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Abstract An efficient electrostatic resonator is de-
signed by adding a low voltage controller to an elec-
trostatic actuator. The closed loop actuator shows sta-
ble, and bi-sable behaviors with bounded chaotic os-
cillations as large as 117% of the capacitor gap. The
controller voltage is decreased from a previously de-
signed resonator to less than 9 V thereby reducing
the load on the controller circuit components. Bifurca-
tion diagrams are obtained showing the frequency and
magnitude of AC voltage required for chaotic oscilla-
tions to develop. The information entropy, a measure
of chaotic characteristic, is calculated for the micro-
resonator and is found to be 0.732.
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1 Introduction

Appearance of chaos is not usually desired and there
are numerous control systems designed to avoid it. On
the other hand, there are reports on the constructive use
of chaos in macro-systems for structural health moni-
toring of aero-elastic systems [1–3], fault detection in
roller bearings [4], and detection of corrosion [5]. Cir-
cuit chaotic oscillations have also been used for secure
communications [6].

Despite the few reported studies on the usefulness
of chaos in macro-scale applications, there is no evi-
dence of applying chaos for detection in micro-scale
systems. The main reason for this deficiency is the
lack of resources on the non-linear dynamic behav-
ior of MEMS. Most researchers avoid non-linear sys-
tems due to their complexity. Only in the last decade,
have researchers paid attention to the study of non-
linear dynamics in MEMS and NEMS since the main
elements of these systems, including cantilever beams
and doubly clamped beams, show significant non-
linear responses that cannot be neglected and need
thorough study [7]. Such attention is now growing
due to the fast growing area of NEMS showing strong
chaotic responses that can be effectively used toward
developing non-linear sensors with improved resolu-
tion.

In smaller scale NEMS, there are recent studies
on non-linear vibration, chaos, and their applications
[8–10]. Bucks et al. [8] found higher mass detection
sensitivity is achieved once a nano-mechanical res-

Author's personal copy

mailto:sherryt@mie.utoronto.ca
mailto:heppler@uwaterloo.ca
mailto:eihab@uwaterloo.ca


566 S. Towfighian et al.

onator is operated in the non-linear region. Conley et
al. [9] studied the onset of non-linear planar motion
and non-planar whirling motion of electrostatically ex-
cited nano-wires with a proposed application in an
overload detection mechanism. This study was further
developed by Chen et al. [10], who presented a bi-
furcation diagram for the extensive non-planar chaotic
oscillations of a nano-wire at elevated AC voltages.
Chen et al. [10] suggested using the chaotic nano-wire
oscillators in random number generation used in se-
cure communications.

A bi-stable system with two stable equilibrium
points is a typical system used to produce chaotic os-
cillations. Bi-stability and chaos have been reported in
atomic force microscopy (AFM) [11–16], and electro-
static MEMS [17–29]. Bi-stability in MEMS was ana-
lyzed for electrostatic actuators with geometrical non-
linearities [21–24]. Zhang et al. [21] investigated the
static response of an arch-shaped beam that showed
either snap-through and pull-in, or only pull-in, under
electrostatic loading. The snap-through response led
to bi-stability with a large amplitude response. Non-
linear dynamic responses of arches including soften-
ing behavior, dynamic pull-in, and snap through were
recently reported by Younis et al. [28] and Ouakad et
al. [29]. Bi-stability has also been reported in static
response and hysteretic jumps in the response of AFM
when the tip-sample distance was less than 10 nm [14].
The potential energy in the bi-stable region was an
asymmetric two-well potential. They also found that
the frequency response at large amplitudes contained
multiple harmonics due to period doubling. Zhang et
al. [26] studied softening in an electrostatic micro-
cantilever beam and reported period doubling bifurca-
tions in their simulations.

Chaotic vibrations have been observed in bi-stable
non-interdigitated comb drive electrostatic actuators.
Wang et al. [18] modeled them using a mass-spring
system as a Duffing oscillator with a two-well poten-
tial field. Through simulations and experiments they
have shown chaotic oscillations in the two-well re-
gion of the system. As an extension to this work, De
and Aluru [19] presented a model for the system in-
cluding the electrostatic forcing, non-linear stiffness,
and squeeze film damping. They showed that even
in the absence of the non-linear mechanical and flu-
idic forces, the system had chaotic attractors. Thus,
the electrostatic forces were found to be the pri-
mary mechanism producing chaos. The boundaries for

chaotic motion in the amplitude-frequency space of
the applied voltage were found both from experiments
and from Melnikov’s method by DeMartini et al. [20].

Chaos has also been studied in a closed loop
feedback controlled electrostatic actuator with ca-
pacitive sensing [27] designed by Lu and Fedder
[30] for position tracking of probe-based magnetic
disk drives. Other approaches for controlling elec-
trostatic actuators include using delayed feedback
controllers [31, 32]. Liu et al. [27] used a lumped
mass model to study the probe response and reported
chaotic oscillation in the presence of forced excita-
tions. A comprehensive study of the nonlinear system
dynamics was carried out by Towfighian et al. [33] to
investigate parameters space of the actuator for stable
and bi-stable behaviors, and chaotic oscillations.

In this study, a quadratic control law [34] is intro-
duced for the electrostatic micro-beam actuator to cre-
ate an efficient resonator. The proposed resonator re-
quires less voltage and produces larger motions com-
pared to that previously reported [33].

2 Actuator model

The configuration of the electrostatic actuator is shown
in Fig. 1 and is comprised of a cantilever beam above
a fixed electrode and a voltage regulator. The equation
of motion for the micro-beam (Fig. 2) using an Euler–
Bernoulli model is

ρA
∂2ŵ(x̂, t̂ )

∂ t̂2
+ EI

∂4ŵ(x̂, t̂ )

∂x̂4
+ c

∂ŵ(x̂, t̂)

∂ t̂

= ε0bV 2

2(d − ŵ(x̂, t̂ ))2
(1)

Fig. 1 Closed loop system

Fig. 2 Schematic of the micro-beam oscillator
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Table 1 Actuator
parameters Parameter Symbol Value

Density ρ 2331 kg
m3

Beam Length L 157.4 µm

Beam Width b 10 µm

Beam Thickness h 1.9 µm

Initial Gap d 1.9 µm

Non-dimensional Damping Coefficient μ 0.6153

Permittivity of Free Space ε0 8.85E-12 F
m

Modulus of Elasticity E 150 GPa

Integrator Gain KI /T 0.1776 1
s

where ŵ(x̂, t̂ ) is the deflection of the beam in the
transverse ẑ direction, x̂ is the coordinate along the
beam length, and t̂ is time. The linear viscous damp-
ing coefficient per unit length c is used to account for
damping losses due to the beam motion through air,
V is the applied voltage, A is the cross sectional area,
I is the area moment of inertia, and the other param-
eters are defined in Table 1. To simplify the notation,
ŵ(x, t) is shown as ŵ. Multiplying both sides of the
equation by the denominator of the electrostatic force
and using the non-dimensional parameters

x = x̂

L
, w = ŵ

d
, t = t̂

T
(2)

where L is the beam length, and

T =
√

ρAL4

EI
. (3)

Equation (1) is rewritten as

∂2w

∂t2
(1 − w)2 + ∂4w

∂x4
(1 − w)2 + μ

∂w

∂t
(1 − w)2

= αV 2 (4)

where

μ = cL4

EIT
, α = ε0bL4

2EId3
. (5)

The normalized partial differential equation of mo-
tion of the closed-loop actuator is

ẅ(1 − w)2 + w(4)(1 − w)2 + μẇ(1 − w)2

= α(Vin − Vc)
2 (6)

where Vin is the system voltage input, and Vc is the
controller voltage. To obtain the static and dynamic

responses of the actuator, the partial differential equa-
tion of motion in (6) is converted to an ordinary dif-
ferential equation using separation of variables and a
one-mode Galerkin’s expansion as described in [33].
Two ordinary differential equations are thus obtained:⎧⎪⎨
⎪⎩

(q̈ + μq̇ + ω2
1q)(1 + c1q + c2q

2)

= c3α(Vin − Vc)
2,

V̇c = −KI

(
Vc − a0+a1q+a2q

2√
α

) (7)

where q is the normalized beam tip deflection, ω1 is
the first natural frequency of the beam, and c1, c2,
and c3 are found from applying Galerkin’s method.
The second equation represents the quadratic con-
troller law with a constant integrator gain KI . The pa-
rameters a0; a1; a2 in the controller equation are con-
stants chosen to obtain four equilibrium points for a
voltage range as explained in Sect. 3.

To implement the electronic circuit of the con-
troller, the second equation is rewritten to include di-
mensional time:

V̇c = −KI

T

(
Vc − a0 + a1q1 + a2q

2
1√

α

)
(8)

where the value of the integrator gain KI

T
is given in

Table 1. The actuator parameters in Table 1 are identi-
fied experimentally [34]. The natural frequency of the
cantilever beam has been found experimentally to be
99.38 kHz and the beam length was determined to be
157 µm.

3 Static analysis

To study the behavior of the actuator, the location of
the equilibrium points and their stability conditions are
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Fig. 3 Graphical solution of (9) showing the balance of the me-
chanical force and the regulated electrostatic force at Vin = 5 V
for a0√

α
= 20.194 V, a1√

α
= −142.697 V, and a2√

α
= 142.697 V.

— left side and -·- the middle equation

obtained. The location of the equilibrium points, in the
static response, is found by solving the algebraic equa-
tion resulting from setting the time derivatives equal to
zero in (7):

ω2
1q

(
1 + c1q + c2q

2)
= c3α

(
Vin − (a0 + a1q + a2q

2)√
α

)2

= f. (9)

Equation (9) describes the balance of the mechani-
cal force and the regulated electrostatic force. The left
hand side of the equation is the spring force multiplied
by the denominator of the electrostatic force and the
middle equation is the square of the difference of the
input voltage and the regulated voltage. The equation
can be solved graphically by plotting both sides of the
equation as depicted in Fig. 3. As it is seen, the system
shows bi-stability as the intersections representing the
equilibrium points include two stable and two unstable
equilibrium points. The stability conditions are deter-
mined by linearizing (7) around the equilibrium points
and finding the eigenvalues.

For the system to be bi-stable, the middle quartic
equation of (9) in terms of q should have two pairs of
roots between 0 and 1 for an assumed Vin, as shown
by the dash dot line in Fig. 3. These roots then dic-
tate the location of four equilibrium points in the solu-
tion of the equation. The farther the roots in each pair
are from each other, the closer the first stable and last
unstable equilibrium points get to the location of the
beam initial position and the fixed electrode, respec-

Fig. 4 Non-dimensional deflection of the beam tip versus in-
put DC voltage for a0√

α
= 20.194 V, a1√

α
= −142.697 V, and

a2√
α

= 142.697 V, − stable, −− unstable

Table 2 Eigenvalues of the equilibrium points at Vin = 2 V

# q1 Eigenvalue 1 Eigenvalue 2

1 0.066 −0.308+5.72i −0.308-5.72i

2 0.458 2.43 −3.04

3 0.555 −0.308+3.02i −0.308-3.02i

4 0.962 15.89 −16.51

tively. Assuming the roots, the unknown coefficients
of a0, a1, and a2 are found from solving (9).

The static response of the actuator for the quadratic
controller is illustrated in Fig. 4 at different input volt-
ages. The eigenvalues of the equilibrium points at
Vin = 2 V are listed in Table 2. It can be concluded
from Fig. 4, and Table 2 that points 1 and 3 are sta-
ble equilibrium points and points 2 and 4 are saddles.
In other words, the first and the third branches of the
static profile are the loci of stable equilibrium points
and the second and fourth branches are the loci of
the saddles. The upper stable and unstable branches
crosses the unity deflection line at 7.4 V, and 32.5 V,
respectively. Beyond 32.5 V, the unstable and stable
branches diverge from each other in the non-physical
domain. The non-dimensional natural frequency of the
lower and upper equilibrium points (1 and 3) are 5.72
and 3.02 corresponding to 161.7 kHz and 85.37 kHz,
respectively.

The closed loop actuator reported [33, 35] con-
sisted of a hyperbolic function ( q

1−q
) in contrast to the

quadratic function introduced here. Fig. 5 shows the
non-dimensional deflection of the closed loop actuator
with the hyperbolic function. There exists a region of
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Fig. 5 Non-dimensional deflection of the beam tip versus volt-
age VDC for the closed loop actuator with the hyperbolic func-
tion reported in [33], − stable, −− unstable

bi-stability and the upper stable branch approaches the
unit deflection line asymptotically. The advantages of
the quadratic controller (Fig. 4) are wider bi-stability
input voltage range and lower bi-stability operating
voltage. The bi-stability input voltage region for the
quadratic controller extends over 20.95 V which is
four times larger than that of the actuator presented
in Fig. 5. The quadratic controller also poses lower
bi-stability operating voltages: 1.75 V to 22.7 V com-
pared to a minimum operating voltage of 110 V for
the system shown in Fig. 5, thus reducing the require-
ments on the electronic components in the regulator
circuit.

The controller quadratic law is chosen so that
the chaotic resonator can be produced both from bi-
stability and from a stable system with an unstable
equilibrium placed far from the stable equilibrium
point. In other words, the system has four equilib-
rium points including two stable and two unstable as
well as two equilibrium points composed of one stable
and one unstable equilibrium point at different ranges
of voltage, obtained from solving the static equilib-
rium (9).

The quadratic controller has also the advantage of
tunability in terms of the size of the potential wells
of the actuator in the bi-stability region. This property
can be seen by in Fig. 4. At low voltages, the upper
equilibrium point is close to the lower saddle, while
the lower equilibrium point is far from the saddle in-
dicating a large and deep lower well. As the voltage
increases, this situation reverses and the upper well

Fig. 6 Equilibrium of controller output voltage Vc as a
function of the non-dimensional gap when a0√

α
= 20.1939 V,

a1√
α

= −142.6973 V, and a2√
α

= 142.6973 V

becomes larger and deeper as the lower well becomes
smaller and shallower.

In terms of implementation, as q → 1, the proposed
quadratic controller circuit is less susceptible to noise
than the previous controller [36] by featuring a hyper-
bolic function ( q

1−q
) instead of a quadratic function.

The coefficients in the quadratic equation are also cho-
sen to be realizable in an electronic circuit. Further,
the controller output voltage Vc is limited to a range
of 35 V (−15 V to 20 V) for the full actuator motion
range, as illustrated in Fig. 6, obtained from solving
the equilibrium equation of the controller voltage, (8)
with zero time derivatives.

4 Dynamic analysis

The steady-state dynamic response of the actuator to
a biased harmonic voltage Vin = VDC + VAC cosΩt

is found by integrating (7) numerically for 5,000 pe-
riods of excitation and retaining the last 128 peri-
ods. Phase space of dynamic orbits according to (7)
consists of three axes: non-dimensional velocity, non-
dimensional displacement, and controller voltage. The
phase portraits found in this section are cross sections
of the orbits in the three-dimensional phase space. Bi-
furcation diagrams are also found revealing the exci-
tation amplitude and frequency ranges where periodic
and chaotic vibrations occur.

To take advantage of the dynamic amplification
available in the vicinity of primary resonance, we
excite at a non-dimensional frequency of 3.2, corre-
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Fig. 7 (a) Phase portrait of
chaotic oscillation,
(b) Non-dimensional beam
tip displacement,
(c) Controller output
voltage Vc , for
KI

T
= 0.1776 1

s , at
VDC = 2 V, VAC = 1 V, and
Ω = 90.4 kHz (Crosses
show the locations of
saddles and circles show the
location of nodes.)

sponding to 90.4 kHz, which is slightly above the natu-
ral frequency of the upper equilibrium point. It should
be noted that due to squared voltage term in (7), the
actual excitation frequency is double the nominal ex-
citation frequency. Chaos at this frequency occurs at
an AC amplitude of VAC = 1 V (Fig. 7). Figure 7
shows that almost, but not quite, periodic oscillations
with short intervals of irregularity develop in the lower
well, grow to exceed the potential hump (saddle), and
cross to the upper well before being injected back into
the lower well to repeat the process. This behavior is
typical of an intermittency route to chaos, which is dif-
ferent from the period doubling route to chaos found
in the actuator studied in [33]. The chaotic motion de-
veloped in this case is mostly in the lower well and be-
tween the two wells as the phase portrait and time se-
ries of the deflection show. In this case, chaos appears
subsequent to a subcritical period-doubling bifurca-
tion. In the former case, chaos appears subsequent to a
cascade of supercritical period-doubling bifurcations.
The controller voltage is also limited between 10 to
19 V reduced by more than half of the voltage required
by the previous controller [33] to produce same ranges
of oscillation.

4.1 Force sweep

Observing chaotic attractors mainly in the lower-well
led us to seek chaotic attractors that are limited strictly
to one well at small DC voltages. Therefore, bifurca-
tion diagrams were obtained from force sweeps at zero
DC voltage while keeping the excitation frequency
constant.

Fig. 8 Bifurcation diagrams constructed by stacking Poincaré
sections in force sweeps of VAC at VDC = 0 at four
fixed frequencies. 1: Ω = 90.4 kHz, 2: Ω = 91.8 kHz,
3: Ω = 93.22 kHz, and 4: Ω = 94.64 kHz

A single stable equilibrium is available at VDC = 0
located at 0.08 of the gap with a natural frequency
of 164 kHz (Fig. 4). The bifurcation diagrams in
Fig. 8 are obtained for excitation frequencies of
Ω = 90.4 kHz, Ω = 91.8 kHz, Ω = 93.22 kHz, and
Ω = 94.64 kHz. Equations (7) are solved numerically
for 5,000 periods of AC excitation and Poincaré sec-
tion is created by sampling the last 128 periods at the
period of excitation starting from the maximum dis-
placement.

The bifurcation diagrams illustrate the progression
from periodic motion to intermittent chaos. Chaos dis-
appears beyond a voltage limit where the orbit grows
and touches the stable manifold of the upper saddle
leading to dynamic pull-in. At the lowest frequency of
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Fig. 9 (a) The phase
portrait of chaotic
oscillations, (b)
non-dimensional beam tip
deflection, (c) controller
output voltage Vc , for
KI

T
= 0.1776 1

s , at
VDC = 0 V, VAC = 1 V, and
Ω = 90.4 kHz. The cross
shows the location of the
saddle and the circle shows
the location of the stable
equilibrium point

Ω = 90.4 kHz, there is a hysteric jump in the ampli-
tude at VAC = 0.68 V before chaos occurs as the AC
voltage increases. The frequency of this is close to the
threshold frequency of 89.84 kHz for the appearance
of chaos, below this frequency the chaotic oscillations
vanish.

The higher the frequency is, the larger the threshold
of AC voltage becomes for the chaotic motions. The
reason is that the kinetic energy is higher for higher
frequencies making the potential energy and displace-
ment smaller for a constant input energy. That means,
orbits at higher frequencies require more voltage to ap-
proach the manifold of the saddle and become chaotic.
Conversely, the chaotic attractor grows along the dis-
placement axis as the frequency decreases, which is
clear comparing the largest attractor at each frequency.
For the similar reason, the AC voltage range for the
chaotic motion is the shortest at the largest frequency
Ω = 94.64 kHz shown since more expansion along
the velocity axis makes the attractor touch the man-
ifold vertically for a smaller increase in AC voltage.
Therefore, to create a chaotic resonator, it is desired to
operate as close as possible to the threshold frequency
to produce a large displacement signal that makes the
detection easier.

The chaotic attractor with the widest footprint
along the displacement axis is illustrated in Fig. 9 at
the frequency of 90.4 kHz and VDC = 0 V, VAC = 1 V.
The displacement signal in part (b) shows vibrations
up to 82% of the gap below and 35% above the neutral
position of the beam. Such large motions are possible
by locating the saddle very close to the fixed elec-
trode, and locating the stable equilibrium close to the

undeflected beam position (see Fig. 4). It is also noted
that even for large oscillations, the controller voltage
shown in Fig. 9(c) is limited to the range 8 V to 17 V.
Hence, the quadratic controller made the total dis-
placement signal as large as 117% of the gap while
requiring the controller output voltage as small as 9 V.
Using the previous controller, actuation was only fea-
sible up to 90% of the gap at the cost of twice the
controller voltage [35].

Furthermore, such large attractors could indicate
the controller robustness as it shows the system can
survive the large irregular, but bounded chaotic oscil-
lations covering almost the entire phase space. The
quadratic regulator can also control the attractor size
and location by appropriate selection of operation
point within the excitation parameter space: DC volt-
age (Fig. 4), AC voltage and frequency (Fig. 8).

Further, the input voltage to the system for large
chaotic attractors does not require any DC voltage,
compared to 110 V DC (Fig. 5) for the previous con-
troller [33]. Eliminating DC voltage prevents leakage
current into the isolation layers of the actuator and
avoids drift of the measured parameter values over
time.

4.2 Frequency sweep

The frequency response curves shown in Figs. 10 and
11 are obtained by sweeping the frequency of excita-
tion at two fixed AC voltages of VAC = 1.23 V and
VAC = 1 V, respectively. The results are obtained by
solving (7) numerically for 5,000 periods of AC ex-
citation. Poincaré sections are obtained by sampling
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Fig. 10 Bifurcation diagram constructed by stacking Poincaré
sections in a frequency sweep at VAC = 1.23 V and VDC = 0

Fig. 11 Bifurcation diagram constructed by stacking Poincaré
sections in a frequency sweep at VAC = 1 V and VDC = 0

the last 128 periods at the period of excitation starting
from the maximum displacement. Decreasing the ex-
citation frequency in the first case from 113 kHz, the
period-one orbit grows until chaos appears through an
intermittency route at 93.51 kHz and continues down
to 91.8 kHz. Below that, the chaotic attractor becomes
very large, touches the stable manifold of the saddle,
and goes to dynamic pull-in, in a process known as the
escape from a potential well [37]. The escape region,
where there is no solution, persists down to the fre-
quency of 85.3 kHz, below which the system response
continues to be periodic with small period-one orbits.
Operation in this region should be avoided since it will
lead to the moving electrode losing stability and com-
ing into contact with the fixed electrode.

Both frequency sweeps reveal softening-type re-
sponse with a small chaotic region. Comparing the
two bifurcation diagrams, the escape region shrinks,

Fig. 12 Poincaré section for the attractor in Fig. 9 starting from
initial conditions of [q0 = 0, q̇0 = 0, Vc0 = 0]

the threshold frequency for chaos drops, while the
largest attractor grows for lower AC excitation. Low-
ering down the AC excitation voltage eventually elim-
inates the escape region and the chaotic region to be
replaced by multi-valued periodic responses and hys-
teric jumps observed in the force sweep start to appear.
The largest chaotic attractors shown in Figs. 10 and 11
correspond to the largest attractors in Fig. 8 for fre-
quencies of 91.8 kHz and 90.4 kHz, respectively.

4.3 Information entropy

Information entropy is used as a metric to verify the
chaotic attractors observed in this study. The size of
a box that surrounds the chaotic attractor in the three
dimensional phase space (non-dimensional velocity,
non-dimensional displacement, and controller voltage)
is obtained and is divided to small cubes of size ε =
0.0002 V. Then a Poincaré section of the attractor is
found by sampling at the period of excitation start-
ing from the maximum displacement. The number of
points in each cube is counted (Ni ) and divided by the
total number of points on the Poincaré section (N0) to
get Pi = Ni

N0
. The information entropy is then calcu-

lated as [38]:

I (ε) = −
N∑

Pi logPi (10)

where N is the total number of cubes. The system is
fully predictable when all points are located in one cell
and, therefore, I = 0. Any value between 0 and 1 is a
measure of the unpredictability of a chaotic attractor.

The Poincaré section of the attractor shown in
Fig. 9 is illustrated in Fig. 12. It clearly shows onset of
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Fig. 13 Information entropy for the chaotic attractor at
KI

T
= 0.1776 1

s
, VDC = 0 V, VAC = 1 V, and Ω = 90.4 kHz.

The initial conditions are q0 at equal increments between
[0.28–0.66], q̇0 = 0.1, and Vc0 = 0 V

Fig. 14 Information entropy for the chaotic attractor at
KI

T
= 0.1776 1

s , VDC = 0 V, VAC = 1.8 V, and Ω = 94.64 kHz.
The initial conditions are q0 at equal increments between
[0.28–0.66], q̇0 = 0.1, and Vc0 = 0 V

chaos as the return-map fill an area rather than discrete
points or an orbit. The information entropy is obtained
for the attractor starting from different initial condi-
tions in the phase space as presented in Fig. 13. Infor-
mation entropies are found to vary between 0.732 and
0.737, which proves that the oscillations are chaotic.
The figure also reveals that there is a common infor-
mation entropy of 0.7324 for 23 out of 26 initial con-
ditions with a small variation of less than 0.005 for the
other three initial conditions.

Information entropy is also found for an attractor
located at VAC = 1.8 V and Ω = 94.64 kHz in Fig. 8
using the same initial conditions of Fig. 13. The calcu-
lated information entropies are illustrated in Fig. 14,
which shows a common value of 0.732 for 23 out of

26 initial conditions and small variation for the other
three initial conditions. The information entropy was
also obtained for other attractors and it was observed
that there was a dominant value of 0.732 for all attrac-
tors that does not depend on the excitation frequency
or amplitude indicating a unique chaotic characteris-
tic.

5 Summary and future work

A voltage regulator with a quadratic control function is
developed for an electrostatic actuator to make a large
oscillator. Bifurcation diagrams obtained by sweeping
the magnitude and frequency of excitation reveal peri-
odic and large bounded chaotic oscillation regions in
the parameter space. The quadratic controller demon-
strates valuable advantages over the previously studied
controller. Not only the quadratic regulator improves
the system handling of noise, but also it requires no
input DC voltage that avoids leakage current in the iso-
lation layers of MEMS. The regulator drives the beam
to vibrate in the positive and negative directions for a
total range of 117% of the gap. It requires only half of
the previous regulator output voltage, thus decreasing
the load on the circuit components. The large oscilla-
tions of the quadratic resonator are important as they
are bounded in the phase space, thus making detection
easier which suitable for use in sensing applications.
Furthermore, the resonator is potentially robust as it
demonstrates a stable response over a large area of the
phase space.

The regulator has two potential functions: one-well
once the DC and RMS of AC voltage is below a thresh-
old, and two-well once this value is above the thresh-
old. Both potential functions can be used for linear or
non-linear oscillators depending on the purpose. The
one-well potential field allows creation of an oscilla-
tor with a large chaotic attractor. The two-well poten-
tial field allows creation of both a relatively small one-
well attractor protected by the upper well and a large
two-well attractor. The size of the chaotic attractors are
also controllable setting the frequency of excitation.

Finally a metric of chaos, namely information en-
tropy, is used to prove that the observed long period
orbits are indeed chaotic and to measure their irregu-
larity. It was found the chaotic attractors have a dom-
inant information entropy of 0.732 that does not de-
pend on the excitation frequency and magnitude and is
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a characteristic of the chaotic process in the quadratic
resonator.

In order to realize a prototype for the controller in
the future work, a similar approach used by the authors
[36] to make the hyperbolic controller can be applied.
The controller was implemented using an analog cir-
cuit. In that study, to measure the deflection used by
the circuit, a laser Doppler vibro-meter was used to
measure the velocity at the tip of the moving electrode
which was then integrated to obtain the tip displace-
ment. For a controller prototype, the same approach
can be used here to measure the beam tip displacement
and to use that signal in an analog circuit controller
with a quadratic function. For practical implementa-
tion of a real system, an approach that can measure
the phase difference between input voltage and out-
put voltage is probably more suitable than capacitive
sensing, since large parasitic capacitance will make
impede measurements highly inaccurate.
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