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Abstract
Voltage-driven parallel-plate electrostatic actuators suffer from an operation range limit of
30% of the electrostatic gap; this has restrained their application in microelectromechanical
systems. In this paper, the travel range of an electrostatic actuator made of a micro-cantilever
beam above a fixed electrode is extended quasi-statically to 90% of the capacitor gap by
introducing a voltage regulator (controller) circuit designed for low-frequency actuation. The
voltage regulator reduces the actuator input voltage, and therefore the electrostatic force, as the
beam approaches the fixed electrode so that balance is maintained between the mechanical
restoring force and the electrostatic force. The low-frequency actuator also shows evidence of
high-order superharmonic resonances that are observed here for the first time in electrostatic
actuators.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Extending the range of electrostatic actuation is desirable in
many applications including microelectromechanical systems
(MEMS) optical switches [1], tunable laser diodes [2],
polychromator gratings [3], optical modulators [4] and
millipede data storage systems [5]. To extend the travel
range of electrostatic actuators in attracting mode beyond the
conventional one-third of the capacitor gap, researchers have
used various methods including charge and current control
[6–9], and leveraged bending [10]. Other approaches that
seek to extend the travel range of electrostatic actuators include
voltage control [11–13], sliding mode control [14] and other
nonlinear feedback controllers [15–17].

Charge and current control are very difficult to perform
in MEMS because of the very small capacitance. Using a
capacitor in series with the actuator to control the charge,
Chan et al [9] experimentally increased travel up to 60% of
the gap at the cost of high-voltage requirements. Adding a
capacitor in series, they kept the electrostatic force constant in
the actuator by controlling the voltage difference between the

4 Author to whom any correspondence should be addressed.

actuator plates. As the gap decreases in the actuator beyond
30% of the gap, its capacitance increases rapidly, while the
voltage across the actuator plates decreases as the square
of the gap helping to keep the electrostatic force constant.
Theoretically, it should have been possible to operate over
the full gap of the actuator, but parasitic capacitance limited
the travel range to 60% of the gap. Leveraged bending
[10] is another method to increase the actuation range by
applying the electrostatic force only to a portion of the
actuator. The disadvantage of this method is high input voltage
requirements.

Current control was examined by Guardia et al [8]. They
used open-loop and closed-loop configurations for driving
the actuator with a current source. They showed that full
gap actuation is achievable with a voltage five times the
open-loop pull-in voltage. Experimentally they obtained
actuation up to 48% of the gap. The drawback of this method
was that the actuator was stable only for a short period of
time.

There are a number of studies using charge control for
extending electrostatic actuation [6, 7]. Using a switched-
capacitor circuit, Seeger et al [6] controlled the charge of
an electrostatic actuator. They showed analytically that the
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pull-in instability can be eliminated by taking advantage of
parasitic capacitance present in the actuator and employing
a voltage 5.2 times smaller than that of voltage-controlled
systems. They experimentally achieved 83% of the gap.
However, tip-in instability, which arises from a small rotation
of the parallel-plate actuator, and snapping could not be
eliminated using this technique.

Using voltage control, Chen et al [12] stabilized the tilt
angle of an electrostatic micro-mirror beyond its snap-down
angle. They controlled the actuation voltage, keeping the slope
of the mechanical torque larger than the electrostatic torque to
stabilize the angle of the mirror. They were able to extend the
stable operation range to 10◦ from an open-loop pull-in angle
of 6.1◦. Simulation studies correlated well with experiments
at low actuation angles; at large actuation angles, the linear
mechanical and damping force models could not predict the
overshoot accurately.

Employing a nonlinear voltage controller that uses
two control methods, feedback linearization and trajectory
planning, Agudelo et al [13] experimentally achieved actuation
up to 60% of the gap, well beyond pull-in, for an electrostatic
micro-mirror. They used feedback of the mirror tilt angle and
the actuation voltage to follow the desired angle trajectory
beyond pull-in and obtained good agreement with simulation.
Simulation showed actuation over the whole gap; this was
limited in practice by the sampling time which restricted the
actuation to 60% of the gap.

A nonlinear output tracking controller was proposed
by Owusu et al [16] to extend the electrostatic actuation
range using displacement, velocity and charge feedback.
Simulations showed robust response in the presence of noise
and an increased actuation range to 90% of the gap. Further
studies on this controller were conducted by Nikpanah et al
[17] who improved the performance by eliminating the
displacement fluctuations present in the previous study when
using a switching control technique that made the controller
more feasible to implement.

A closed-loop controller that used a capacitive sensor for
position feedback was designed by Lu and Fedder [11] for
the position tracking of probe-based magnetic disk drives.
They added a constant controller gain that ensured a minimum
phase margin of 60◦ to a linearized model of the actuator and
experimentally stabilized the actuator up to 60% of the gap.
Liu et al [18] used a lumped mass model for the cantilever beam
to study the probe response and reported chaotic oscillation
in the presence of forced excitations. The cantilever beam
mode shapes were then used and a comprehensive study of
the nonlinear system dynamics was carried out by Towfighian
et al [19] to investigate the controller parameters for stable and
bi-stable behavior, and chaotic oscillations.

The largest quasi-static micro-actuation range reported
so far is limited to 60% of the capacitor gap for closed-loop
actuators and 30% of the gap for open-loop actuators. Parallel-
plate electrostatic actuators able to traverse the entire capacitor
gap with reasonable actuation voltage are an important
addition to the state-of-the-art since they will open the doors
to wide spread use of these high-energy density actuators. For
this purpose, we develop a large-stroke actuator by applying

Figure 1. Schematic of the micro-beam oscillator.

a simplified control law to a micro-cantilever beam. We
study the quasi-static and dynamic response of the large-
stroke actuator experimentally and numerically to characterize
its performance. In the following sections, we describe
the closed-loop actuator model and report the numerical and
experimental performance of the actuator in quasi-static and
dynamic actuation modes, respectively.

2. Actuator model

The actuator consists of a polysilicon cantilever beam as a
moving electrode above a fixed electrode (figure 1). A picture
of the fabricated PolyMUMPS actuator is shown in figure 2.
A feedback control system is added to the open-loop
electrostatic actuator to extend the stable electrostatic actuation
range.

The controller regulates the actuator voltage, and therefore
the electrostatic force, to obtain a larger range of motion. A
schematic of the closed-loop system is shown in figure 3. In
this figure, Vin is the input voltage, Vc is the controller output
voltage, G is a voltage gain and ŵ is the deflection of the beam
in the ẑ direction (figure 1). The voltage applied between the
two electrodes (see figure 3) creates the electrostatic forcing
on the cantilever beam,

Fe ∝ G2 (Vin − Vc)
2

(d − ŵ)2
, (1)

where d − ŵ is the gap.
The equation of motion of the closed loop is [19]

ρA
∂2ŵ(x̂, t̂ )

∂ t̂2
+ EI

∂4ŵ(x̂, t̂ )

∂x̂4

+ c
∂ŵ(x̂, t̂)

∂ t̂
= ε0bG2(Vin − Vc)

2

2(d − ŵ(x̂, t̂ ))2
(2)

where A is the cross-sectional area of the beam, EI is the
flexural rigidity of the beam and the coefficient c accounts for
damping losses due to the beam motion through the air. Other
system parameters are identified experimentally as described
in Towfighian et al [20] and are given in table 1. To generalize
the equation of motion, we use the following non-dimensional
variables to rewrite equation (2):

x = x̂

L
, w = ŵ

d
, t = t̂

T
(3)

where the time constant T is

T =
√

ρAL4

EI
. (4)
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Figure 2. A white-light image of the electrostatic actuator obtained with a WYKO NT1100 optical profiler.

Figure 3. Closed-loop system.

We multiply the result by the denominator of the electrostatic
force term to obtain

ẅ(1 − w)2 + w(4)(1 − w)2 + μẇ(1 − w)2 = G2α(Vin − Vc)
2,

(5)

where

μ = cL4

EIT
, α = ε0bL4

2EId3
, (6)

and w(4) is the fourth derivative of deflection with respect
to the axial coordinate x. To transform equation (5) to an
ordinary differential equation, it is discretized using separation
of variables and Galerkin’s method with the trial function
chosen as the first mode shape of the cantilever beam. The set
of ordinary differential equations of the actuator including the
controller equation is then⎧⎪⎨
⎪⎩

(
q̈ + μq̇ + ω2

1q
)
(1 + c1q + c2q

2) = c3G
2α(Vin − Vc)

2

V̇c = −r

(
Vc − q

1 − q
�

)
(7)

where q is the beam tip deflection normalized with respect to
the initial gap, over-dot means differentiation with respect to
time, ω1 is the first natural frequency of the beam and c1, c2 and
c3 are found by applying Galerkin’s method. The parameters
appearing in the differential equation for the controller voltage
(Vc) [18] are the voltage gain G, displacement gain � and
controller damping r.

Typically in applications such as AFM-based memory
devices or in programmable optical filters [3], actuators
travel from an undeflected position to a static hold at a

Table 1. Actuator parameters.

Parameter SymbolValue

Displacement gain � 0.5 V
Voltage gain G 4.8
Controller damping r 100
Density of polysiliconρ 2331 kg m−3

Beam length L 131 μm
Beam width b 20 μm
Beam thickness h 1.9 μm
Initial gap d 1.9 μm
Non-dimensional μ 0.157
damping coefficient
Permittivity of air ε 8.85 × 10−12 F m−1

Modulus of elasticityE 150 GPa

target location. In these applications, resonant and high-
frequency oscillations are not advantageous. Henceforth,
choosing an excitation frequency around one-fourteenth of the
resonant frequency, large stable actuations are investigated
quasi-statically. Restricting the tests to low frequency
allows simplification of the control circuit. The controller
equation (7) can be rewritten in the Laplace domain as

sVc = −rVc + r�
q

1 − q
(8)

and after rearranging, this becomes
Vc

�
q

1−q

= 1

1 + s
r

. (9)

The righthand side of equation (9) is a low-pass filter with
a non-dimensional cut-off frequency of r. When operating
at non-dimensional frequencies much lower than the cut-off
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(a) (b)

Figure 4. (a) Open-loop displacement, (b) closed-loop displacement. The dashed lines show the location of unstable equilibrium points
(saddles) and the solid lines show the stable equilibrium location.

frequency �̂ � r (or dimensional frequencies � � r/T ),
the ratio s

r
in equation (9) approaches zero and thus it can be

simplified to

Vc ≈ �
q

1 − q
. (10)

Using the previous equation to generate the control voltage
simplifies the implementation of the controller and allows for
a more compact device. The revised system equations are then
obtained as{(

q̈ + μq̇ + ω2
1q

)
(1 + c1q + c2q

2) = c3αG2(Vin − Vc)
2

Vc = q

1 − q
�.

(11)

The stable actuator is obtained by setting the voltage regulator
parameters to obtain a stable equilibrium point for most
of the gap distance [19], figure 4(b). The results in part
(b) of the figure were obtained by numerically solving the
algebraic equations obtained by equating the time derivatives
in equation (11) to zero. In this figure, the solid line shows
the location of the stable equilibrium point and the dashed
line shows the location of the unstable saddle point. While
the stable equilibrium point defines the rest position of the
beam, the stable manifold of the saddle delineates the basin of
safe oscillations around that equilibrium position. The
static profile reveals that the controller displaces the saddle
away from the stable equilibrium point; this is revealed by
comparing to the open-loop static response (figure 4(a)). The
increased distance of the saddle from the stable equilibrium
point creates a larger basin for safe motions to evolve around
the equilibrium point.

3. Quasi-static actuation

3.1. Closed-loop system

The closed-loop system is implemented by introducing a
circuit that acts as a voltage regulator. The controller function,
the second of equations (11), was implemented using analog
electronics [21]. Despite the advantages of digital control such
as easy code changes, an analog system is chosen because of
its fast response. A challenge with analog systems though is
the difficulty in changing the controller function. The voltage

Figure 5. Schematic of the closed-loop system.

regulator input was provided by a signal function generator,
and the regulator op-amps were operated using two power
supplies. The intermediate parameters were measured along
the circuit and were displayed on the oscilloscope.

A schematic of the closed-loop system is shown in figure 5
and further details can be found in [22]. First, the beam tip
velocity q̇ is measured with the vibrometer, the corresponding
signal is then passed through a high-pass filter, cut off at 30 Hz,
to eliminate ground vibration generated by the vacuum pump
used to hold the chip in place. Next, the filtered velocity signal
is integrated in the circuit to find the beam tip displacement q.
The displacement signal is scaled so that the entire electrostatic
gap is equivalent to 1 V. Next, the displacement signal is
subtracted from a constant voltage of 1 to evaluate (1 − q),
and division is performed to find q

1−q
. The result is multiplied

by the displacement gain � to find the control voltage Vc

(equation (10)). This is subtracted from the input voltage Vin,
and the result is finally multiplied by the voltage gain G to
generate the regulated voltage G(Vin − Vc). The regulated
voltage is applied to the actuator. This voltage can control
the beam position in the stable regime to create a stable
large-stroke actuator. The schematic of the control circuit
is shown in figure 6, where subtraction and multiplication

4
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(a) (b)

(c ) (d )

Figure 7. Closed-loop response to excitation at v = 2.7 V, ω = 10 kHz. − − −− measured, —— simulated. (a) Beam tip velocity,
(b) beam tip displacement, peak at 37%, (c) controller voltage Vc, (d) regulated voltage G(Vin − Vc). (Capacitor gap is 1.82 μm.)

(a) (b)

(c ) (d )

Figure 8. Closed-loop response to excitation at v = 2.88 V, ω = 10 kHz. − − −− measured, —— simulated. (a) Beam tip velocity,
(b) beam tip displacement, peak at 52%, (c) controller voltage Vc, (d) regulated voltage G(Vin − Vc). (Capacitor gap is 1.9 μm.)

are implemented using op-amps and division is realized using
diodes [21].

The closed-loop actuator was tested using a sinusoidal
excitation voltage according to Vin = v(1 + cos(�t)) that
varies between zero and a maximum voltage that corresponds
to a desired static location in figure 4(b). The maximum
excitation, 2v, corresponds to the horizontal axis of figure 4,
and the target location corresponds to the vertical axis.
Figures 7–11 compare experimental and simulated dynamic
responses revealing quasi-static actuation with target positions
located at 37%, 52%, 67%, 78% and 90% of the gap,
respectively. Simulations were performed by numerically
solving equation (11) using the beam parameters and the

damping ratio in table 1 identified in [20]. The frequency of
excitation was set to 10 kHz. In comparison to the beam natural
frequency of 140 kHz, the forced motion was quasi-static.
The damping ratio was 0.157, the pull-in voltage was 25 V,
and the beam length, width and thickness were 131, 20 and
1.9 μm, respectively. The gap distance was perturbed around
the nominal value so that the magnitude of the maximum
velocity obtained in simulations was equal to that obtained
experimentally. Using this method, the capacitor gap was
identified as d = 1.82 and 1.9 μ m for the beams employed in
the tests shown in figures 7 and 8–11, respectively.

The experimental results in part (a) of the figures present
the velocity of the actuator tip measured by the vibrometer

6
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(a) (b)

(c ) (d )

Figure 9. Closed-loop response to excitation at v = 2.92 V, ω = 10 kHz. − − −− measured, —— simulated. (a) Beam tip velocity,
(b) beam tip displacement, peak at 67%, (c) controller voltage Vc, (d) regulated voltage G(Vin − Vc). (Capacitor gap is 1.9 μm.)

(a) (b)

(c ) (d )

Figure 10. Closed-loop response to excitation at v = 3 V, ω = 10 kHz. − − −− measured, —— simulated. (a) Beam tip velocity,
(b) beam tip displacement, peak at 78%, (c) controller voltage Vc, (d) regulated voltage G(Vin − Vc). (Capacitor gap is 1.9 μm.)

and part (b) represents the displacement found from the
integration of the velocity signal in the circuit. Parts (c) and
(d) show the measured controller voltage Vc and the regulated
voltage applied to the actuator G(Vin − Vc), respectively. The
experimental results in parts (a) and (b) of the figures are
filtered in MATLAB by local regression using weighted linear
least squares and a first degree polynomial model that assigns
lower weight to outliers in the regression. The method assigns
zero weight to data outside six mean absolute deviations.

Good agreement between simulation and measured
responses is observed for a broad range of actuation voltage.
The smallest range is presented in figure 7, where though the
controller voltage does not exceed 0.3 V and the regulated
voltage does not go beyond the open-loop pull-in voltage of

25 V, the actuator traverses a trajectory that spans to 0.67 μm
or 37% of the gap which is greater than the 33% stability limit
for open-loop systems. The low signal to noise ratio for small
displacements prevents the controlled motions from tracking
the trajectory in the troughs. However, as the displacement
increases and the signal to noise ratio improves, the controller
follows the desired trajectory well.

Keeping the excitation frequency constant at 10 kHz and
increasing the peak voltage from 2.88 to 3.2 V for a beam
with a larger gap of 1.9 μm, the travel ranges increase from
52% (0.94 μm) to 90% (1.73 μm) in figures 8–11. This
increase corresponds to a controller voltage rise from 0.45
to 2.2 V as shown in part (c) of these figures and to the

7
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(a) (b)

(c ) (d )

Figure 11. Closed-loop response to excitation at v = 3.2 V, ω = 10 kHz. − − −− measured, —— simulated. (a) Beam tip velocity,
(b) beam tip displacement, peak at 90%, (c) controller voltage Vc, (d) regulated voltage G(Vin − Vc). (Capacitor gap is 1.9 μm.)

changes in the regulated voltage shape in part (d). The
qualitative change in the regulated voltage originates from
the increase of the controller voltage Vc in part (c) as the
beam displacement reaches its maximum in part (b). Because
the controller voltage peak and the input voltage peak have
the same phase, there is a voltage drop at the peak of the
regulated voltage across the capacitor G(Vin − Vc) shown in
figure 11(d). The voltage drop at the peak of the regulated
voltage plays an important role in stabilizing the actuator.
As the actuation voltage increases in the open-loop actuator,
the electrostatic force increases causing more deflection in
the beam which rapidly increases the electrostatic force even
more. This positive feedback loop drives open-loop actuators
to pull-in. The voltage regulator, on the other hand, interrupts
this process by dropping the voltage and the electrostatic
force as the displacement increases helping to balance it with
the mechanical spring force and making large displacements
feasible. At the maximum displacement, the actuator reverses
direction in part (a) as the mechanical force dominates the
electrostatic force and the beam returns to the undeflected
position. It is noted that the signal to noise ratio in parts (a)
and (b) deteriorates as the input voltage increases, though that
affects the oscillation that takes place around the undeflected
position and not around the target large displacement
points.

The beam tip comes to within 400 and 100 nm of the
substrate surface for the trajectories shown in figures 10 and 11,
respectively. This proximity is desirable for reading and
writing in probe-based high-capacity data storage devices [11]
using miniaturized AFM arrays.

Observing the displacement profiles, it is apparent that
more oscillations occur as the actuator reverses its direction of
motion away from the higher peaks and into the trough. These
oscillations modulate the displacement and velocity profiles
with oscillations at the natural frequency of the beam ω1. They
occur because of the sudden motion reversal at the peak. On

the other hand, the oscillations are not present at the counter
motion reversal as the actuator climbs out of the trough because
of our choice of input signal which guarantees a trough wide
enough for the initial oscillations to die out and a gradual
motion reversal.

The modulated oscillations are not seen in the predicted
path as the model uses a linear viscous damping term to
represent the dissipation mechanisms in the actuator. In
averaging out the highly nonlinear effects of squeeze-film
damping, it overestimates the amount of damping present for
the small oscillations in the trough around the undeflected
position. The effects of the discrepancy between the linear
damping model and the actual nonlinear damping effect are
also clear in the simulated velocity matching the minimum
measured negative velocity but not the maximum positive
velocity in figures 10 and 11. This difference between the
simulated and measured velocities grows as the actuation range
increases. These limitations notwithstanding, the actuator
reaches its target at the peak with minimal delay. Further,
unlike the leveraged bending method, the regulated voltage
does not exceed 27 V, slightly larger than the pull-in voltage
of 25 V.

At the peak voltage drop, a small phase difference can be
seen between the simulations and experiments in figures 10(d)
and 11(d) that is caused by the delays imposed by the op-amps
in the controller circuit. The phase difference magnitudes are
8.6◦ and 7.5◦, respectively, in those figures. This phase shift
can be minimized using more precise non-inverting op-amps.
However, actuation ranges are not affected by the controller
phase delay.

The ultimate positions reached at different peak voltages
are summarized in figure 12 as well as the static deflection
versus voltage curves shown earlier in figure 4(b). Figure 12
reveals a good agreement between the static simulation results
and the quasi-static experimental measurements, thereby

8
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Figure 12. Peak actuator displacement versus peak voltage (2v). −
simulated unstable equilibrium points, —— simulated stable
equilibrium points, ◦ experimental results. (Capacitor gap
is 1.9 μm.)

justifying the basic assumption underlying the simplified
controller development.

3.2. Virtual regulator

Examining the response of the actuator to the controlled
voltage, we postulated that applying the regulated voltage
waveform obtained from the simulation directly to the beam
without using the analog regulator could lead to similar results.
The experimental setup consisted exclusively of the micro-
beam, a signal generator and a vibrometer to measure the beam
tip velocity and an analog integrator. Simulations were
performed using the closed-loop control model to generate the
regulated voltage signal. The signal generator was then used
to produce the customized waveform, the beam response was

(a) (b)

(c )

Figure 13. Actuator open-loop response to a customized input waveform. − − −− measured, —— simulated response to excitation at
v = 3 V, ω = 10 kHz for a beam with the dimensions of 131 μm × 20 μm × 1.9 μm with the gap of 1.82 μm, and the controller
parameters of � = 0.5 V, G = 4.8.

measured using the vibrometer and the velocity was integrated
using the analog integrator to find the beam displacement.
The results are depicted in figure 13, where the customized
voltage signal is shown in part (c). Exciting the beam with
the proposed waveform eliminates the need for the external
feedback circuit while allowing for an actuation range as
large as 75% of the gap which is significantly larger than
the traditional open-loop limit of 33% of the gap. Under this
paradigm, the controller can be constructed as an off-line filter
that can be used to filter out the components of the command
voltage that drive the pull-in instability.

4. Dynamic actuation

4.1. Closed-loop superharmonic resonances

The closed-loop actuator can also act as a resonator in
regions of the frequency spectrum where superharmonic
resonances appear. Exciting the system at one frequency, the
system is responding at multiple frequencies. We studied
the superharmonic resonances available at low-frequency
excitations (<22 kHz). The results are presented in figure 14
showing, on the left, the fast Fourier transform (FFT) of
212 velocity data points and, on the right, the phase portrait
obtained from plotting the measured velocity versus the
integrated displacement. The beam under test has nominal
dimensions of 175 × 10 × 2 with a gap of 2 μm and a natural
frequency of 80 kHz. All experiments were conducted on
the same day to eliminate variation in the plant parameters
due to aging and changes in temperature and humidity. The
superharmonic resonances are verified by the FFT, where
a train of FFT peaks extending from the excitation frequency
to the natural frequency exists and the number of peaks reveals
the order of the superharmonic resonance. The superharmonic
resonances of order 8, 6 and 5 are reported at excitation

9
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(a)

(b)

(c )

Figure 14. FFT of the tip velocity and phase portrait for a beam with a natural frequency of 80 kHz obtained when the controller parameters
are G = 2, � = 0.5 V, and the excitation amplitude is v = 3.56 V for the superharmonic resonances of (a) order 8 at ω = 10 kHz, (b) order
6 at ω = 13 kHz and (c) order 5 at the excitation ω = 15.7 kHz.

Figure 15. FFT of the tip velocity and phase portrait for the superharmonic resonance of order 4 obtained for a beam with a natural
frequency of 85 kHz when the controller parameters are G = 2, � = 0.5 V at the excitation v = 2.78 V, ω = 21.36 kHz.

frequencies of 10, 13 and 15.7 kHz, respectively, with the
same voltage excitation magnitudes v = 3.56 V. The
superharmonic orbits shown expand along the displacement
and velocity axes as the order of the superharmonic drops
from 8 to 5. The stretching of the orbit along the displacement
axis corresponds to higher dynamic amplification of the input
at lower orders of the superharmonic resonance that leads to a
higher signal to noise ratio.

Testing a similar beam with a natural frequency of
85 kHz, the superharmonic resonance of order 4 was
observed as shown in figure 15 at an excitation frequency of

21.36 kHz. Although the excitation voltage is lower than

the previous set of tests, the phase portrait shows an orbit

comparable with the previous three cases of superharmonic

resonance. As the order of superharmonic resonances drops,

the regularity increases and fewer harmonics appear in the

FFT resulting in the reduction of the number of loops in the

phase portrait. Although superharmonic resonances of orders

1/2 and 2 have been reported by Younis et al [23], the first

instance of higher order resonances in MEMS electrostatic

actuators is observed here.

10
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(a) (b)

(c ) (d )

Figure 16. The superharmonic resonances of an actuator with the nominal dimensions of 175 μm × 10 μm × 2 μm and a gap of 2 μm
(a) order 6 obtained at VDC = 5.2 V, VAC = 4.7 V, � = 13.3 kHz, (b) order 5 obtained at VDC = 5.2 V, VAC = 4.16 V, � = 16 kHz,
(c) order 4 obtained at VDC = 5.2 V, VAC = 3.88 V, � = 20 kHz, (d) order 3 obtained at VDC = 5.2 V, VAC = 3.32 V, � = 26.6 kHz.

4.2. Open-loop superharmonic resonances

Superharmonic resonance was also observed in the open-
loop system for excitation at integer fractions of the natural
frequency. The beam had the nominal dimensions of
175 × 10 × 2 and a gap of 2 μm with a natural frequency
of 80 kHz. The dc voltage was held constant at 5 V.
Figure 16 presents the FFT of the beam tip velocity response.
Superharmonic resonances of order 6–3 in descending order
are depicted in parts (a)–(d) of this figure. The orders of the
superharmonics are clear from the number of peaks in the FFT
up to and including the natural frequency peak at 80 kHz.

Although open-loop superharmonic resonances require
less equipment to produce the resonance, the closed-loop
superharmonics carry comparatively more power in higher
harmonics as indicated by the FFT peaks for superharmonic
orders of 6, 5 and 4. The larger kinetic energy of the higher
harmonics makes closed-loop superharmonic resonances good
candidates for applications such as secure communication
devices [24], where sending and receiving a signal in a
wide range of frequencies rather than a single frequency are
desirable.

5. Conclusion

The actuation range of a closed-loop parallel-plate electrostatic
actuator in attracting mode was extended in quasi-static
operation mode to 90% of the capacitor gap. This is a
significant improvement since the largest reported quasi-static
stroke does not exceed 60% of the gap [11]. The actuator
consists of a micro-cantilever beam and a voltage controller
developed for low-frequency applications such as trajectory
tracking and micro-positioning. The closed-loop actuator
voltage requirements are moderate; in fact, the total actuation
voltage is about the pull-in voltage of the open-loop actuator.

Likewise, the travel range of the open-loop actuator was
increased using a customized voltage waveform generated
using a model of the closed-loop system. Exciting the beam
with the proposed waveform eliminates the need for an external
feedback system while allowing for actuation in quasi-static
operation mode with a stroke as large as 75% of the gap. Such
a large stroke in an open-loop actuator is well beyond the
present restricted quasi-static actuation range of one-third of
the gap. Our results show that this longstanding limitation can
be overcome with the careful analysis and design of open- and
closed-loop actuators.

In the closed-loop actuator, the tip velocity is measured
using a laser Doppler vibrometer and the corresponding
voltage signal is used to regulate the actuator voltage. For
practical deployment of the actuator, the vibrometer can be
replaced by a piezoresistor implanted at the root of the micro-
beam to act as a displacement sensor. The actuator is then
combined with the analog controller on a CMOS chip. It could
be emphasized that both our open- and closed-loop actuators
were tested successfully in an open air environment with
significant external disturbances and without any requirements
for a vacuum chamber.

Higher order superharmonic resonances were also
observed for the first time both for open-loop and closed-
loop electrostatic actuators. The superharmonic resonances
are important observations in nonlinear MEM systems and
can be used to develop sensors and communication receivers.
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