¼ x15;

@x3
@g1

¼ x16;
@x3
@g2

¼ x17;
@x3
@g3

¼ x18;
@x3
@g4

¼ x19;
@x3
@g5

¼ x20;

@x4
@g1

¼ x21;
@x4
@g2

¼ x22;
@x4
@g3

¼ x23;
@x4
@g4

¼ x24;
@x4
@g5

¼ x25;

@x5
@g1

¼ x26;
@x5
@g2

¼ x27;
@x5
@g3

¼ x28;
@x5
@g4

¼ x29;
@x5
@g5

¼ x30;
The shooting technique requires simultaneously integrating Eqs. (55)–(59) in addition to time derivatives of above terms (for
a total of 30 first order differential equations) for one period of excitation.

The initial conditions are defined as
x1ð0Þ ¼ g1; x2ð0Þ ¼ g2; x3ð0Þ ¼ g3; x4ð0Þ ¼ g4; x5ð0Þ ¼ g5;

x6ð0Þ ¼ 1; x7ð0Þ ¼ 0; x8ð0Þ ¼ 0; x9ð0Þ ¼ 0; x10ð0Þ ¼ 0;
x11ð0Þ ¼ 0; x12ð0Þ ¼ 1; x13ð0Þ ¼ 0; x14ð0Þ ¼ 0; x15ð0Þ ¼ 0;
x16ð0Þ ¼ 0; x17ð0Þ ¼ 0; x18ð0Þ ¼ 1; x19ð0Þ ¼ 0; x20ð0Þ ¼ 0;
x21ð0Þ ¼ 0; x22ð0Þ ¼ 0; x23ð0Þ ¼ 0; x24ð0Þ ¼ 1; x25ð0Þ ¼ 0;
x26ð0Þ ¼ 0; x27ð0Þ ¼ 0; x28ð0Þ ¼ 0; x29ð0Þ ¼ 0; x30ð0Þ ¼ 1:
The thirty first order differential equations are then integrated numerically subjected to the initial conditions over the
duration of one period T. Subsequently, we calculate x6 � x30 at time T and substitute them in the below algebraic system
of equations and solve for the error in the initial conditions:
x6 � 1 x7 x8 x9 x10
x11 x12 � 1 x13 x14 x15
x16 x17 x18 � 1 x19 x20
x21 x22 x23 x24 � 1 x25
x26 x27 x28 x29 x30 � 1

2
6666664

3
7777775

@g1

@g2

@g3

@g4

@g5

2
6666664

3
7777775
¼

g10 � x1
g20 � x2
g30 � x3
g40 � x4
g50 � x5

2
6666664

3
7777775
The procedure is repeated until the errors are minimized and a convergence is achieved. Figs. 10 and 11 reveal the stable
numerical solutions compared with analytical solutions for the cantilever beam response and output voltage, respectively.
Both long time integration (LTI) and shooting methods are applied to get numerical solutions of the frequency responses.
Analytical solutions near the central frequency in the frequency spectrum indicate unstable solutions, which cannot be
obtained from long time integration. Solutions by LTI match with those of the shooting method very well. It is observed that
there is an agreement between analytical and numerical solutions on having two branches tilted to both sides; however,
there is a quantitative difference between analytical solutions and numerical solutions. The maximum errors between the
numerical and analytical solutions are 25% on the left branch and 34% on the right branch, respectively. The difference
between analytical solutions and numerical solutions in the large amplitude range comes from the assumption of only linear
terms for asymptotic series solutions for SðtÞ;aðtÞ and vðtÞ (Eqs. (32)). In addition, the second and higher order terms of time
derivatives are also dropped. If higher order terms were added to the assumed solutions, more accurate solutions would have
been obtained by the multiple scales method, but adding more terms makes the derivations computationally very sophisti-
cated. Regardless of small differences, all methods indicate the double bending of frequency response and broadening of the
frequency bandwidth.



Fig. 10. (a) Cantilever beam frequency response by long time integration (LTI), (b) cantilever beam frequency response by shooting.

Fig. 11. (a) Output voltage frequency response by long time integration, (b) output voltage frequency response by shooting.
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5. Conclusions

In this paper, the dynamic behavior of a hybrid resonator that combines internal resonance with bi-stability is explored to
increase frequency bandwidth. The hybrid resonator consists of a piezoelectric cantilever beam carrying a movable magnet
facing a fixed magnet. The two magnets face one another with the same pole to create a bi-stable system, while internal res-
onance is made by adding a spring that controls the movable magnet.

Three coupled governing equations are obtained by using Hamilton’s energy approach. The perturbation method of mul-
tiple scales is employed to obtain approximate analytical solutions for the amplitude and voltage frequency responses. The
amplitude and voltage frequency responses reveal a double bending effect, two frequency peaks bending to opposite sides of
the central frequency, resulting in a broader frequency bandwidth. Compared to bi-stable energy harvesters with two fixed
magnets that have only one branch, the bandwidth of the new design is two times larger. The effects of different system
parameters on the frequency response and output voltage curves are studied. It is concluded that the larger the magnetiza-
tion moment and the smaller the initial distance between magnets, the larger the frequency bandwidth. Variation of spring
stiffness changed the symmetry of the frequency response and shifted the central frequency, but a large amplitude response
was maintained. The approximate analytical solutions are also verified by the numerical methods of long time integration
(Runge-Kutta method) and the shooting technique for a case study. Analytical and numerical solutions are in good agree-
ment. In summary, the hybrid energy harvester improves energy conversion efficiency by extending the frequency band-
width of response and voltage combining the two effects of bi-stability and internal resonance.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ymssp.
2016.12.032.
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