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ABSTRACT 

Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power 
remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear 
resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the 
output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam 
carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring 
at the base of the beam. The spring-magnet system on the cantilever beam creates the variable double well potential 
function. The spring attached to the magnet is in its compressed position when the beam is not deflected, as the beam 
oscillates, the spring energy gradually releases and further increases the amplitude of vibration.  To describe the motion 
of the cantilever beam, we obtained two coupled partial differential equations by assuming the cantilever beam as Euler-
Bernoulli beam considering the effect of the moving magnet. Method of multiple scales is used to solve the coupled 
equations. The cantilever beam with the two magnets is a bi-stable system. Making one magnet movable can create 
internal resonance that is explored as a mechanism to increase the frequency bandwidth. The effect of system parameters 
on the frequency bandwidth of the resonator is investigated through numerical solutions. This study benefits vibration 
energy harvesting to achieve a higher performance when excited by the wideband ambient vibrations.    
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INTRODUCTION 

Mechanical Vibration is one of the prevalent sources of ambient energy that can be converted to useful electrical energy 
for powering remote sensors. This renewable source of energy can eliminate changing of batteries, which is cumbersome 
and costly. Currently, most vibration based energy harvesters are designed as a linear resonator to achieve optimal 
performance by matching their natural frequency with the dominant ambient excitation frequencies. However in majority 
of cases, the ambient vibrations have a wide frequency spectrum at the low frequency range [1].  

Several methods have been explored to solve the frequency bandwidth problem. A resonance frequency tunable energy 
harvester based on a magnetic force technique and a variable stiffness system has been studied [2]. Recently, to avoid 
frequency tuning after the initial set up of the harvester, exploiting the nonlinearities has become a solution for 
broadband energy harvesting. Researchers studied nonlinear oscillators with frequency hardening or softening [3-8] to 
broaden the frequency bandwidth. Stanton et al. [9] investigated the response of a bi-stable resonator with magnets to 
harmonic base excitation. Considering the actual ambient vibration, Ferrari [10], Daqaq [11] and Ando [12] analyzed the 
advantage of bi-stable system under random vibration input.  

The contribution of this paper is to combine bi-stability and internal resonance effects to significantly broaden the 
frequency bandwidth. Bi-stability can broaden the frequency bandwidth, but the increase is not substantial. While bi-
stability tilts the resonant peak to either direction, internal resonance causes the resonant peak to become two tilted 
branches facing opposite directions [13, 14]. This effect results in a larger frequency bandwidth that can increase energy 
conversion efficiency in vibration energy harvesting. The content of this article is organized as follows. In the next 
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has the length ܮ, area of cross-section 	ܣ, volume density	ߩ, moment of inertia ܫ	and the modulus of elasticity	ܧ. The 
moving magnet slides along the length of the beam attached to a spring of stiffness	݇.  The vertical deflection of the 
beam is given by	ݒ measured from the undeflected position of the beam and the position of the mass by	ݏ measured 
along the arc length of the beam, and ܨ௠௔௚௫ and	ܨ௠௔௚௬ are the magnetic force in horizontal and vertical directions, 
respectively. N is the magnetization moment of magnet, ߤ଴ is the permeability of space, ݀ is the distance between the tip 
of cantilever and fixed magnet, and  ݕ is the base excitation. The following normalized parameters are used.  ̂ݏ = ௦௅  ,ݒො = ௩௅ ,ݔො = ௫௅ , ݕො = ௬௅   ܣመ = ஺௅మ , ෝ݉ = ெఘ஺௅  ,̂ݐ = ௧ටഐಲಽరಶ಺  ,    ߱௦ = ට௞ఘ஺௅రொூ ,      መ݀ = ௗ௅ ,         

෡ܦ = ஽௅ = 1 + መ݀ − ෢ܴܨ   , ݏ̂ =  ாூ௅మߨ0ܰ22ߤ3

For convenience the ෡ s are dropped. Using Hamilton method, the governing equations of motion are obtained  ݏሷ + ߱௦ଶݏ + ௫ݒሷݒ + ሷݕݔݒ + ݉/ݔ݃ܽ݉ܨ = ׬                          (1)                                                                  0 ௫௫௫௫ݒ) + ሷ(ݒ ݔ݀ +݂݉ଵ଴ + ׬ ሷଵ଴ݕݔ݀ + ሷݕ݉ + ௠௔௚௬ܨ = 0                                                        (2) 

where the coupled acceleration term for the mass is 	݂ = ሷݒ + ௫ሶݒ2 ሶݏ + ሶଶݏ௫௫ݒ +  ሷݏ௫ݒ
The first term in the above equation is the vertical acceleration of the beam, the second term is the Coriolis acceleration, 
the third is centripetal acceleration and the fourth term is the acceleration of the mass projected in the vertical direction. 
It should be noted that the above equations are written for small oscillations of the beam and is not valid for large 
oscillations. 

௠௔௚௫ܨ = )ܴܨ− ସܦ1 −  (଺ܦଶ2ݒ5
௠௔௚௬ܨ = )ܴܨ ହܦݒ − ݔ (଻ܦଷ2ݒ5 = ܦ ݏ = 1 + ݀ −  ݏ

Using Rayleigh-Ritz method to reduce equation (1) and (2), we write variation formulations as 

(ݔ)ܲ =෍݌௝߶௝(ݔ)௡
௝ୀଵ  

,ݔ)ݒ (ݐ =෍ߙ௜(ݐ)߶௜(ݔ)௡
௜ୀଵ  

where ߶௜(ݔ) is the mode shape of cantilever, ݌௝ is weighting function, ߙ௝ is unknown time varying coefficient and n is 
the number of mode shapes. Multiplying Equations (1) and (2) by ܲ(ݔ), applying variation formulations, performing 
integration by parts and incorporating the boundary condition yields ݏሷ + ߱௦ଶݏ + ∑ పሷߙ ߶௜௡௜ୀଵ ∑ ௝߶௝ᇱ௡௝ୀଵߙ + ∑ ሷ௡௝ୀଵݕ௝߶௝ᇱߙ −	ிோ௠ ቀ ଵ஽ర − ହ(∑ ఈ೔థ೔೙೔సభ )మଶ஽ల ቁ = 0                          (3) 
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׬ (∑ ௜߶௜ᇱᇱ௡௜ୀଵߙ ∑ ௝߶௝ᇱᇱ௡௝ୀଵଵ଴݌ + ∑ పሷߙ ߶௜௡௜ୀଵ ∑ ௝߶௝௡௝ୀଵ݌ ݔ݀( + ݉∑ పሷߙ ߶௜௡௜ୀଵ ∑ ௝߶௝௡௝ୀଵ݌ + ሷݏ݉ ∑ ௜߶௜ᇱ௡௜ୀଵߙ ∑ ௝߶௝௡௝ୀଵ݌ ሶଶݏ݉+ ∑ ௜߶௜ᇱᇱ௡௜ୀଵߙ ∑ ௝߶௝௡௝ୀଵ݌ + ሶݏ2݉ ∑ ሶߙ ௜߶௜ᇱ௡௜ୀଵ ∑ ௝߶௝௡௝ୀଵ݌ + ∑ ௝߶௝௡௝ୀଵ݌ ቀ׬ ଵ଴ݔ݀ + ݉ቁݕሷ + ܴܨ ൬∑ ఈ೔థ೔೙೔సభ஽ఱ − ହ൫∑ ఈ೔థ೔೙೔సభ ൯యଶ஽ళ ൰ = 0                          

(4) 

where ௜ܲ at ݆ = ݅ is set to one and at other value ݆ ≠ ݅, is set to zero. The cantilever beam mode shapes for normalized 
parameters are given by: ߶௜(ݔ) = cosh(݇௜ݔ) − cos(݇௜ݔ) − cos(݇௜) + cosh(݇௜)sin(݇௜) + sinh(݇௜) (sinh(݇௜ݔ) − sin	(݇௜ݔ)) 
The static equilibrium equation is given by assuming ߙ௜ = 0: ߱௦ଶ(ݏ଴ − (௘ݏ − ܴ݉ܨ ൬ ସ൰ܦ1 = 0 

where ݏ଴ is the original length of the spring, and ݏ௘ is the equilibrium position of moving magnet. 

Dynamic equations of (3) and (4) are simplified using one mode shape.  In order to obtain a solution, perturbation 
method of multiple scales is used. To further simplify the equations, the two equations are expanded about their 
equilibrium points (ݏ௘ for the moving magnet and ߙ௜ = 0 for the beam). Taylor series up the second derivatives are used 
for the expansion and nonlinear terms higher than quadratic are dropped. Adding damping results in 

ሷݏ  + ߱ଶݏ + ሶݏଵߤ2 + ܿଵߙଵሷ ଵߙ + ܿଷߙଵଶ + ሷݕଵ߶ଵᇱߙ = ଵሷߙ (5)                                                     0 + ߱ଵଶߙଵ + ଵሶߙଶߤ2 + 2݉ܿ଻ߙݏଵሷ + 2݉ܿ଻ݏሶߙଵሶ + ݉ܿ଻ݏሷߙଵ + ଵߙݏ଼ܿ + (߶ଵ + ଵᇱ߶ݏ )ܿ௬ݕሷ = 0           (6) 

where ߱ଶ = ߱௦ଶ + ܿଶ ܿଵ = ߶ଵ߶ଵᇱ  ܿଶ = ܴ݉ܨ−  ହܦ4

ܿଷ = ܴ݉ܨ− ܽଶ߶ଵଶܦ଺  

߱ଵଶ = ׬ ߶ଵᇱᇱଶ݀ݔଵ଴׬ ߶ଵଶ݀ݔଵ଴ + ݉߶ଵଶ + ׬ܴܨ ߶ଵଶ݀ݔଵ଴ + ݉߶ଵଶ ∙ ߶ଵଶܦହ 

ܿ଻ = ߶ଵ߶ଵᇱ׬ 1߶ଵଶ݀ݔଵ଴ + ݉߶ଵଶ 

଼ܿ = ׬ܴܨ ߶ଵଶ݀ݔଵ଴ + ݉߶ଵଶ (2߶ଵ߶ଵᇱܦହ + 5߶ଵଶܦ଺ ) 
ܿ௬ = ׬) ݔ݀ +݉ଵ଴ ׬( ߶ଵଶ݀ݔଵ଴ + ݉߶ଵଶ 

ܦ = 1 + ݀ −  ௘ݏ
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3 PERTURBATION METHOD OF MULTIPLE SCALES 

Method of multiple scales is used to study the qualitative behavior of the system under various parameters. The 
governing equations of (5) and (6) show that the system has parametric excitation. However, parametric counterpart has 
a zero steady-state response below the initiation threshold amplitude. This initiation threshold depends on the damping 
and level of excitation. In practice, the ambient vibration available is usually smaller than the threshold required to 
initiate the parametric excitation [16, 17]. Therefore, we do not consider parametric excitation in our case. Considering 
only the direct excitation, the two governing equations (5) and (6) become  	ݏሷ + ߱ଶݏ + ሶݏଵߤ2 + ܿଵߙଵሷ ଵߙ + ܿଷߙଵଶ = ଵሷߙ (7)     0 + ߱ଵଶߙଵ + ଵሶߙଶߤ2 + 2݉ܿ଻ߙݏଵሷ + 2݉ܿ଻ݏሶߙଵሶ + ݉ܿ଻ݏሷߙଵ + ଵߙݏ଼ܿ = ݐΩ)ݏ݋ܿܨ + ߬)     (8) 

where ݏ݋ܿܨ(Ωݐ + ߬) = −߶ଵܿ௬ݕሷ , and ߤ௡ is the normalized damping ratio. Two scales ଴ܶ and ଵܶ are used: 

଴ܶ =  ݐ
ଵܶ =  ݐߝ

where ߝ is a scaling parameter. The next step is to assume an asymptotic series solution for s and ߙଵ. In this case a two 
term expansion is assumed: (ݐ)ݏ = )ଵݏߝ ଴ܶ, ଵܶ) + )ଶݏଶߝ ଴ܶ, ଵܶ)     (9) ߙଵ(ݐ) = )ଵݑߝ ଴ܶ, ଵܶ) + )ଶݑଶߝ ଴ܶ, ଵܶ)       (10) 

Where ݏଵ( ଴ܶ, ଵܶ) and ݏଶ( ଴ܶ, ଵܶ) are the ߝth and  ߝଶ order solutions respectively for the moving mass, and ݑଵ( ଴ܶ, ଵܶ) and ݑଶ( ଴ܶ, ଵܶ) are the	ߝth and  ߝଶ order solutions respectively for the beam. To analyze primary resonances, we arrange the 
forcing term so that it appears in the same perturbation equation as the nonlinear. To study internal resonance, we 
consider the case of Ω = ߱ଵ + ܨ ଵ is a small detuning parameter. We letߪ ଵ, whereߪߝ = ௡ߤ ଶ݂ andߝ =  ௡. Substitutingߤߝ
(9) and (10) into the governing equation (7) and (8), and setting the coefficients of ߝ and ߝଶ zero gives ߝ	order: డమ௦భడ బ்మ + ߱ଶݏଵ = 0      (11) 

பమ୳భப୘బమ + ωଵଶuଵ = ଶorder: డమ௦మడߝ (12)      0 బ்మ + ߱ଶݏଶ = ଵߤ2− డ௦భడ బ் − 2 డమ௦భడ బ்డ భ் − ܿ డమ௨భడ బ்మ ଵݑ − ܿଷݑଵଶ     (13) 

డమ௨మడ బ்మ + ߱ଵଶݑଶ = ଶߤ2− డ௨భడ బ் − 2 డమ௨భడ బ்డ భ் − 2݉ܿ଻ డమ௨భడ బ்మ ଵݏ − 2݉ܿ଻ డ௦భడ బ் డ௨భడ బ் − ݉ܿ଻ డమ௦భడ బ்మ ଵݑ − ଵݑଵݏ଼ܿ + ݂cos	(Ω ଴ܶ + ߬)  (14) 

The solution to (11) and (12) are given by: ݏଵ = ଵܲ( ଵܶ)݁௜ఠ బ் + ଵܲ( ଵܶ)݁ି௜ఠ బ்       (15) ݑଵ = ଶܲ( ଵܶ)݁௜ఠభ బ் + ଶܲ( ଵܶ)݁ି௜ఠభ బ்      (16) 

Where ଵܲ and ଶܲ a complex variables. The overbars in (15) and (16) denote the complex conjugate. Substituting (15) and 
(16) into the right hand sides of (13) and (14) results in  
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(13)ݏℎݎ ଵ݅߱ߤ2−= ଵܲ݁௜ఠ బ் + ଵ݅߱ߤ2 തܲଵ݁ି௜ఠ బ் − 2݅߱ డ௉భడ భ் ݁௜ఠ బ் + 2݅߱ డ௉భడ భ் ݁ି௜ఠ బ் + ൫ܿଵ߱ଵଶ ଶܲ݁௜ఠభ బ் + ܿଵ߱ଵଶ ଶܲ݁ି௜ఠభ బ்൯൫ ଶܲ݁௜ఠభ బ் +
ଶܲ݁ି௜ఠభ బ்൯ − ܿଷ ଶܲଶ݁ଶ௜ఠభ బ் − 2ܿଷ ଶܲ ଶܲ − ܿଷ݌ଶଶ݁ିଶ௜ఠభ బ்                                                  (17) ݎℎ(14)ݏ = ଶ݅߱ଵߤ2− ଶܲ݁௜ఠ బ் + ଶ݅߱ଵߤ2 തܲଶ݁ି௜ఠ బ் − 2݅ డ௉మడ భ் ߱ଵ݁௜ఠభ బ் + ݉ܿ଻(2߱ଵଶ + ߱ଶ + 2߱߱ଵ) ଵܲ ଶܲ݁௜(ఠభାఠ) బ் +݉ܿ଻(2߱ଵଶ + ߱ଶ − 2߱߱ଵ)ܲଵ ଶܲ݁௜(ఠభିఠ) బ் + 2݅ డ௉మడ భ் ߱ଵ݁ି௜ఠభ బ் + ݉ܿ଻(2߱ଵଶ + ߱ଶ + 2߱߱ଵ)ܲଵܲଶ݁ି௜(ఠభାఠ) బ் +݉ܿ଻(2߱ଵଶ + ߱ଶ − 2߱߱ଵ) ଵܲܲଶ݁ି௜(ఠభିఠ) బ் − ଼ܿ൫ ଵܲ݁௜ఠ బ் + ܲଵ݁ି௜ఠభ బ்൯൫ ଶܲ݁௜ఠ బ் + ܲଶ݁ି௜ఠభ బ்൯ + ଵଶ ݂݁௜ఠభ బ்݁௜(ఙభ భ்ାఛ) +ଵଶ ݂݁ି௜ఠభ బ்݁ି௜(ఙభ భ்ାఛ)		                                                                                                                       (18) 

To eliminate the secular terms the coefficients of ݁௜ఠ బ் and ݁௜ఠభ బ் are set to zero. To study the coupled dynamic 
behavior of the system under internal resonance, we assume ߱ = 2߱ଵ +  ଶ                                                                                   (19)ߪߝ

where ߪଶ is a small detuning parameter. When ߪଶ is zero, we have internal resonance of 1:2 ratio (the ratio of the 
frequency of the moving magnet to the first frequency of the system). In this case, the elimination of secular terms no 
longer gives linear solution because when we have internal resonance relationship, we have more terms as  −2ߤଵ݅߱ ଵܲ − 2݅߱ డ௉భడ భ் + ܿ߱ଵଶ ଶܲଶ݁ି௜ఙమ భ் − ܿଷ ଶܲଶ݁ି௜ఙమ భ் = ଶ݅߱ଵߤ2− (20)                                     0 ଶܲ − 2݅߱ଵ డ௉మడ భ் + (2݉ܿ଻߱ଵଶ − 2݉ܿ଻߱ଵ߱ +݉ܿ଻߱ଶ − ଼ܿ) ଵܲ തܲଶ݁௜ఙమ భ் + ଵଶ ݂݁௜(ఙభ భ்ାఛ) = 0 (21) 

The complex ଵܲ and ଶܲ are described as polar form as 

ଵܲ( ଵܶ) = )ଵ݌12 ଵܶ)݁௜ఝభ( భ்) 
ଶܲ( ଵܶ) = )ଶ݌12 ଵܶ)݁௜ఝమ( భ்) 

Set real part and imaginary part of (20) and (21) to zero respectively, to obtain  డ௣భడ భ் = ଵ݌ଵߤ− + ௔భభସఠ ଵ݌	 ଵ                                                                      (22)ߛ݊݅ݏଶଶ݌ డఝభడ భ் = − ௔భభସఠ డ௣మడ	 ଵ                                                                                 (23)ߛݏ݋ଶଶܿ݌ భ் = ଶ݌ଶߤ− −	ܽଶଶ ௣భ௣మସఠభ ଵߛ݊݅ݏ + ௙ଶఠభ ଶ݌	 ଶ                                             (24)ߛ݊݅ݏ డఝమడ భ் = −	ܽଶଶ ௣భ௣మସఠభ ଵߛݏ݋ܿ − ௙ଶఠభ  ଶ                                                         (25)ߛݏ݋ܿ

where ܽଵଵ = ܿ߱ଵଶ − ܿଷ ܽଶଶ = 2݉ܿ଻߱ଵଶ − 2݉ܿ଻߱ଵ߱ +݉ܿ଻߱ଶ − ଵߛ ଼ܿ = 2߮ଶ − ߮ଵ − ଶߪ ଵܶ ߛଶ = ଵߪ ଵܶ + ߬ − ߮ଶ 
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larger magnetic force, the system has a broader bandwidth as the effect of bi-stability caused by the magnets, becomes 
stronger. 

Figure 7 shows the displacement frequency response curves for different levels of base excitation. It reveals the effect of 
the external excitation amplitude on the frequency response curves. It is observed that the unstable solution in the middle 
increases with increasing the level of excitation. Both the response amplitude and the resonance range increase with the 
excitation amplitude, but it does not affect the tilting of the frequency response unlike bi-stable resonators with fixed 
magnets [9]. 

 

CONCLUSION 

This study explores the behavior of a hybrid resonator that combines internal resonance with bi-stability to increase 
frequency bandwidth. The hybrid resonator consists of a cantilever beam carrying a moving magnet attached to a spring 
and a fixed magnet. The presence of two magnets creates a bi-stable system, while making one magnet movable using a 
spring adds internal resonance. The governing equations are obtained using Hamilton’s energy approach for the first 
mode shape of the beam. The perturbation method of multiple scales is employed to obtain the frequency responses. The 
frequency response results reveal a double bending effect, two frequency peaks bending to opposite sides, resulting in a 
broader frequency bandwidth. The effects of different system parameters are studied on the frequency response curves. It 
is concluded that larger magnetic forces, softer springs, and smaller initial distances between magnets foster the bi-stable 
behavior effect and cause larger tilting in the frequency response (broader frequency bandwidth). It is noted that a broad 
bandwidth is obtained, while the peak amplitude is maintained. This study provides a platform to design a hybrid 
resonator with increased frequency bandwidth to improve energy conversion efficiency in vibration energy harvesters.  
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