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Parametrically Excited
Electrostatic MEMS Cantilever
Beam With Flexible Support
Parametric resonators that show large amplitude of vibration are highly desired for sens-
ing applications. In this paper, a microelectromechanical system (MEMS) parametric
resonator with a flexible support that uses electrostatic fringe fields to achieve resonance
is introduced. The resonator shows a 50% increase in amplitude and a 50% decrease in
threshold voltage compared with a fixed support cantilever model. The use of electro-
static fringe fields eliminates the risk of pull-in and allows for high amplitudes of vibra-
tion. We studied the effect of decreasing boundary stiffness on steady-state amplitude and
found that below a threshold chaotic behavior can occur, which was verified by the infor-
mation dimension of 0.59 and Poincar�e maps. Hence, to achieve a large amplitude para-
metric resonator, the boundary stiffness should be decreased but should not go below a
threshold when the chaotic response will appear. The resonator described in this paper
uses a crab-leg spring attached to a cantilever beam to allow for both translation and
rotation at the support. The presented study is useful in the design of mass sensors using
parametric resonance (PR) to achieve large amplitude and signal-to-noise ratio.
[DOI: 10.1115/1.4034954]

1 Introduction

Microelectromechanical systems (MEMS) are used extensively
in modern electrical, mechanical, and biological devices. With
new technology becoming both more complex and space efficient,
MEMS are a necessity to develop high-performance electronics.
MEMS resonators are a class of dynamic MEMS devices that uti-
lize a vibrating beam or plate for mass and pressure sensing [1],
gyroscopes/motion detection [2], energy harvesting [3], and many
other applications [4,5]. Their small size allows for extremely sen-
sitive systems that consume minimal energy and have low fabrica-
tion costs. With the desire for self-powered resonators, significant
effort has been made to further reduce energy consumption with-
out sacrificing performance [3,5–7]. For many electrostatic
MEMS resonators, optimization is aimed at increasing the ampli-
tude of vibration while minimizing the excitation voltage. Large
vibration amplitudes are desirable because they result in a high
signal-to-noise ratio for sensors, which increases sensitivity. A
low excitation voltage reduces the overall power consumption of
the resonator, creating a more energy efficient sensor.

Parametric excitation (PE) has been used in MEMS resonators
[3,6,8–11] due to its low threshold voltage and high amplitude of
vibration at frequencies far from the natural frequency of the sys-
tem [12,13]. PE refers to excitation through time-varying parame-
ters of the system rather than through direct forcing in the
direction of the desired motion [6]. This phenomenon was first
noted by Faraday in the 1800s while studying the motion of fluid
waves in closed cylinders [12]. In the early 1990s, Rugar and
Grutter applied this principle to a MEMS cantilever resonator
through a parametric amplifier and harmonic forcing [14]. Turner
et al. expanded this work by classifying the parametric instability
regions/tongues in 1998 [15], which has laid the groundwork for
parametrically excited MEMS resonator designs.

The most common method of PE involves imposing a time-
varying force in one direction to amplify a vibration in a perpen-
dicular direction. In MEMS sensors, this is achieved in a two
degrees-of-freedom (DOF) system where one direction of

vibration is dedicated to sensing, and a perpendicular direction is
used for actuation [2]. If the actuator is driven at a frequency
within an instability tongue of the system, it can drive the sensing
direction into resonance. Another way of achieving PR in MEMS
is to modulate the effective stiffness of the resonator with time,
using piezoelectrics, magnetism, or electrostatics [6]. In electro-
static MEMS, the effective stiffness is dependent on both the
mechanical stiffness of the beam and the electrostatic forces
between the beam and electrode. If the stiffness is modulated in a
way such that the restoring force of the beam is smaller when it
deflects away from the equilibrium point compared to when it
returns, the beam can show large oscillations (PR). The oscilla-
tions reach steady-state when the beam has deflected far enough
that the mechanical restoring force of the beam dominates and
prevents the beam from deflecting further at the applied voltage.

The effect of flexible supports, on the other hand, has been
extensively studied for MEMS beams. In 2000, Kobrinsky et al.
[16] developed an analytical model for a clamped–clamped elec-
trostatic microbeam that takes into account support compliance.
This was used to help explain initial beam deflections that had a
significant effect on the dynamic response of the beam. Pakde-
mirli and Boyaci [17] studied the effect of a flexible boundary on
the natural frequency and steady-state amplitude of several beam
types. It was shown that flexible supports may either increase or
decrease both the natural frequency and steady-state amplitude,
depending on the nature of the boundary conditions. Rinaldi et al.
[18] created a model for a cantilever microbeam with nonideal
supports. Comparisons between the ideal and nonideal boundary
for the cantilever, regarding static tip deflection and natural fre-
quency, were conducted. Clamped–Clamped arches with nonideal
supports were investigated by Alkharabsheh and Younis [19,20].
Further research of the dynamic effect of nonideal boundary con-
ditions for various types of beams has been reported in Refs.
[21–23].

A major obstacle for MEMS electrostatic resonators is the pull-
in instability that severely limits their range of motion. This
occurs when the electrostatic forces pulling electrodes together
overcome the mechanical forces separating them and the beam
collapses to the electrode. For dynamic MEMS, such as resona-
tors, this phenomenon occurs at even lower voltages (dynamic
pull-in) than if the devices were operated statically. The pull-in
voltage ultimately depends on the geometry of the resonator;
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however, in most cases, the beam can only reach from 33% to
50% of the gap distance before pull-in occurs. Since electrostatic
forcing is inherently nonlinear, the beam must be close to the elec-
trode to increase the magnitude of the force. This can yield pull-in
voltages under 2 V for cantilever beams that are in close proximity
to the electrode [12].

Utilizing electrostatic fringe fields, Linzon et al. [6] investigated
an MEMS parametric resonator that does not suffer from pull-in
instability. The system contained a long, thin cantilever beam sur-
rounded by an electrode at its free end. In their study, the electro-
static force acts as a restoring force, whose stiffness is a function of
alternating current (AC) voltage and varies with time. Varying the
stiffness with time drives the beam into parametric resonance.
Large vibration amplitudes have been achieved; however, because
the fringe field generates a weak electrostatic field, the threshold
voltage necessary to induce parametric resonance is high.

The contribution of this paper is to reduce the threshold voltage
of a fringe field MEMS parametric resonator while maintaining a
high vibration amplitude to increase the signal-to-noise ratio. This
is achieved by adding a flexible support to the resonator as shown
in Fig. 1. Many resonators, including the one in Ref. [6], use fixed
supports. Fixed supports require the beam to bend to deflect from
the equilibrium point, which is a severe limitation on the vibration
amplitude of the beam because of the nonlinear stiffness at large
deformations. The flexible support allows for rotation and transla-
tion at the fixed boundary, yielding less overall resistance to the
deflection of the beam. This design can theoretically achieve
higher amplitudes at lower voltages because it allows for a deflec-
tion without bending the beam. As bending of the beam is what
dominates the restoring force at high amplitudes, the less the
beam bends, the smaller the restoring force. With a lower restor-
ing force at any given deflection, the beam can deflect to a larger
amplitude under the same magnitude of electrostatic force. Unlike
previous studies on nonideal supports [19–23], which justified
dynamic behaviors by modeling the base with springs attached,
we purposely added a flexible support to increase vibration
amplitudes.

The flexible support is achieved by adding a crab-leg spring at
the fixed end of the cantilever. This configuration is chosen
because it allows for easy control of both the translational and
rotational stiffness. This is used over a serpentine configuration
(the typical MEMS torsional spring) because the torsional stiff-
ness of the serpentine spring is much lower than translational stiff-
ness, while a balance between the two is needed to create large
amplitudes (refer to Sec. 2.3). We demonstrate that decreasing the
boundary stiffness below a threshold results in a chaotic response,
which should be avoided if the resonator is used as a sensor.

The organization of this paper is as follows: Section 2 outlines
the derivation of the theoretical model with the added flexible

support, as well as the simulation results. In Sec. 3, a physical
model and results are discussed. The final conclusions based on
the physical model’s results are given in Sec. 4.

2 Theoretical Model

2.1 Equation of Motion. The governing equation of motion
for the beam is obtained using Euler–Bernoulli beam theory. The
dimensions of the beam are given in Table 1. The beam material
is a single crystal silicon and assumed to be linearly elastic. This
model assumes only deflection in the z-direction, with no axial/lateral
displacement and no twisting of the beam. Therefore, the z-
displacement of the beam is only dependent on the position along
the beam (x̂) and time (t̂). The dimensionalized equation of
motion (denoted by ŵ) is shown in the below equation

qA
@2ŵ

@ t̂
2
þ ĉ

@ŵ

@ t̂
þ EI

@4ŵ

@x̂4
þ f̂e V2 ¼ 0 (1)

In Eq. (1), f̂e denotes the electrostatic force on the beam from
the electrode. The analytical expression of this force was deter-
mined in Ref. [6] by using a fitting expression from a finite-
element simulation. We verified the fitting expression by making
a COMSOL simulation of the two-dimensional section of the
electrode

f̂e ŵð Þ ¼
asinh r

ŵ

h

� �

coshp r
ŵ

h

� �H x̂ � x̂eð Þ (2)

In Eq. (2), a, r, and p are the fitting parameters that depend on
the geometry of the beam, and H is the Heaviside step function,
with the values of the fitting parameters given in Table 1.

Equation (1) is first nondimensionalized. These substitutions
are as follows:

x ¼ x̂=L

g ¼ ĝ=h

w ¼ ŵ=h

t ¼ t̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=qAL4

p
c� ¼ ĉ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4=EIqA

p
fe ¼ f̂e=a

b ¼ aL4V0
2=EIh

b is a new nondimensional parameter that represents the constant
coefficients of the electrostatic forcing function. The nondimen-
sional equation of motion is shown in the below equation

Fig. 1 Layout of the resonator with cross section of the beam
and top down view of electrode and beam tip

Table 1 Beam parameters of MEMS resonator given in Ref. [6]

Parameter Symbol Value

Beam length (lm) L 500
Beam width (lm) b 16
Beam height (lm) h 5
Electrode gap (lm) g 5
Electrode length (lm) Le 150
Elastic modulus (GPa) E 169
Density (kg=m3) q 2330
Poisson’s ratio � 0.3
Quality factor Q 150
Fitting parameter a 1:3� 10�6

Fitting parameter r 1
Fitting parameter p 1.45
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@2w

@t2
þ c�

@w

@t
þ @

4w

@x4
þ bV2fe ¼ 0 (3)

In both the nondimensional substitutions and Eq. (3), the nonac-
cented variables denote the nondimensional quantities. Equation
(3) is then solved using the Galerkin decomposition procedure.
Using this method, the deflection of the beam is approximated as

wðx; tÞ �
Xn

i¼1

qiðtÞ/iðxÞ (4)

where /iðxÞ are the mode shapes of the beam, and qiðtÞ are the
time-dependent generalized coordinates, which must be solved
numerically. The mode shapes can be obtained by solving the
eigenvalue problem associated with Eq. (3) as will be described in
Sec. 2.2. Once the mode shapes are obtained, one can substitute
Eq. (4) into the nondimensionalized equation of motion (Eq. (3)),
multiply by /i, and integrate over x between 0 and 1 to get

mi €qi þ c�mi _qi þ kiqi þ bV2fi ¼ 0 (5)

This is done to reduce the partial differential equation (PDE)
into a set of decoupled ordinary differential equations (ODE)
using the orthogonality of the mode shapes. In Eq. (5), mi, ki, and
fi are defined in Eq. (10).

2.2 Flexible Support. The addition of a flexible support is
taken into account by the mode shapes of the beam (/ðxÞ). Specif-
ically, this introduces a new set of boundary conditions for /ðxÞ
given below [12]. Figure 2 shows the comparison between the
flexible and fixed support

/00 0ð Þ � Lkr

EI
/0 0ð Þ ¼ 0

/000 0ð Þ � L3kt

EI
/0 0ð Þ ¼ 0

/00 Lð Þ ¼ 0

/000 Lð Þ ¼ 0

(6)

In Eq. (6), kr and kt are the rotational and translational stiffness
of the flexible boundary, respectively. Two nondimensional varia-
bles, Rr and Rt, are defined for simplicity and are shown in the
below equation

Rr ¼
Lkr

EI
Rt ¼

L3kt

EI
(7)

Once the boundary conditions have been defined, the mode
shapes can be computed. This is done by setting both the voltage
and damping of Eq. (3) equal to zero, and using the Galerkin pro-
cedure (separation of variables) to reduce the PDE into two
ODEs. A generalized mode shape

/ ¼ A cosðaxÞ þ B sinðaxÞ
þCcoshðaxÞ þ DsinhðaxÞ (8)

is used, where A, B, C, and D are the constants, and a is the square
root of the nondimensional natural frequency. Substituting this
back into the boundary conditions of Eq. (6) yields the system of
equations shown in the below equation

�a �Rr a �Rr

Rt �a3 Rt a3

�cosðaLÞ �sinðaLÞ coshðaLÞ sinhðaLÞ
sinðaLÞ �cosðaLÞ sinhðaLÞ coshðaLÞ

2
664

3
775

A
B
C
D

2
664

3
775 ¼ 0 (9)

For a nontrivial solution, the determinant of the matrix on the
left side must be zero, which yields a characteristic equation for a,
the eigenvalue. Solving numerically, the eigenvalues are obtained
and used in Eq. (9) to find A, B, C, and D. Mode shape, /, is then
normalized to have a maximum of one. Using these mode shapes
and the orthogonality condition, one can obtain the coefficients of
mi, ki, and fi in the decoupled equation of motion (Eq. (5))

mi ¼ dij

ð1

0

/j/idx

ki ¼ dij

ð1

0

/j/
IV
i dx

fi ¼
ð1

xe

fe/jdx

(10)

where dij is the Kronecker delta, which is zero when i 6¼ j, and one
when i¼ j. Equation (5) is then solved numerically in MATLAB using
the fourth-order Runge–Kutta method with the ODE45 solver [24].

2.3 Numerical Results. The effect of the flexible support on
the parametric resonance of the beam was studied for a one-mode
model. The damping was estimated as

c ¼ k2
1

Q
(11)

where c ¼ c�m1 in Eq. (5) for a one-mode model. In Eq. (11), k2
1

is the first natural frequency of the cantilever and the flexible sup-
port, and Q is the quality factor. The quality factor experimentally
determined in Ref. [6] for the fixed support was used in Eq. (11)
as an estimate. This value was chosen due to the similarity
between the two resonators when the boundary stiffness is suffi-
ciently large. It should also be noted that due to the single layer
design of the beam and electrode, squeeze film damping is almost
eliminated, and a major part of the total damping is due to viscous
and support damping. It is assumed that the change in support
damping as boundary stiffness decreases can be roughly
accounted for by Eq. (11). This can be visualized in the damping
profile of Fig. 3.

The beam was also given a very small initial offset to initiate
parametric resonance. This is necessary because when the beam is
not deflected, the net electrostatic force is zero.

To verify the accuracy of the presented model, first Rr and Rt

were set to 10,000. At Rr ¼ Rt ¼ 10; 000 and above, the rotationFig. 2 Fixed versus flexible support
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and translation of the flexible boundary are negligible and the
beam behaves like a simple cantilever. This was determined by
plotting m, c, and k values for increasing boundary stiffness and
looking for convergence to the m, c, and k values for the fixed
boundary. Figure 3 shows this convergence to those of the fixed
support reported in Ref. [6].

To study the effect of a rotational and translational spring at the
support, three cases are investigated. First, Rr is decreased while
Rt is held fixed (case I). This is the equivalent of a pure rotational
spring with no translational movement of the supported end. Next,
Rt is varied and Rr is held fixed (case II), which is similar to an
ideal translational spring. Finally, Rr and Rt are equated and ana-
lyzed at different values to simulate the complete flexible support
(case III). The frequency response for cases I, II, and III, at 100 V
AC can be seen in Figs. 4–6, respectively.

All the three cases have similar effects on the frequency
response domain with case III being the most pronounced. First,
there is a significant downward shift in the frequency response
due to the reduction of the overall stiffness of the system. Second,
the maximum amplitude increases when the boundary stiffness
decreases up until Rr and/or Rt reach a threshold. An increase of

66% in the maximum amplitude is observed when the stiffness
reaches the threshold value (50 lm at Rr ¼ Rt ¼ 10 compared to
30 lm at Rr ¼ Rt ¼ 10; 000 for the fixed support). A time
response at its maximum amplitude in Fig. 6 is shown in Fig. 7.
Below the threshold value, the response becomes either odd
period or chaotic (depending on the frequency) as will be dis-
cussed shortly. This can be seen in Figs. 4–6 when the frequency
response curve, obtained from the maximum amplitude, is no lon-
ger smooth and appears jagged. If Rr and Rt are decreased further,
the response becomes completely chaotic and does not reach
steady-state.

The frequency range where parametric resonance is spread is
also increased as Rr and/or Rt is decreased. At Rr ¼ Rt ¼ 10, the
range is about 7000 Hz compared to about 5000 Hz for the fixed
boundary. Higher-order parametric resonances were also observed
as the stiffness varies (not shown in Figs. 4–6). Figure 8 shows the
higher-order parametric resonances for the case of Rr ¼ Rt ¼ 10.
As shown in Fig. 8, higher-order parametric resonances occur at
6.75 kHz, 4.5 kHz, and 3.375 Hz, respectively. We observed that
higher-order parametric resonances move closer to the primary
resonance as the boundary stiffness is decreased.

Fig. 3 The convergence of nondimensional mass (m), damp-
ing (c), and stiffness (k) values to the fixed boundary case
(dashed lines) as Rr and Rt increase. Good convergence occurs
at approximately 104 and above.

Fig. 4 Case I: Rr frequency response (Rt 5 10; 000) at 100 V AC.
Numbers next to lines indicate the value of Rr. Solid lines indi-
cate downsweep and dashed lines indicate upsweep. Fre-
quency step of 20 Hz.

Fig. 5 Case II: Rt frequency response (Rr 5 10; 000) at 100 V
AC. Numbers next to lines indicate the value of Rt. Solid lines
indicate downsweep and dashed lines indicate upsweep. Fre-
quency step of 20 Hz.

Fig. 6 Case III: Rr 5 Rt frequency response at 100 V AC. Num-
bers next to lines indicate the value of Rr and Rt. Solid lines
indicate downsweep and dashed lines indicate upsweep. Fre-
quency step of 20 Hz.

021002-4 / Vol. 139, APRIL 2017 Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 12/07/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



There are slight differences between the three cases. Case I
does not increase the amplitude as much as case II or III. Case II
has some increase in maximum amplitude but not as large as case
III. Even though all the three cases experience a chaotic response
when the boundary stiffness goes below a threshold, the chaotic
attractor is the largest in case II, meaning the translational stiff-
ness has a larger effect on the size of the chaotic attractor com-
pared to the rotational stiffness.

As mentioned above, in all the three cases, the response of the
resonator becomes chaotic when the boundary stiffness goes
below a threshold. Around the threshold stiffness, a small varia-
tion in peak amplitude of the steady-state response appears.
Decreasing the boundary stiffness below the threshold causes the
variation to become more apparent and chaotic response occurs.

To verify that the response has a chaotic nature, we plotted the
bifurcation diagram for the last 50 cycles. The bifurcation dia-
grams shown in Figs. 9 and 10 are plotted for Rt ¼ 10; 000,
Rr¼ 2, and Rr¼ 25, respectively. The diagram is obtained from
recording the positive displacement as the phase portraits cross
the zero velocity axis. As shown in Fig. 9, in certain regions of the
bifurcation diagram, the chaotic attractor size is large. While other
areas of the curve seem periodic, the chaotic attractor is just

smaller in size. In fact, for most of the resonant frequency curve,
in the case of Rr¼ 2 (Fig. 9), the motion is chaotic. As the bound-
ary stiffness is increased, the chaotic behavior disappears as can
be seen in Fig. 10.

To prove that the motion is indeed chaotic, the information
entropy and dimension were calculated. Information entropy cal-
culates the unpredictability of a system. For a nonchaotic, deter-
ministic system, the information entropy is zero because the
system is fully predictable. The information dimension, calculated
from the information entropy, is a quantitative measure of the
fractal behavior of the attractor. Noninteger values of the informa-
tion dimension show that the attractor is strange, while a nonzero
information entropy shows a loss of predictability of the system,
indicating chaos [25].

To calculate the information entropy and dimension, a Poincar�e
section was taken by sampling points at the excitation frequency
starting at the maximum displacement of the last cycle (Fig. 11).
The Poincar�e section of the attractor was then divided into small
squares of nondimensional size 0.002� 0.002. The number of

Fig. 7 Rr 5 Rt 5 10 time response in steady-state regime with
an approximately 50 lm amplitude. Driven at 10,880 Hz at a volt-
age of 100 V. An initial displacement of 40 lm was used to reach
the higher energy state in the backsweep region.

Fig. 8 Frequency response of Rr 5 Rt 5 10 showing higher-order
parametric resonances. Frequency step of 20 Hz.

Fig. 9 Bifurcation diagram for Rt 5 10,000 and Rr 5 2 showing
peak amplitude against frequency for the last 50 cycles in the
steady-state regime. Backsweep only. Includes both primary
and fundamental parametric resonances. Frequency step of
10 Hz.

Fig. 10 Bifurcation diagram for Rt 5 10,000 and Rr 5 25 show-
ing peak amplitude against frequency for the last 50 cycles in
the steady-state regime. Backsweep only. Frequency step of
10 Hz.
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points that fall in each square was counted and divided by the total
number of sample points to calculate the probability of a point
landing in that square for the set of data. This probability distribu-
tion was used with Eq. (12) to calculate the information entropy
[25]

IðeÞ ¼ �
XN

i¼1

Pi log Pi (12)

In Eq. (12), N is the total number of squares in the phase plane, e
is the area of one square, and Pi is the probability for the ith
square. The information entropy was then used in Eq. (13) to find
the information dimension

di ¼ �
I eð Þ
log e

(13)

Figure 12 shows the information dimension for various initial
conditions for the case of Rt¼ 10,000 and Rr¼ 2. The information
dimension is approximately 0.586. As this is a noninteger value,
the attractor is shown to exhibit fractal behavior. An information
dimension of 0.586 also corresponds to an information entropy of
approximately 10.5 bits. This proves the system is chaotic. The
information dimension should be consistent for a chaotic attractor
for any initial condition. Figure 12 shows that the information
dimension is consistent for various initial conditions that result in
motion on the chaotic attractor.

The chaotic behavior arises from the nonlinear modulation of
the effective stiffness. The high compliance of the beam due to
the decreasing boundary stiffness increases the influence of this
nonlinearity, which ultimately results in chaos. This can be veri-
fied through experiments by measuring the information entropy of
the tip deflection.

As mentioned above, the vast majority of the resonant fre-
quency curve is chaotic. However, at certain frequencies, the
motion is periodic. This shows that the system is experiencing
intermittent chaos, snapping between period 1–7 motion and
chaos. These n-period regions can be seen in the bifurcation dia-
grams and Poincar�e maps. Figure 13 shows a zoomed in portion
of Fig. 9, showing period 3 and 5 behaviors. Despite intermittent
chaos, no period doubling was observed at the onset of chaotic
motion. A time response in the period 5 region, shown in Fig. 14,
illustrates the expected five distinct peaks.

The transition from the periodic to the chaotic region of Fig. 13
also shows other interesting behavior. The evolution of Poincar�e
section from period 5 to chaos is also evident in Fig. 11, which
shows five prominent lumps of points that are spreading in the

Fig. 11 Poincar�e section of the chaotic attractor for
Rt 5 10,000, Rr 5 2, and f 5 12 kHz. A total of 1500 points were
sampled. The simulation was run for 2000 cycles, with sample
points starting after cycle 500 to ensure the system was on the
chaotic attractor and had negligible transient effects.

Fig. 12 Information dimension for Rr 5 2 and Rt 5 10,000 at
f 5 12 kHz. Initial conditions are nondimensional.

Fig. 14 Time response of Rr 5 2 in period 5 regime at 12.44 kHz

Fig. 13 Zoomed in portion of the Rr 5 2 bifurcation diagram
showing intermittent chaos and period 5 behavior. A 0.1 Hz fre-
quency step.
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phase plane. As the system moves from period 5 to chaos, the var-
iation in peak amplitude increases locally around the peak points
from the period 5 regime. As the frequency is increased, these
points spread out and the Poincar�e section becomes more uniform
and spread.

After the dynamic response was analyzed at a high voltage
(100 V), it was then analyzed again at low voltages to determine
its threshold for PR. Specifically, the applied voltage was incre-
mentally increased by 1 V, starting below the threshold voltage, to
see the minimum voltage required for the appearance of paramet-
ric resonance. As an example, choosing the stiffness values that
resulted in the largest amplitudes in Fig. 6 (Rr ¼ Rt ¼ 10) and
reducing the AC voltage yield the results shown in Fig. 15.

We recorded the lowest voltage required for parametric reso-
nance to appear in all the three cases. Case II has the lowest
threshold voltage at about 10 V. Cases I and III have a threshold
voltage of 12 V and 13 V, respectively. The threshold voltage is
reduced from 27 V for the fixed support case [6]. The respective
threshold voltages for all the cases, including the fixed support,
have the same amplitude as well (around 5 lm). All the three
cases significantly outperform the fixed support, even though the
differences between each were slight. The flexible support also
has a significant increase in amplitude at low voltages, e.g., at
16 V for case III, the flexible support has approximately the same
amplitude as the fixed boundary at 40 V. However, the frequency
at which parametric resonances happens for the flexible support is
one-third of that of the fixed support, which decreases the rise
time of the response.

Overall, case III has the most desirable effect on the frequency
response achieving the highest amplitudes while still cutting the
threshold voltage by over half as compared to the fixed support.

3 Flexible Support Design and Results

After the ideal model was analyzed, a physical design that
could attain the results of the ideal case (Rr ¼ Rt ¼ 10) was deter-
mined. As mentioned before, a crab-leg spring was used and can
be seen in Fig. 1. The rotational and translational stiffness were
evaluated using Castigliano’s second theorem [26] and were a
function of the spring geometry

kr ¼
S

GJ
þ L1

EI

� ��1

(14)

kt ¼
L3

1 þ S3

3EI
þ L1S3

GJ

� ��1

(15)

In Eqs. (14) and (15), I and J are the moment of inertia and
polar moment of inertia for the cross section of the spring, respec-
tively. The stiffness values of Eqs. (14) and (15) were then substi-
tuted into Eq. (7), and nondimensional Rr was set equal to the
nondimensional Rt value. This new equation was then used to find
geometry that resulted in equal Rr and Rt values.

To satisfy equality of Rr and Rt, the geometry needs to be very
large however. To obtain a reasonable resonator size, Rr and Rt

values were unequated and given some set difference. The larger
the difference between Rr and Rt, the smaller the geometry, and
vice versa. Therefore, a middle ground between stiffness and
geometry was found to maximize the effect of the flexible bound-
ary, with minimal geometry.

Geometric parameters of the support, along with the resulting
Rr and Rt values are shown in Table 2 for several designs, with
parameters shown in Fig. 1. The material of the spring is assumed
to be the same material as that of the beam.

As can be seen in Table 2, smaller length values of S result in a
high translational stiffness without having much effect on the rota-
tional stiffness, which can be confirmed from Eqs. (14) and (15).
This is mainly what causes the large difference between Rr and Rt

values. A small S is desirable because it determines the width and
therefore the overall size of the resonator. As S is decreased, the
model becomes similar to the rotational model (case I) as
described above. Figure 16 shows the frequency response for
design 3, and Fig. 17 shows the frequency response at low vol-
tages, including the threshold voltage.

Compared to the fixed support, the flexible support from design
3 offers a 50% increase in the maximum amplitude (45 lm com-
pared to 30 lm). We also observe the appearance of higher-order
parametric resonances with primary resonance around 15.5 kHz.
The threshold voltage was also decreased by 52% (15 V compared
to 27 V).

Fig. 15 Backsweep frequency response of Rr 5 Rt 5 10 for low
voltages. Numbers next to lines indicate voltage level. Fre-
quency step of 5 Hz.

Fig. 16 Frequency response of support design 3 as listed in
Table 2: Rr 5 5.33 and Rt 5 2203.26, at 100 V AC. Solid lines indi-
cate downsweep and dashed lines indicate upsweep. Fre-
quency step size was 20 Hz.

Table 2 Geometry and stiffness of flexible support

Parameter Design 1 Design 2 Design 3 Design 4

S (lm) 200 100 30 30
L1 (lm) 20 30 30 100
t (lm) 4 3 4 5
w (lm) 10 20 10 10
Rr 7.999 4.499 5.33 3.12
Rt 14.86 97.747 2203.26 206.56
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Among all the designs, design 4 that has a much smaller rota-
tional stiffness compared to translational stiffness (similar to case
I in Fig. 9) yields a chaotic response. By increasing L1 to 100 lm,
the rotational boundary stiffness drops below the threshold value,
and chaos occurs. If a serpentine spring is used instead of crab-leg
used here, it could result in a lower rotational stiffness and thus
would be even more susceptible to a chaotic response. Although
chaos could occur for case II (pure translational spring), the geom-
etry of the resonator to create a pure translational spring at the
boundary, with a stiffness below the threshold, would need to be
very large and thus is unlikely to occur in a real-world MEMS
device and thus not considered.

4 Conclusion

This paper demonstrates the effect of a flexible support on a
parametrically excited electrostatic MEMS resonator. The resona-
tor uses weaker electrostatic fringe fields to actuate a cantilever
microbeam without the risk of pull-in, allowing for high ampli-
tudes of vibration. The flexible support significantly decreases the
threshold voltage, creating a more energy efficient resonator. The
effect of boundary stiffness on the magnitude and width of the fre-
quency response is thoroughly investigated. We observe that
decreasing the boundary stiffness increases the output amplitude
leading to a high signal-to-noise ratio. If the boundary stiffness is
decreased below a threshold, it can yield chaotic behavior, which
has been verified by the information entropy and dimension. The
chaotic response may not be desired if the resonator is used as a
sensor as it could complicate the sensor circuitry and hence should
be avoided. A compromise needs to be made for the stiffness
value to achieve the maximum amplitude and to avoid the chaotic
region. An optimal design for the flexible support is described,
which yields a 50% increase in the maximum amplitude and a
50% decrease in the threshold voltage for the appearance of para-
metric resonance.
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