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ABSTRACT

Ambient energy in the form of mechanical kinetic energy is mostly considered waste energy. The process of
scavenging and storing such energy is known as energy harvesting. Energy harvesting from mechanical vibration
is performed using resonant energy harvesters (EH) with two major goals: enhancing the power scavenged at low
frequency sources of vibrations, and increasing the efficiency of scavenging energy by increasing the bandwidth
near the resonant frequency. Toward such goals, we propose a piezoelectric EH of a composite cantilever beam
with a tip magnet facing another magnet at a distance. The composite cantilever consists of a piezoelectric
bimorph with an extended polymer material. With the effect of the nonlinearity of the magnetic force, higher
amplitude can be achieved because of the generated bi-stability oscillations of the cantilever beam under harmonic
excitation. The contribution of the this paper is to demonstrate lowering the achieved resonant frequency down
to 17 Hz compared to 100 Hz for the piezoelectric bimorph beam without the extended polymer. Depending on
the magnetic distance, the beam responses are divided to mono and bi-stable regions, for which we investigate
static and dynamic behaviors. The dynamics of the system and the frequency and voltage responses of the beam
are obtained using the shooting method.
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1. INTRODUCTION

Ambient energy surrounds us in different forms, such as wind, solar, thermal and mechanical energy. Many of
these are considered waste energy from the naturally generated sources. The process of scavenging and storing
such energy is known as energy harvesting.

One of the major sources of energy for harvesting purposes is the prevalent mechanical vibrations present in
the environment and transportation vehicles. Vibration energy harvested from these sources can be useful for
autonomous powering of wireless sensors.' ¢ Vibration energy harvesters are mechanical resonators that oscillate
when attached to a vibration source. This oscillation is then converted to electric energy using electromagnetics,
electrostatic or piezoelectric” transducers. The most common transducer is the piezoelectric mechanism®1°
because of its energy density.

Linear resonators are inefficent because of their narrow freqeuncy bandwidth compared to the broadband
ambient vibrations. Several methods for tuning of the resonator frequency with the dominant ambient frequency
were explored including the use of magnets,'® but did not change the nature of narrow bandwidth. To solve the
bandwidth problem, several nonlinear resonators were investigated during the past few years. Nonlinear systems
have higher bandwidth oscillations which in turn increase the efficincy of the harvesting energy from broadband
vibrations. Using magnetic nonlinearity, Mann et al.'” investigated the widening of frequency bandwidth by
hardening effect and the increasing of the output power. Researchers studied the repulsive magnetic force effect on
making a bi-stable resonator that showed a wide frequency response.'® 22 The variation of the natural frequency
and voltage output with the distance between the permanent magnets were explored experimentally by Ferrari
et al.2%22 Barton et al.2? used electromagnetic transducers with a bi-stable resonator and revealed the effect
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of varying the load resistance on the frequency bandwidth. They introduced the idea of using superharmonic
resonances as a harvesting method at low frequencies. Using three real white noise sources, Vocca et al.?*
evaluated the performance of a nonlinear resonator. They reported the output voltage and power as the distance
between the two magnets varies in the bi-stable resonator. Al-Ashtari et al.'® found that trivial distances have
significant effect on the output voltage because of the influence on the mode shape of the beam. Tang et al.2 26
found the optimal distance to be at the transition from mono-stable to bi-stable regime. In a recent study,?’
they used a magnetic oscillator instead of a fixed permanent magnet and showed that frequency bandwidth
can double in that case. This paper presents a study of a magnetoelastic piezoelectric energy harvester, which
employs magnetic force to control the stability and the frequency of the energy harvester. The magnetic force
is expanded into Taylor series up to nine order of nonlinear terms. A Reduced Order Model with the Galerkin
approach are used to develop a single degree of freedom system under the effect of the nonlinear terms. A
Shooting Method (ShM)is used to extract the steady state response of the harvester. Softening and hardening
nonlinear behaviors are investigated by controlling the distance between the two magnets. First we start by
formulating the free vibration problem. Then we extract the static and eigenvalue problems. Next we formulate
the dynamic problem through the reduced order model. After that the experimental setup are explained. Finally
we discussed the results and conclusions.

2. PROBLEM FORMULATION OF FREE VIBRATION

The nonlinear resonator is composed of a piezoelectric cantilever beam with a tip magnet facing the same pole
of another magnet (Figure 1). To increase the amplitude of the resonator and lower its natural frequency, we use
a polymer material for the cantilever beam that is partially convered by piezoelectric laminates. The magnetic
force acts as a nonlinear spring that makes the system bi-stable. There have been studies on modeling of this
bi-stable resonator mostly focusing on lumped paramter modeling.? However, lumped modeling is only an
approximation for the system’s response at frequencies close to its natural frequency. To accurately evaluate
the response of the resonator for a wide range of frequency, we develop a continuous model of the system and
determine the response to a harmonic base excitation of 2(t) = A cos({2t), where € is the frequency of excitation
and A is the amplitude. In Figure 1, d is the horizontal distance between two magnets, L is the length of the
beam, W (x,t) is the transverse deflection of the beam, Ry, is the load resistanc, and Fy,,q4 is the magnetic force.
The tip magnet is modeled as a rigid body with mass M and mass moment of inertia J = %M L2, with a side
length L,,.

W(x,t)
m  Piezoelectric 4
m  Polymer Fmag
| L, mE
R, ! a — 4R
L ]
70 rA, L .

Figure 1: Schematic for the bi-stable resonator

The effect of the distance between magnets on the beam response and potential energy function is illustrated
in Figure 2. Magnetic force is a function of separation distance and is responsible for creating one more equi-
librium points to make a bi-stable system. The corresponding potential energy function is single well or double
well depending on the distance between magnets. For large distances between magnets, the beam will oscillate
around one stable point, point 1 (mono-stable oscillation). At small distances, the system will have two potential
wells and the beam will oscillate between two stable equilibrium points, at points 2 and 3, (bi-stable oscillation).



Figure 2: Mono-stable and bi-stable configurations of the resonator.

The energy harvester has two portions, the first part is the biomorph with the piezoelectric layer at the top
and bottom (0 < 2 < Lj), and the second part consists of a polymer layer (L < 2 < L). By applying Newton’s
second law and considering the continuity conditions at L;, the governing equations for free vibration (no base
excitation) of the system and boundary conditions are obtained
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where the third equation in Equation set (1) is for the voltage produced in the piezoelectric layer making a
bi-stable resonator that showed a wide frequency response!” 23

Wi(0,8) =0, Wig(0,8) =0, Wi(Ly,t) — Wa(Ly,t) =0, Wig(L1,t) — Wog(Ly,t) =0
EIW4p(L1,t) — Epl,Woga(L1,t) =0,  EI.Wippe(L1,t) — Epl,Wapes(L1,t) = 0

EpL,Wopaa(L,t) — MWa(L,t) — MLWayp(L,t) + Fragy — Mg =0 (2)
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where pA. is the equivalent mass per unit length, for the biomorph part of the beam (p1 A1 + ppAp + p2A42). The
subscripts (1,2) denote the biomorph and the polymer parts of the beam. ¢ is the damping, § is the Dirac delta
function, E, and I, are the polymer beam modulus of elasticity and second moment of inertia, respectively. V'
and R, are the voltage and resistance load, respectively, while C), is the capacitance through piezoelectric layers.
M is the mass of the tip oscillating magnet, EI. and ¢ are the effective flexural rigidity of the biomorph part of
the beam and the coupling coefficient term, respectively, and are given by
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where e3; is the piezoelectric constant, b is the width of both the piezoelectric layer and the beam. hy and h, are
the thickness of the piezoelectric layer and the polymer beam, respectively and F; is the Modulus of Elasticity
of the piezoelectric layer.
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The total magnetic force between two dipoles is a function of spatial derivatives of their magnetic field, whose
formula is given in reference.?” Total magnetic force can be written in terms of two components, One in the
longitudinal direction which is assumed to balance the longitudinal stiffness of the beam, The other one in the
transverse direction that is the component responsible for the beam transverse deflection and is given by:

FrY
Fragy = EEXDEE (4)

where Fi is the magnitude of the moments for magnetic dipoles and given by
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where m, and msy are the moments of magnetic dipoles for the fixed and tip magnets, respectively. ¢ is the

permeability of the free space and equal to 47w x 10_7%, d is the longitudinal separation distance between the

centers of the two magnets, and Y is the deflection of the center of the paddle in the transverse direction given
by
Y = Wa(L,t) + L-Wa, (L, t) (6)

As it can be seen from Equation (4), the magnetic force is a nonlinear function of beam tip displacement.
This nonlinearity causes the system to have multiple equilibrium points.

2.1 Static Problem

The static problem can be formulated by putting all time derivatives to zero in Equations (1) and (2):
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where the subscript s refer to static, and Fj, .4y is the static form of the magnetic force in the transverse direction
and given by

FRY,
Fragys = W (9)

where Y is the static deflection for the magnetic tip center. Now the general solution for the static equilibrium
equations (7) can be obtained by applying the static boundary conditions of Equations (8).



2.2 Eigenvalue Problem
To determine the natural frequency and mode shapes of the system, we solve the eigenvalue problem. The total
deflection of the beam can be linearized around its equilibrium points:

W (z,t) = Wy(x) + u(x, t) (10)

where W (z) and u(x,t) are static equilibrium position and dynamic response, respectively. Substituting Equa-
tion (10) into Equation (6), we obtain the following form for the displacements for center of the magnet

Y = Way(L) + uz(x,t) + LWase(L) + Leusy (x,t)
WQS(L) + LCWQSI(L) + ’U,Q((E, t) + LCUQm(CL', t) (11)

where Y; is the static displacement and Y,, is the dynamic displacement of the magnet center. Substituting
Equation (11) into the magnetic force Equation (4), and expanding with Taylor series around Y, = 0 and
neglecting nonlinear terms yields
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where Fiagys and Fiagyu are the static and linearized dynamic magnetic forces, respectively. Now to find the
mode shapes and natural frequencies at a given static equilibrium position, we assume a solution in the form of

uj(z,t) = (i)j(x)em (13)

where ¢;(z) is the first mode shape, and the subscript j corresponds to the beam part. w is the beam natural
frequency. Neglecting all nonlinear, damping, and voltage terms and substituting Equations (13) and (11) into
Equations (1) and canceling all the static terms from both sides of equation we can extract the eigenvalue problem
as
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where J = %ML%, n= %, and F,qgy4 is the magnetic force as a function of the mode shape and given by
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where Y, is given by

Y¢' = ¢( ) + Lc(b:r( ) (18)

3. DYNAMIC PROBLEM AND REDUCED ORDER MODEL (ROM)

To evaluate the dynamic response of the resonator and the produced voltage by the piezoelectric layer, the
governing equations for the forced vibration are derived using Lagrange’s equations. The total kinetic and
potential energy for the energy harvester is divided into two parts, first part for the biomorph beam and the
second part for the polymer beam. At the end, the two governing equation are merged into one governing
equation in addition to the electrical equation of the piezoelectric layers.

For the first part of the beam (biomorph portion), the kinetic and potential energy are given by T} and Uy,
respectively:
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where the last two terms in Equation (20) are the potential energy for the piezoelectric layers. For the second
part of the beam (polymer layer), Ty and U, are given by:
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where, Uprqq is the magnetic potential energy. The total kinetic energy is given by T' = T} + Ty, while the total
potential energy is given by U = Uy 4+ U,. Lagrange’s Equation is written as £ =T — U. To develop a ROM for
the energy harvester, we need to express the transverse deflection using Galerkin approach as:

Wiz, t) = Wig(x) + Z% Z@t), 0<z<I, (23)

Wa(z,t) = Way () + quzz Z(t), Li<z<L (24)



where ¢;(t) is the modal coordinate, Z(t) is the base motion, and n is the number of mode shapes. Using
Lagrange’s Equation with one mode approximation, one can obtain

G1(t) + 2pwn gy (t) + w2qi(t) — XV (t) — Fycos(Qt) + Fragyu =0 (25)
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where aq, ..., g are the coefficients due to the expansion with Taylor series. To solve the above dynamic equations,
we use the shooting method as explained in reference.?® Toward this we let

X1 =q(t)
Xo = @r (1) (34)
Xy = V(t

This will introduce the following three first order ode:
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Where F,qg.x is the magnetic force but written in state space form up to the ninth order term and given by
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The appropriate initial conditions that will give a periodic solution for the first order ode system are given
by
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Introduce a new variables by taking the derivative of each variable, (X7, X2, X3), with respect to the three

initial conditions, (1, n2,73), and following procedure in the reference®® we can construct the following first order
ode system:
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The initial conditions for the first order ode system in Equations (38) are given by

X1(0) =m0,  X2(0) =m20, X3(0) =n30

X4(0) =1, X;5(0)=0, Xe(0)= (40)
X7(0) =0, Xg(0)=1, Xy(0)=0

X10(0) =0, X1;(0)=0, X12(0)=



where (110, 720, 30) are the initial guesses for the initial conditions that will lead to periodic solution. Integrate
numerically Equations (35), (38) and Equations (40) over one period T, T' = 2%, where Q is the excitation
frequency. After that the values X4 - X5 are calculated at time T, and the error in the initial conditions are

calculated and updated by the following algebraic equation:

Xy X5 Xs om no — X1(T',m10, 720, M30)
X: Xs Xo | —[I] Oz p = < 20 — Xo (T, 110,120, M30) (41)
X X1 Xpo ons n30 — X3(T', m10, M20, 1M30)

where, I is the Identity matrix, (9n1,0n2,0n3) are the errors in the initial conditions guesses. The process is
repeated until convergence achieved and the errors are minimized. Then the stability analyzed for the periodic
solution obtained from the previous step. Now we solve for the eigenvalues, called Floquet multipliers, of the
Manodromy matrix shown below:

)
Xo(T) (42)

Three Floquet multipliers will be the output of the eigenvalues for the Manodromy matrix, and the stability
is analyzed according to the next equation:

Abs(Floquet multipliers) < 1 Stable

. (43)
Otherwise Unstable

Stability = {
4. EXPERIMENTAL SETUP
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Figure 3: The experimental setup of the piezoelectric EH, cantilever harvester to the right and PUMA Spectral
Dynamics Analyzer to the left.

Figure 3 shows the experimental setup used to test the magnetoelastic energy harvester. The setup consist
of the PUMA Spectral Dynamics Analyzer(PSDA) and and the resonator attached to a rigid base with a rail
to adjust the initial magnet distance. The resonator and its base were placed on a shaker to apply the base
vibration. Materials used included a polymeric beam mad of Makrolon polycarbonate with modulus of elasticity
of 2.34 GPa, partially covered by the piezoelectric material, Lead zirconate titanate (PZT)-5A Navy Type II
with modules of elasticity of 66 GPa and piezoelectric voltage constant of €31 = —11 x 1072 Vm/N, at the



top and bottom. Cubic magnets with side length of 8mm and magnetic moment of 0.54%/m. The rest of
the parameters are listed in Table 1. Two accelerometers; PCB Piezotronics LW149104 and LW196600; with
sensitivities of 10.28 mV/g and 98 mV/g, will be used to measure the output and input acceleration signals,
receptively. The accelerometer with higher sensitivity will be placed on the rigid holder while the accelerometer
with lower sensitivity will be placed on the beam tip magnet. Both accelerometers were connected to acceleration
data logger, which in turn was connected to the PSDA. The data logger had many channels to receive the data
from the accelerometers and the piezoelectric circuit. The PSDA sent the signal to the amplifier, which amplified
the signal to vibrate the shaker at the specified excitation amplitude for a required range of excitation frequencies.

Table 1: Geometrical and material properties of the harvester.

Parameters Polymer PZR 5A Magnet
Length 7.2 cm 3 cm 8.0 mm
Width 1.0 em 1.0 em 8.0 mm

Thickness 1.0 mm 1.0 mm 8.0 mm
Density 1220 kg/m3 | 7800 kg/m? | 7500 kg/m3
Modulus 2.344 GPa 66 GPa —

Magnetic moment - - 0.54%/m
Piezoelectric constant — -3 —

5. RESULTS AND DISCUSSIONS

Using the experimental setup in Figure 3, the frequency response curve and the frequency voltage curve were
first measured for the linear resonator (for large distance between magnets) under 0.5g base excitation amplitude
(Figures 4a and 4b). Figure 4a shows the experimental and simulated results for the deflection of the tip magnet
center. The resonance frequency was found to be 17.45H z at maximum peak-to-peak deflection of 9.5mm. Figure
4b shows the corresponding output voltage, with a maximum peak-to-peak of 2.4V. Simulations using shooting
method and measured results are in good agreements. It should be noted that the beam exclusively made of
piezoelectric laminate with the same length has the the natural frequency of around 100H z compared to 17.45H 2z
for the proposed beam with extended polymer. That means that our harvester lowered the natural frequency
by 87%. Operating the resonator at smaller distances between magnets, frequency broadening is achieved as
explained next.
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Voltage {(Volt))

0 12 14 16 18 20 22 24
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(b)
Figure 4: (a) Frequency response curve for the linear resonator. (b) Frequency voltage curve for the linear
resonator. Excitation Amplitude A = 0.5g, Damping p = 0.0364.

Figure 5 shows the variation of the static deflection for the center of the tip magnet with the distance
between two magnets. Maximum deflections were obtained was 20mm. From the static response it’s clearly
shown that there is a critical separation distance between the two magnets, called threshold separation distance
dyp, which has a value of 20mm. This threshold value divided the static response into two major regions. The
first region (d > dy) is called mono-stable region, where the system oscillates around one stable equilibrium
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point in the middle. The second region (d < dy,) is called bi-stable region, where the system oscillates between
two equilibrium stable points. The static profile contains one stable branch for the mono-stable regime and
three branches for the bi-stable regime; upper and lower branches are stable, while the middle one is unstable.
The phenomena of symmetry breaking bifurcation is shown clearly at the threshold value. The reason for this
breaking is the weight of system that acts as a constant force in the static equilibrium equation in addition to
the nonlinearity caused by the magnetic force.
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Figure 5: Simulated static response of the center of the tip magnet as a function of the distance between two
magnets (d). Threshold distance, dy, is found to be 20mm.

The dynamics of the energy harvester in the Mono-Stable region is explored for a separation distance of
40mm between the two magnets. Figure 6 shows the experimental and simulated displacement and the voltage
responses under 0.5g excitation level. Simulations using shooting method shows a good agreement with the
experimental results.
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Figure 6: Mono-Stable results for the nonlinear energy harvester at d = 40mm, A = 0.5g and damping u = 0.0364
(a) Frequency response curves . (b) Frequency voltage curves.

Figure 7 shows the experimental and simulated displacement and the voltage responses under 0.5¢g excitation
level in the bi-stable region at separation distance of 18mm between the two magnets. It is noted that the
frequency softening that occurs in the bi-stable region is closely simulated by the shooting method.
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Figure 7: Bi-stable results for the nonlinear energy harvester at d = 18mm, A = 0.5¢g and damping p = 0.0364
(a) Frequency response curves . (b) Frequency voltage curves.

The resonator shows interesting behavior at distances close to the threshold distance. Figure 8 shows the
experimental results at the mono-stable region for d = 22mm, close to the threshold. Higher bandwidth is
achieved due to the hardening phenomenon. Figure 8b is the corresponding voltage response curve. The highest
voltage at excitation level of 0.5g was measured peak to peak as 3.3V.
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(a) (b)
Figure 8: Mono-stable results for the nonlinear energy harvester at d = 22mm, A = 0.5g (a) Frequency response
curves . (b) Frequency voltage curves.

The dynamics of the energy harvester in the bi-stable region was also explored at d = 18mm, close to the
threshold distance between two magnets. Figure 9 shows the experimental results at the excitation level of
0.5g. In contrast to the mono-stable region, the increase in the frequency bandwidth is resulted from frequency
softening.
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Figure 9: Bi-stable results for the nonlinear energy harvester at d = 18mm, A = 0.5g (a) Frequency response
curves . (b) Frequency voltage curves.

Comparing the output voltage for the nonlinear resonator close to the threshold distance (Figures 6b and 9b)
with the linear resonator at a large distance (Figure 4a), one can conclude that the output voltage has increased
by 37%.

6. CONCLUSIONS

A magnetoelastic piezoelectric energy harvester was investigated in this paper to increase the frequency band-
width and amplitude of the response. The natural frequency of the resonator energy harvester was decreased
from 100 Hz to 17 Hz using an extended polymer layer, which makes it more suitable for energy harvesting from
ambient vibrations. A mathematical model for the continuous system of the energy harvester was developed
considering the first mode shape of the resonator. Static analysis of the harvester revealed a threshold value that
divided the nature of the response to mono- and bi-stable regimes based on the distance between two magnets.
Dynamic responses of the system were measured in both mono-stable and bi-stable regions. Using the mathe-
matical model, numerical method of shooting was used to solve the governing equations. Widening of frequency
bandwidth was achieved by frequency hardening and softening at mono-stable and bi-stable regions, respectively.
Compared to a linear resonator, an increment of 37% in the output voltage was obtained at distances close to
the threshold distance for the nonlinear resonator.
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