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ABSTRACT
The performance of a chaotic micro resonator is improved

by redesigning a quadratic controller reported in a previous
study. The chaotic micro resonator is composed of an electro-
static actuator and a voltage regulator (controller). The actuator
is made of cantilever beam electrode above a fixed electrode. The
actuator voltage, and consequently the electrostatic force magni-
tude, is controlled to drive the cantilever beam oscillations into
chaos by creating a bi-stable regime in the system response. The
performance of the redesigned controller is improved such that
the system input voltage is reduced. The voltage generated by the
controller is halved and the controller gains are smaller, which
reduces the power and gain demands on the analogue controller
components. The static and dynamic responses of the chaotic
oscillator are studied and the sizes of the basins of attraction are
compared for the improved and the original quadratic controllers.
The controller can be configured to create two potential wells.
The excitation DC voltages can then be adjusted to control the
size of the upper and lower wells and thereby the basins of at-
traction around the two stable equilibria. As a result, one can
shape the chaotic attractor to meet desired criteria. The reported
chaos is intermittent chaos located in the lower well and between
the two potential wells. This study can be used to design a new
generation of nonlinear oscillators targeting high resolution sen-
sors.

∗Address all correspondence to this author.

1 Introduction

In contrast to abundant research studies on linear MEMS os-
cillators, studies on nonlinear oscillators are very limited. Non-
linear oscillators at the macro scale have been successfully devel-
oped for health monitoring [1–3] and for detecting corrosion [4].
The sensitivity of the chaotic oscillation was employed to detect
very small stiffness changes as small as 15%, in aeroelastic sys-
tems [5, 6], and to detect mass variations as small as 0.07% due
to corrosion in an aluminum cantilever beam [4]. Such high sen-
sitivities could not be achieved by linear oscillators. Nonlinear
chaotic micro-oscillators have not received much attention due
to their complex behavior. There are reports of chaotic oscilla-
tion in MEMS for atomic force microscopy (AFM) [7–9] and
in electrostatic MEMS [10–18], but the target for these studies
was to avoid this type of nonlinear vibration. A similar objective
was pursued by Park et al. [19] that added a force control to an
electrostatic actuator using its displacement feedback and con-
verted the chaotic vibrations to periodic oscillations. In smaller
scale NEMS, there are some recent studies on nonlinear vibra-
tion, chaos and their applications [20–22]. Bucks et al. [20]
found higher mass detection sensitivity is achieved once oper-
ating a nanomechanical resonator in the nonlinear region. Con-
ley et al. [21] studied the onset of nonlinear planar motion and
nonplanar whirling motion of electrostatically excited nanowires
with a proposed application in an overload detection mechanism.
The study is then further developed by Chen et al. [22], in which
they presented bifurcation diagram for the extensive nonplanar
chaotic oscillation of a nanowire at increased AC voltages. Chen
et al. [22] suggested applying the chaotic nanowire oscillators in
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random number generation used in secure communications.
The focus of this study is to create a chaotic oscillator that

shows sustained chaotic oscillation for a wide range of AC and
DC excitations that can be used as a nonlinear sensor with higher
sensitivity. The chaotic oscillator is comprised of a voltage reg-
ulator (controller) added to an electrostatic actuator.

Feedback control in MEMS are reported in a number of
studies [18, 19, 23]. Lu et al. [23] used a capacitive sensor for
an electrostatic actuator and extended their operation range. The
controlled system was then investigated by Liu et. al [18] who re-
ported chaos is the response of the system to strong disturbances.
In an extension of their studies, Towfighian et al. [24] presented
a comprehensive study of the nonlinear dynamic behavior of the
closed loop system and illustrated the bifurcation diagrams for
finding the excitation voltage parameters for sustained chaotic
oscillations [24]. A new controller to extend the operation ranges
of the chaotic oscillation and to decrease the input voltage was
designed in a previous study [25]. In this work, the controller has
been redesigned to further reduce the input voltage of the system,
to reduce the voltage generated by the controller, and to decrease
the controller gains and thereby to make it realizable in an ana-
log circuit. In addition, the improved oscillator shows tunability
in terms of the location over the gap, which can be useful with
regard to different design criterion.

2 System Modeling
The chaotic oscillator system consists of an electrostatic ac-

tuator and a voltage regulator(controller). The electrostatic ac-
tuator has a cantilever beam above a fixed electrode (Figure 1).
Using an Euler-Bernoulli beam model, the equation of motion
for a damped cantilever beam in an electrostatic field is a PDE
equation:

ρA
∂2ŵ(x̂, t̂)

∂t̂2 +EI
∂4ŵ(x̂, t̂)

∂x̂4 + c
∂ŵ(x̂, t̂)

∂t̂
=

ε0bV 2
DC

2(d− ŵ(x̂, t̂))2 (1)

where ŵ(x̂, t̂) is the deflection of the beam in the ẑ direction, x̂ is
the coordinate along the beam length, and t̂ is time. The linear
viscous damping coefficient per unit length c is used to account
for damping losses due to the beam motion through air, A is the
cross sectional area, I is the second moment of area, VDC is the
applied DC voltage and the other parameters are defined in Table
1.

The equations of motion of the chaotic oscillator containing
the electrostatic actuator and the controller then follow where
both sides of the electrostatic actuator equation of motion are
multiplied by (d − ŵ(x̂, t̂))2 and then the equations are nondi-
mensionalized:

 ẅ(1−w)2 +w(4)(1−w)2 +µẇ(1−w)2 = α(Vin−V̂c)2

˙̂Vc =−KI
(
V̂c−

(a0 +a1q1 +a2q2
1)√

α

) (2)

where w is the nondimensional beam deflection (nondimension-
alized with respect to the initial gap d) in the ẑ direction(Figure
1), which is a function of time and the coordinate along the beam
length (w(x, t)), q1 is the nondimensional beam tip deflection,
and time t is nondimensional with respect to a time constant

T =

√
ρAL4

EI
. (3)

The two system parameters, µ and α, are given by

µ = 2ζωn, α =
ε0bL4

2EId3 (4)

where ζ is the damping ratio found experimentally and ωn is the
nth canonical natural frequency of a cantilever beam. All other
parameters used are listed in Table 1. In Equation 2, ẅ and ẇ
are the second and first derivatives with respect to time and w(4)

is the fourth derivative with respect to the coordinate along the
length. V̂c is the output voltage of the controller, and Vin is the
input voltage consisting of AC and DC components:

Vin = VDC +VAC cos(ωt) (5)

Figure 1: Schematic of the microbeam oscillator (Arrows indicate the
field direction).
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Table 1: Actuator parameters

Parameter Symbol Value

Density ρ 2331 kg
m3

Beam Length L 157.4 µm

Beam Width b 10 µm

Beam height h 1.9 µm

Initial gap d 1.9 µm

Nondimensional damping coefficient µ 0.6153

Permittivity of free space ε0 8.85E-12 F
m

Modulus of Elasticity E 150 GPa

Integrator gain
KI

T
0.1776

1
s

To obtain the ordinary differential equations of the system,
separation of variables is used:

w(x, t) = Φ1(x)q1(t) (6)

where Φ1(x) is the 1st cantilever beam mode shape normalized
with respect to the beam tip modal deflection so that Φ1(1) = 1,
and q1 is the normalized beam tip deflection. Galerkin’s method
is then applied to obtain a set of ordinary differential equations:
(see Towfighian et. al [26] for more details)


(q̈1 +µq̇1 +ω2

1q1)(1+ c1q1 + c2q2
1) = c3α(Vre f −V̂c)2

˙̂Vc =−KI
(
V̂c−

(a0 +a1q1 +a2q2
1)√

α

) (7)

where c1, c2, c3 are Galerkin’s nondimensional coefficients. To
implement the electronic circuit of the controller, the second
equation is rewritten to include dimensional time:

˙̂Vc =−KI

T

(
V̂c−

(a0 +a1q1 +a2q2
1)√

α

)
(8)

where the value of the integrator gain
KI

T
is given in Table 1. The

coefficients in the above equation are chosen to be realizable in
an electronic circuit and V̂c has a 35 V range (-15 V to 20 V) as
illustrated in Figure 2, which is 2.29 times less voltage compared
to the previous design [24].

Figure 2: controller output voltage range Vc over the nondimen-
sional gap when controller coefficients are

a0√
α

= 20.1939 V,
a1√

α
=

142.6973 V,
a2√

α
= 142.6973 V .

The parameters for the simulations of the cantilever beam
are identified experimentally. The natural frequency of the can-
tilever beam has been found experimentally to be 99.38 kHz and
the beam length was determined to be 157 µm.

3 Static Analysis
The controller is redesigned to generate chaotic vibrations

with tunable potential wells and reduced input voltage. To study
the behavior of the chaotic actuator, the location of the equi-
librium points and their stability conditions should be known.
The location of the equilibrium points, the static response, is
found from Equation 7 by setting the derivatives to zero, input-
ing the DC voltage, and solving numerically. The stability of the
points are found by linearizing Equation 7 around the equilib-
rium points and finding the eigenvalues. Static responses for two
designs of the controller are illustrated in Figures 3 and 4 and the
eigenvalues at Vin = 2 V in Figure 4 are listed in Table 2.

Table 2: Eigenvalues for the equilibrium points at Vin = 2 V. (# corre-
sponds to the numbers shown in Figure 4)

# q1 Eigenvalue 1 Eigenvalue 2

1 0.066 -0.308+5.72i -0.308-5.72i

2 0.458 2.43 -3.04

3 0.555 -0.308+2.11i -0.308-2.11i

4 0.962 15.89 -16.51
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Figure 3: Non-dimensional deflection of the beam tip versus volt-
age when controller coefficients are

a0√
α

= 3.8697 V,
a1√

α
=

−88.0195 V,
a2√

α
= 104.78 V (first design).

Figure 4: Non-dimensional deflection of the beam tip versus volt-
age when controller coefficeints are

a0√
α

= 20.1939 V,
a1√

α
=

142.6973 V,
a2√

α
= 142.6973 V (second design).

It can be concluded from Figure 4, and Table 2 that points 1
and 3 are the stable equilibrium points and points 2 and 4 are un-
stable eqilibrium points. The nondimensional natural frequency
of the lower and upper equilibrium points (1 & 3) are 5.72 and
2.11 and correspond to 161.7 kHz and 59.6 kHz respectively.

The bistability region for the first design in Figure 3 is 5.3 V,
which is the same as the bistability range in Towfighian et al.
[24], but the bistability range for the second design in Figure
4 is as large as 20.95 V. The first design bi-stability operating
voltages are 2.6 V to 7.9 V, whereas the operating votlages for the
second desgin are 1.75 V to 22.7 V. The operating voltages show
significant reduction in comparison to the 110 V in Towfighian
et al. [24] reducing the demand on the electronic components
(Figure 5). The first design is suitable when the location of the

upper stable equilibrium point is required to be less than 70%
of the gap and the input voltage is limited to 8 V. On the other
hand, the second design is suitable when the location of the upper
eqilibrium point can reach 90% of the gap. The two alternative
designs are valuable with regard to different design objectives or
potential implementation complications.

Figure 5: Nondimensional deflection of the beam tip versus voltage VDC
for a previous controller design reported in [24].

The redesigned controller has also the advantage of tunabil-
ity in terms of the size of the potential wells of the chaotic at-
tractor. This property can be seen in Figures 3 and 4. That is, at
low voltages in the bistability region, the upper equilibrium point
is close to the lower saddle, while the lower equilibrium is far-
ther from the saddle indicating a larger basin of attraction for the
lower well. As the voltage increases, it reverses; the upper well
basin of attraction becomes larger than the lower well basin.

4 Dynamic Analysis
The steady state dynamic response of the oscillator to AC

voltages is found by solving Equations 7 numerically for 5000
periods of AC excitation and keeping the last 128 periods. The
DC voltage is set to VDC = 2 V and the ranges for AC amplitude
and frequency where chaos occurs are found.

Exciting at the nondimensional frequency of 3.2 or the di-
mensional frequency of 90.4 kHz, which is between the natural
frequency of the two equilibrium points, chaos occurs at the AC
amplitude of VAC = 1 V (Figure 6). Figure 6 shows that the mo-
tion develops in the lower well and then it goes beyond the bump
and starts oscillating between the two potential wells, then sud-
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denly it comes back to the lower well, and the motion repeats
itself. This type of chaos is intermittent chaos different from
chaos through period doubling [25]. The chaotic motion devel-
oped in this case is mostly in the lower well and between the two
wells as the phase portrait and times series of the deflection show.
The controller voltage is changing between 10 to 19 V and it is
significantly reduced from 50 V peak to peak in Towfighian et
al [25].

Figure 6: Top: phase portrait of chaotic oscillation , Bottom left: Nondi-
mensioanl beam tip deflection, Bottom right: Controller output volt-

age Vc, for the second design and
KI

T
= 0.1776

1
s

, once DC voltage
VDC = 2 V, the amplitude of excitation VAC = 1 V, and the frequency
of excitation is 90.4 kHz. (crosses show the location of saddles and
circles show the location of stable equilibrium points)

5 Conclusion
A chaotic oscillator is developed in this study by adding a

controller to drive an electrostatic actuator to chaos. The con-
troller has a quadratic function and can be implemented on an
analog circuit. It regulates the voltage of the actuator and makes
it bi-stable for a range of DC voltage. Controller performance
has been improved since a previous study [24] to require less in-
put voltage and to generate half the voltage thus decreasing the
electronic circuit component demands.

The static response of the system is presented for two al-
ternative designs of the controller. It reveals that the improved
controller not only has a wider voltage range for bistability, but
also has lower operating input voltages. The improved controller
also offers a chaotic oscillator with tunable basins of attraction.
In other words, the expansion of the choatic oscillation over the
gap can be adjusted by changing the input DC voltage.

The dynamic steady state response of the system to AC vot-
lages is also presented. By exciting the system with AC voltage

at a freqeuncy between the natural frequencies of the two poten-
tial wells intermittent chaos is obtained. This intermittent chaotic
motion is located in the lower well and between the two potential
wells. It is observed that the voltage generated by the controller
is significantly reduced since the previous study [25].
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