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Abstract—A model for a chaotic micro-oscillator is developed
by adding a new control system to an electrostatic actuator
consisting of two electrodes: the substrate and a cantilever beam
on top. The electrostatic actuator itself has a single stable equi-
librium over a range of voltage, whereas adding the controller,
which has a quadratic function, creates a voltage range for bi-
stability. The bi-stability represents a two well potential field that
is used here to create chaos. The model of the beam actuator is
a mathematical model of a continuous system with identified
parameters from the experiments. The equations of motion
are then descretized using the first mode shape of the beam
and solved numerically to find the steady state oscillation. The
range of the AC frequency and voltage excitation for sustained
chaos creation is investigated through bifurcation diagrams which
reveal two well chaos, periodic orbits and multiple periods. It is
discovered that the proposed new controller has some important
advantages over a previously introduced controller for creation of
chaos. First, it has a simpler function making its implementation
easier. Second, it has a larger bi-stability voltage range starting
from zero that doubles the operating range for chaotic oscillation
and decreases the actuation voltage by eleven times. At last but
not least, the controller offers chaos in a three times wider AC
voltage range than that of the previous controller.

I. INTRODUCTION

Chaotic vibrations in Macro-scale were used to detect
damages in the aeroelastic structures [1], [2] , and mass
variation due to corrosion [3]. This type of nonlinear vibration
is found to be very sensitive to small variations in some system
parameters. In micro-scale; however, there are a number of
studies reporting chaos experimentally [4], [5], in simulations
[6], [7], [8], or both [9], [10], [11], [12]. The application of
chaos in detection of system parameter changes in Micro-
electro-mechanical systems (MEMS) is a new open area of
research that should be developed through a thorough study of
chaotic vibrations in such devices. A number of these studies
is performed on Atomic Force Microscopes (AFM) [10], [11],
[4], a device for surface profile measurement operating based
on an interaction of a micro-cantilever beam with a sample.
These investigations were performed to identify and avoid
chaotic regions in the parameter space to improve imaging
quality and measurement accuracy. Chaos was observed in
tapping mode AFM where the cantilever is driven around its
natural frequency near the sample surface and its vibrations
reveals the surface information [10], [11]. Raman et al. [4]
also reported chaotic oscillation in AFM during the transition
from noncontact to tapping regimes.

Chaos in electrostatic MEMS is also investigated in the
last decade [6], [12], [5], [7], [8]. Developing an autonomous
impact oscillator, Bienstman et al. [6] investigated the chaos
creation in a capacitor by applying voltage larger than the pull-
in voltage. They reported chaos in the simulations and period
doubling in the experiments. Wang et al. [12] simulated chaos
in an electrostatic comb drive actuator using Duffing oscillator
model. They observed chaos in a bi-stable state of the system.
Adding feedback control system was also examined by Liu et
al. [7] to create bi-stability leading to chaos. In an extension to
his work, we [8] analyzed the system with an improved model,
conducted a thorough study on the dynamics of the system,
and presented the bifurcation diagrams to adjust the excitation
voltage and frequency for producing sustained chaos. In this
study, we present a new controller with enhanced performance
for producing chaos. The system model with identified param-
eters from the experiment is presented followed by detailed
static and dynamic analysis of the system.

II. SYSTEM MODELING

The electrostatic actuator system is composed of one sub-
strate electrode and a top electrode that is a cantilever beam.
Voltage applied between the two electrodes is the driving force
(Figure1). Using Euler-Bernoulli beam model, the open loop
equation of motion in non-dimensional form becomes
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where the following non-dimensional parameters are used
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and ŵ is the deflection of the beam in the ẑ direction, x̂ is
the coordinate along the beam length, and t̂ is time. The two
introduced parameters of µ and α are given as
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On the other hand, we have µ = 2ζωn, where ζ is the
damping ratio found experimentally and ωn = 3.5158 is the
first canonical natural frequency of a cantilever beam. All other
parameters are given in Table I.

The open loop system has been simulated to obtain the static
response and the pull-in point where the system loses stability
and hits the bottom electrode. The result is shown in Figure



Fig. 1. Schematic of microbeam oscillator.

TABLE I
ACTUATOR PARAMETERS

Parameter Symbol Value

Density ρ 2331 kg
m3

Beam Length L 150.6 µm
Beam Width b 9.9 µm
Beam height h 1.9 µm
Initial gap d 2 µm
Damping coefficient µ 0.497
Permittivity of free space ε0 8.85E-12 F

m
Modulus of Elasticity E 150 GPa

2 that predicts pull-in happens at 25.3 Volts when the top
electrode reaches 46 percent of the initial gap.

Fig. 2. Open loop static response.

To create a chaotic actuator, a controller is added to the
micro-oscillator to make it a bi-stable system (Figure 3). By
adding the controller, the equation of motion changes to

ẅ(1−w)2+w(4)(1−w)2+µẇ(1−w)2 = α(Vref−V̂c)2 (4)

where ẅ and ẇ are second and first derivatives with respect
to time and w(4) is the fourth derivative with respect to the
coordinate along the length. V̂c is the output voltage of the
controller, and Vref is the input voltage:

Fig. 3. Controller system .

Vref = VDC + VAC cos(ωt) (5)

where VDC and VAC are applied DC and AC voltages re-
spectively with non-dimensional circular excitation frequency
of ω . The controller voltage rate is composed of a quadratic
function of the normalized beam tip deflection w(1) and an
integrator with a constant gain of KI = 270:
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(
a0 + a1w(1) + a2w
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))
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where a0, a1, a2 are the coefficient of the quadratic function.
To obtain the static and dynamic responses, the partial differ-
ential Eq. (4) is converted to an ordinary differential equation
using separation of variables and Galerkin’s method using one
mode shape of the beam as described in Towfighian et al.[13].
The beam deflection function is thus

w(x, t) = Φ1(x)q1(t) (7)

where Φ1(x) is the 1st cantilever beam mode shape normalized
with respect to the beam tip modal deflection so that Φ1(1) =
1, and q1 is the normalized beam tip deflection. A set of second
order ordinary differential equations is then obtained:{
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where ω1 is the first natural frequency of the beam, and c1,
c2, and c3 are found after applying Galerkin’s method.

A. Experimental Parameter identification

The actuator was designed using the PolyMUMPs, 3 dimen-
sion profiler scanning of which is shown in Figure 4. The beam
dimensions including width, thickness and electrodes gap are
measured using the optical profiler. The experimental beam
natural frequency is found to be 100.246kHz using a Mis-
croscope scanning vibrometer (Polytec MSV-400). To account
for the flexibility in the support, the beam length is adjusted
to 156 µm to match the experimental natural frequency and
the modulus of elasticity of 150 GPa. The damping ratio has
also been found experimentally to be ζ = 0.0707.

Fig. 4. Optical profilometer 3D scan of the actuator (Vision Software).

III. STATIC ANALYSIS

The static response of the system after adding the controller
is obtained by setting the time derivative of Eq. (8) to zero and
solving numerically. Figure 5 shows the beam tip deflection



versus applied voltage. For examining the stability of equilib-
rium points at different voltages, the system of equations are
linearized around the equilibrium points and the eigenvalues
are obtained at those points. Eigenvalues found at VDC = 10 V
of Figure 5 is listed in Table II. As one can see, the first and
third equilibrium points are stable points while the second and
fourth equilibrium points are saddles. The bi-stability voltage
range starts at zero and ends at 11.7 V, above which there only
exists an upper saddle and a lower stable equilibrium point.
The bi-stability DC voltage range for the new controller is
2.4 times the range of previous controller [8] which expands
the region for chaos production. As the voltage is increased
from zero, the distance of the upper saddle from the upper
stable equilibrium increases that reduces the risk of touching
the unstable manifold of the saddle and pull in making the
chaotic oscillation safer to operate between the two potential
wells. Thus, DC voltage of 10 V is chosen for the operation
of the chaotic actuator from this point forward. Table II also
reveals the non-dimensional natural frequencies of the first
and third equilibrium points as 13.89 and 7.88 corresponding
to 396KHz and 224.7KHZ respectively.

Fig. 5. Non-dimensional deflection of the beam tip versus voltage.

TABLE II
EIGENVALUES FOR THE EQUILIBRIUM POINTS AT Vref = 10 V IN

FIGURE 5.

# q1 Eigenvalue 1 Eigenvalue 2
1 0.3198 -0.2485 -13.8868i -0.2485 +13.8868i
2 0.4625 7.0365 -7.5335
3 0.5372 -0.2485 - 7.8759i -0.2485 + 7.8759i
4 0.6778 20.0625 -20.5595

IV. DYNAMIC ANALYSIS

The dynamic response of the system to the reference input
voltage Vref including DC and AC components (Eq. (5)) is
obtained by numerically integrating Eqs. (8) for the duration of
5000 times the excitation period. For obtaining the bifurcation
diagrams, the response is examined once the transients disap-
pear and during the last 128 periods when either the frequency
or the amplitude of AC voltage is swept. At each value of the
control parameter, a poincare section is constructed by starting

at the maximum displacement and sampling the orbit once
every period.

A. Force sweep

Figure 6 demonstrates the bifurcation diagram obtained
from sweeping the AC amplitude at fixed DC voltage VDC =
10 V , and the excitation frequency of ω = 10.1. Increasing the
amplitude from 2V, first we observe periodic orbits between
the two potential wells up to 2.6 V. Beyond that, periodic orbit
along with weakly chaotic orbits coexists in the lower well.
In the range of 3.95-4.3 V, the solution is exclusively chaotic
oscillations between the two wells. In comparison of the new
quadratic controller to the previously developed controller [8],
the proposed controller offers a three times wider AC voltage
range for producing two well chaotic oscillation which makes
it easier to implement. One can also observe a large periodic
orbit between the two wells around 4.3 V that becomes weakly
chaotic coexisting with the two well chaotic attractors. Beyond
4.69 V, the energy seems to become high enough that can not
be consumed between the two wells, the orbit jumps over
the hump or the upper saddle and dynamic pull-in occurs. A
phase portrait of the chaotic attractor at VAC = 4 V beside
the controller output and the actuator input voltage changes are
shown in Figure 7. The random oscillation between the two
wells and individual oscillations in each well are observed
in the phase portrait. In the bottom left graph, the range of
controller output voltage is between -55 to 32 V and the
actuator input voltage changes in the range of -24 to 63
V. Comparing the previous controller[8], the new controller
has significantly reduced the reference voltage, 10 ± 4 V vs
110± 4 V and the maximum controller voltage, 55 V vs. 80
V, which makes the fabrication much simpler.

Fig. 6. Bifurcation diagram constructed from a force sweep VAC at fixed
frequency of ω = 10.1.

B. Frequency sweep

Sweeping the frequency of excitation around ω = 10, while
keeping the AC constant at VAC = 4 V , we obtain Figure
8. The figure illustrates a two well chaotic attractor well



Fig. 7. Top: Phase portrait of chaotic oscillation, Bottom left: controller
output voltage(V), Bottom right: actuator input voltage(V) once the amplitude
of excitation VAC = 4 and the non-dimensional frequency of excitation
ω = 10.1.

developed in a wide range of excitation frequency between
9.71 and 10.18 followed by lower-well periodic orbits. There
also exists a narrow chaotic region from 11.13 to 11.27, above
which the bifurcation changes to Period 4 between the two
wells. The frequency range for producing chaotic oscillation
using the new proposed controller is twenty percent larger than
the range obtained in [8].

Fig. 8. Bifurcation diagram sweeping the frequency of excitation at fixed
VAC of 4 V.

V. CONCLUSION

A new quadratic controller is added to an electrostatic
actuator for creation of sustained chaotic vibraions. The system
is composed of an electrode underneath and a microbeam on
top that is actuated by applying a voltage. The continuous
mathematical model of the beam is descretisized using the
first mode shape of the cantilever beam. The added controller
converts the beam actuator to a bi-stable system for a range of
DC voltage, which is used to produce chaos. The dynamic be-
haviour is investigated and results of steady state vibrations are

presented in bifurcation diagrams. The diagrams suggest that
the new controller in comparison to the previously developed
controller [8], has some advantages that includes three times
larger operating range for AC voltage amplitude and twenty
percent larger range for AC frequency. The wide operating
ranges are desired for implentation of the device. In addition,
the chaotic vibration can be created at eleven times less DC
actuation voltage. Finally, the controller requires less voltage
than the previous one making its design simpler. The chaotic
actuator developed will be further investigated to be used for
detecting or sensing in MEMS.
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