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Analysis of a Chaotic Electrostatic
Micro-Oscillator
The closed-loop dynamics of a chaotic electrostatic microbeam actuator are presented.
The actuator was found to be an asymmetric two-well potential system with two distinct
chaotic attractors: one of which occurs predominantly in the lower well and a second
that visits a lower-well orbit and a two-well orbit. Bifurcation diagrams obtained by
sweeping the ac voltage amplitudes and frequency are presented. Period doubling, re-
verse period doubling, and the one-well chaos through period doubling are observed in
amplitude sweep. In frequency sweep, period doubling, one-well, and two-well chaos,
superharmonic resonances and on and off chaotic oscillations are found.
�DOI: 10.1115/1.4002086�
Introduction
Chaos is a type of nonlinear vibration that is undesirable in the

ynamic response of most systems; however, it has proven useful
t the macroscale in structural health monitoring of aeroelastic
ystems �1–3�, fault detection in roller bearings �4�, and detection
f corrosion �5�. The common useful characteristics in all these
pplications are the sensitivity of the chaotic response to varia-
ions in the structure properties and its capability as a detection

echanism.
In microscale, nonlinear responses, bistability, and chaos have

een reported by researches in atomic force microscopy �AFM�
6–11� and electrostatic microelectromechanical system �MEMS�
12–22�. Chaos has been observed in tapping mode AFM via
imulations and experiments �6–8�. An AFM probe consists of a
icrocantilever beam with a tip at its end in close proximity to the

urface of a specimen. Lee et al. �9� found bistability in static
esponse and hysteretic jumps in the frequency response when the
istance of the tip and sample was less than 10 nm. The potential
nergy in the bistable region was an asymmetric two-well poten-
ial. They also found that frequency response at large amplitudes
ontained higher harmonics due to period doubling.

Ashhab et al. �7� reported chaotic vibrations when the AFM
robe is driven near its natural frequency to tap the sample sur-
ace. They modeled the beam-tip-sample interaction accounting
or the damping and forcing. They found a homoclinic orbit and
sed Melnikov’s method to find how that orbit breaks up in the
resence of perturbations leading to chaos. Experimental studies
10,11� have also reported chaos in AFM where it was observed
nd characterized using fractal and correlation dimensions,
yapunov exponents, and noise iteration calculations. The re-
orted chaos was “weak,” containing strong periodic oscillation.

There are a few studies on the nonlinear response of electro-
tatic MEMS �20,21�. Rhoads et al. �20� studied the softening,
ardening, and mixed behaviors for a fixed-fixed electrostatic mi-
robeam. They assumed that damping and electrostatic forces are
mall and used perturbation methods to find the frequency re-
ponse of the beam at small amplitudes away from dynamic pull-
n. They specified ac and dc voltage ranges for stable and unstable
ibrations of the undamped beam. Zhang et al. �21� studied soft-
ning in electrostatic microcantilever beam using a lumped model
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that had both electrostatic force and squeeze film damping. They
reported period doubling bifurcations in their simulations.

A number of researches �16–19� have studied the dynamic in-
stabilities in electrostatic actuators due to pull-in and snap-
through. Krylov �17� studied the instability of the actuators for
voltages above dynamic pull-in using a reduced order model in-
cluding squeeze film damping. Applying a dc step input, he found
that the Lyapunov exponent of the dynamic response is positive
for voltages above dynamic pull-in indicating unstable vibrations.
The squeeze film damping was found to be significant for the
electrode vibrating close to the substrate.

Bistability in MEMS, the potential behavior for the creation of
chaos, was analyzed for electrostatic actuators �16–19�, paying
more attention to static response than dynamic responses. Zhang
et al. �16� investigated the static response of an arch-shaped beam
that shows either snap-through and pull-in or only pull-in under
electrostatic loading. The snap-through response led to bistability
with a large amplitude response. Krylov et al. �18� extended the
study of the static response of arch-shaped beams by finding the
closed form of the initial elevation required for snap-through to
happen. They investigated the effect of elevation on the differ-
ences between snap-through and pull-in voltages. Experimental
results of the static response were in close agreement with the
simulation results. Das et al. �9� derived the pull-in and snap-
through voltages of arched beams using a model including the
material and geometrical nonlinearities in finite element and
boundary element methods. They simulated the dynamic pull-in
and snap-through response without damping.

Chaos in electrostatic MEMS was first investigated by Bienst-
man et al. �12�. They developed an autonomous impact resonator
by taking advantage of the pull-in instability in an electrostatic
microbeam resonator without a separate control circuit. The fre-
quent impact, which produced chaos, was created by driving the
electrode at a voltage larger than the pull-in voltage. Through
simulations they observed chaotic behavior in the system re-
sponse. They also reported experimental evidence of period dou-
bling.

Chaos has also been observed in noninterdigitated comb drive
electrostatic actuators. Wang et al. �13� modeled it using a mass-
spring system as a Duffing oscillator with a two-well potential
field. Through simulations and experiments, they have shown cha-
otic oscillations in the two-well region of the system. As an ex-
tension to this work, De and Aluru �14� presented a model for the
system including the electrostatic forcing, nonlinear stiffness, and
squeeze film damping. They showed that even in the absence of
the nonlinear mechanical and fluidic forces, the system had cha-

otic motion. Thus, the electrostatic forces were found to be the
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Downlo
rimary mechanism producing chaos. The boundaries for chaotic
otion in the amplitude-frequency space of the applied voltage
ere found both from experiments and from Melnikov’s method
y DeMartini et al. �15�. It was found that Melnikov’s criteria
nderestimated the ac drive voltage threshold for chaos due to the
act that it predicted transient or attracting chaos and the experi-
ents were showing only the boundary of attracting chaos.
Chaos has also been studied in a closed-loop feedback control

ystem of an electrostatic actuator with capacitive sensing �22�.
he open-loop micro-actuator had one stable equilibrium point

hroughout its operating range while the closed-loop system added
nother stable equilibrium point in a limited interval of the oper-
ting voltage, thus making the system bistable. Liu et al. �22�
eported chaos and Hopf bifurcation in response of the electro-
tatic microcantilever beam to strong force disturbances using a
umped parameter model. Their goal was to avoid bistability and
onlinear dynamics.

This paper is focused on developing a nonlinear chaotic reso-
ator that can be used for high resolution sensing. The goal is not
o avoid nonlinear dynamic behavior but to employ it for achiev-
ng better resolution and sensitivity, which requires a thorough
tudy of the complex nonlinear oscillations. In this work, nonlin-
ar vibrations for the closed-loop feedback system by Liu et al.
22� is investigated in detail. The regions of the parameter space
ncluding controller parameters and actuation voltages for having
istability are explored and then bistability is used for the creation
f chaos. Finally, bifurcation diagrams are presented that show the
ctuation ac voltage and frequency ranges required for chaotic
ibrations.

Open-Loop System
The open-loop micro-actuator system consists of two electrodes

hat form a capacitor, one electrode is the cantilever beam on top
nd the other is the electrode underneath �Fig. 1�. The applied
oltage between the two electrodes creates an electrostatic force,
he actuation force that moves the beam.

The steps taken in system modeling are as follows: �1� a partial
ifferential equation representing the motion of a continuous mi-
rocantilever beam under electrostatic loading are formulated, �2�
he distributed-parameter equation of motion is discretized using
alerkin’s method with the mode shapes of a cantilever beam
sed as basis functions, and �3� the number of modes required to
btain convergence for the static deflection of the beam �pull-in
rofile� under electrostatic loading are determined.

The equation of motion for a damped cantilever beam in an
lectrostatic field is found, using the Euler–Bernoulli beam model,

ig. 1 Schematic of microbeam oscillator. The arrows indicate
he electrostatic field.
o be
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�A
�2ŵ�x̂, t̂�

� t̂2
+ EI

�4ŵ�x̂, t̂�
� x̂4 + c

�ŵ�x̂, t̂�

� t̂
=

�0bVdc
2

2�d − ŵ�x̂, t̂��2
�1�

where ŵ�x̂ , t̂� is the deflection of the beam in the ẑ direction, x̂ is
the coordinate along the beam length, and t̂ is time. The linear
viscous damping coefficient per unit length c is used to account
for damping losses due to the beam motion through air, Vdc is the
applied dc voltage, and the other parameters are defined in Table
1. The right hand side represents the electrostatic force per unit
length. Following Nayfeh et al. �23�, we multiply both sides by
�d− ŵ�2 and introduce the following nondimensional parameters:

x =
x̂

L
, w =

ŵ

d
, t =

t̂

T
�2�

where L is the beam length, T is

T =��AL4

EI
�3�

to rewrite the equation of motion �1� in nondimensional form as

�2w

�t2 �1 − w�2 +
�4w

�x4 �1 − w�2 + �
�w

�t
�1 − w�2 = �Vdc

2 �4�

where

� =
cL4

EIT
�5�

and

� =
�0bL4

2EId3 �6�

representing the electromechanical coupling coefficient. The solu-
tion to Eq. �4� is sought using Galerkin’s method with a trial
function of the form

w�x,t� = �
n=1

M

�n�x�qn�t� �7�

where �n�x� is the nth cantilever beam mode shape normalized
with respect to the beam-tip modal deflection so that �n�1�=1, qn

is the nth generalized coordinate, and M is the number of modes
�degrees of freedom� considered in the expansion. Using Galer-
kin’s method and separation of variables �24�, one gets a set of M
ordinary second-order differential equations in terms of qn, where
n=1, . . . ,M. For a one-mode approximation, the equation is

�q̈1 + �q̇1 + �1
2q1��1 + c1q1 + c2q1

2� = c3�Vdc
2 �8�

where overdot means derivative with respect to time, �1 is the
first natural frequency of the beam, and c1, c2, and c3 are found

Table 1 The electrostatic actuator parameters †22‡

Parameter Symbol Value

Amplification factor � 1.5274 V
Controller gain G 1
Density � 2331 kg /m3

Beam length L 200 �m
Beam width b 80 �m
Beam height h 4.5 �m
Initial gap d 3 �m
Nondimensional damping coefficient � 0.73
Quality factor Q 4.817
Permittivity of air � 8.85�10−12 F /m
Modulus of elasticity E 166 GPa
Controller damping r 100
after applying Galerkin’s method.
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2.1 Static Analysis. The static equilibrium equations of the
eam-tip deflection are obtained for the multidegree-of-freedom
odel by setting the time derivatives to zero in the equation of
otion. For the multi-DOF model, the result is a set of M cubic

olynomial equations in terms of qn, n=1, . . . ,M and their prod-
cts. Solving these equations yields the beam-tip deflection

w1 = w�1� = �
n=1

M

qn �9�

or a one-mode approximation, the equilibrium equation is

�1
2�q1 + c1q1

2 + c2q1
3� = c3�Vdc

2 �10�

he solution of the equilibrium equation for the nondimensional
eam-tip deflection as a function of dc voltage is shown in Fig. 2.
he pull-in point, where the slope of the deflection versus voltage
ecomes infinite, is predicted to occur at 45% of the gap between
he electrode and the beam, which is larger than the 33% predicted
y using a single DOF lumped parameter model �25�.

The local stability of the two branches of equilibrium points
elow and above the pull-in point is examined by finding the
igenvalues of the Jacobian matrix evaluated at the equilibrium
oint. It is found that the real parts of the eigenvalues of the lower
ranch are always negative �stable�, while one of the eigenvalues
f the upper branch is always positive �unstable�. At the pull-in
oint, one of the eigenvalues is zero, indicating a saddle-node
ifurcation. For example, at Vdc=75 V and using the one-mode
odel, the eigenvalues at the lower equilibrium point w1=0.2 are

−0.36	2.8i�. At the upper equilibrium point w1=0.83, the eigen-
alues are �0.31� and �
4.44�. Therefore, the lower equilibrium is
stable equilibrium, while the upper equilibrium is an unstable

quilibrium. Furthermore, the nondimensional natural frequency
f the stable equilibrium point �the imaginary part of the eigen-
alues� is smaller than that of the straight beam, 2.8 versus
.5158, which indicates a decrease in linear stiffness due to the
lectrostatic force.

The effect of the number of modes used in the Galerkin ap-
roximation �number of degrees of freedom� on convergence is
hown in Fig. 2. Using the first three mode shapes, asymptotic
onvergence is obtained over the full extent of the lower branch of
quilibrium solutions; six modes are required for the solution to

ig. 2 Nondimensional deflection of the beam tip versus volt-
ge Vdc
onverge on the upper branch.
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3 Closed-Loop System
The control law introduced by Liu �22� is used to create chaos

in the system. The creation of chaos is made possible by using the
controller to create an additional stable potential well in the sys-
tem. The schematic closed-loop system is shown in Fig. 3. The
cantilever beam is actuated by the electrostatic forcing, which is
controlled by the voltage regulator �controller�. The voltage regu-
lator is an electronic circuit designed to have the same function as
the capacitive sensor in Ref. �22�. In Fig. 3, Vref is the reference

input voltage, V̂s is the controller output voltage, and G is a gain.

The voltage applied between two electrodes is G�Vref− V̂s� that
creates the electrostatic forcing on the cantilever beam and is pro-

portional to Fe�G2��Vref− V̂s�2 / �d− ŵ�2�.
The equations for the closed-loop system are obtained by re-

placing Vdc in Eq. �4� with a voltage difference between a refer-
ence and the controller output. Therefore, the equation of motion
becomes

ẅ�1 − w�2 + w�4��1 − w�2 + �ẇ�1 − w�2 = G2�Vr − Vs�2 �11�

where Vs and Vr are voltages normalized according to

Vr = ��Vref and Vs = ��V̂s �12�

The differential equation for the controller voltage �Vs� is �22�

V̇s = − r�Vs −
w�1�

1 − w�1�
���� �13�

where � and r are referred to as the amplification factor and
controller damping, respectively. Equations �11� and �13� are
treated by using Galerkin’s method with the trial function from
Eq. �7�, similar to Sec. 2.1. For a one-mode approximation, we get

�q̈1 + �q̇1 + �1
2q1��1 + c1q1 + c2q1

2� = c3G2�Vr − Vs�2

�14�

V̇s = − r�Vs −
q1

1 − q1
����

3.1 Static Analysis. To investigate the static response of the
closed-loop system, we obtain the static equilibrium equations
from Eq. �14� by setting the time derivatives to zero. Conse-
quently, Vs is found to be

Vs =
q1

1 − q1
��� �15�

Substituting Eq. �15� into the first equation of Eq. �14� yields

�1
2q1�1 + c1q1 + c2q1

2� = c3�G2�Vref −
q1

1 − q1
��2

�16�

which simplifies to

q1
5 + a4q1

4 + a3q1
3 + f2�Vref,G�q1

2 + f1�Vref,G�q1 + f0�Vref,G� = 0

�17�

where a3 , a4 are constants and the fn�Vref ,G� are the second-
order polynomials in input voltage Vref and controller gain G. The
solution to Eq. �17� is obtained numerically for a given Vref.

Figure 4 depicts the nondimensional beam-tip deflection versus

Fig. 3 Closed loop system schematic
voltage Vref when one to five modes are used in the Galerkin
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Downlo
xpansion. The profile has two turning points, which have infinite
lopes, and which are saddle-node bifurcation points. Once we
ncrease the voltage, two fixed points appear at the first turning
oint, and two fixed points disappear at the second turning point
howing saddle-node bifurcation. The stability of the fixed points
s investigated in Sec. 3.2.1. As can be deduced from Fig. 4 and
rom the stability analysis of the fixed points, part of the profiles
etween the two turning points �covered by a gray area in the
gure� is the location of unstable equilibrium points at a specified
oltage. Above and below the shaded region on the profiles are the
ocations of the stable equilibrium points. There also exists a line
f fixed points close to unity, which, with its close proximity to
ull-in, is outside our interest in this study.

Increasing the number of mode shapes widens the voltage range
etween the two stable parts of the curve by moving the first
ifurcation point to a lower voltage. In the bistability region, the
pper equilibrium point is larger for models with a higher number
f modes, meaning that for a certain amount of forcing, models
ith more modes deflect more �softening effect�. Similarly, for a

ertain deflection amount e.g., 0.9, models with fewer modes need
ore voltage to reach that level of deflection. This effect shows

he system is more flexible than would be indicated by using a
ingle DOF model.

Convergence on the lower branch of solutions in Fig. 4 is
chieved using the first two mode shapes only. For the middle and
pper branches, convergence is achieved using the first five modes
xcept in the vicinity of the first turning point. Overall a three-
ode-model shows reasonable accuracy across the full voltage

ange.
Another way of presenting the roots of the equilibrium Eq. �17�

s in the complex plane, as depicted in Fig. 5. The arrows show
he direction of increasing voltage Vref. Number 1 shows the lo-
ation of the roots for the region of voltages less than 65 V, num-
er 2 refers to region of voltages between about 65 V and 90 V,
nd number 3 refers to voltages higher than 90 V in Fig. 4. From
ig. 5, it can be deduced that by increasing the voltage, in region
, the two complex roots on the right side move leftward and
pproach the real axis and the other real root on the left is moving
n the real axis toward the right. As the voltage is increased in
egion 2, the two complex roots on the right side join on the real
xis and move in two different directions, while the third root on
he left side continues moving to the right along the real axis. So
n this region, we get three real roots that correspond to three
quilibrium positions. Subsequently increasing the voltage in re-

ig. 4 Nondimensional deflection of the beam tip versus volt-
ge, Vref, for the closed-loop system
ion 3 results in one real root continuing to move to the right
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along the real axis and the other two roots, those that are converg-
ing on one another, ultimately meeting and bifurcating into the
imaginary parts of the complex plane. The same results can also
be obtained for an actuator with different dimensions by adjusting
the controller gain G. Since � is a function of dimensions �Eq.
�6�� and according to Eq. �16�, it is the product of G2� that deter-
mines the location of the polynomial roots.

The size of bistability region can be adjusted by the parameters
of controller gain G and amplification factor � according to Eq.
�16� as all other coefficients are fixed because they are either
function of dimensions �e.g., �� or the Galerkin coefficients �e.g.,
c1 , c2 , c3�. The effect of controller gain G on the size of the
bistability region is depicted in Fig. 6. At a critical gain value, the
bistable region vanishes. For gain values larger than 3, the two
turning points change to an inflection point. This point is a codi-
mension 2 bifurcation, cusp point, in the parameter space of volt-
age V and gain G where a triple repeated root of the polynomial
appears. This bifurcation is shown in Fig. 7. The solid lines show
the location of the saddle-node bifurcation points. The intersection
of the two solid lines is the location of the cusp point, beyond
which the system has one equilibrium point. For the system to be
bistable, the controller gain has to be less than the threshold de-
fined by the cusp point. As shown in Fig. 6, the smaller the gain is,
relative to the threshold, the larger the voltage range for bistability
is. One of the main findings is also achieved here for gains larger
than the threshold �G=4� shown, which demonstrates that the
system can be stable for the whole gap distance. However, the

Fig. 5 Roots of the equilibrium equation q1 in complex plane

Fig. 6 Effect of the controller gain G on the static deflection

versus voltage, Vref, curve
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ynamic results in Sec. 3.2.2 show the system is single stable for
3% of the gap and beyond that pull-in happens because of the
resence of the upper saddle.

The bistability threshold, which classifies the system behavior,
s identified by finding the triple repeated root of Eq. �17�, i.e., by
olving

F�q1� = �q1 − p0�3�q1
2 + p1q1 + p2� = 0 �18�

here p0 is the triple root. The first and second derivatives with
espect to q1 also vanish at the triple root:

	 dF

dq1
	

q1=p0

= 0 and 	d2F

dq1
2 	

q1=p0

= 0 �19�

olving Eqs. �18� and �19� numerically results in the coordinates
f the cusp point �Vref ,G� and the triple real root of p0. The
hreshold of bistability was found to be Gcr=3.471 and Vcr
26.965 V at the nondimensional deflection qcr= p0=0.626.
The other parameter affecting the size of bistability region is

he amplification factor � that can tune both the voltage range as
ell as the deflection range for bistability. Equation �16� indicates

hat increasing � decreases the magnitude of the electrostatic
orce, helping the spring force to bring the system back to equi-
ibrium and lower deflections. This is demonstrated in Fig. 8 using
one-mode approximation for a controller gain of G=0.8. Figure
shows that increasing the amplification factor � moves the up-

er equilibrium away from pull-in, which makes the system safer
o operate. On the other hand, the disadvantage of increasing � is

ig. 7 Stability diagram in the parameter space of controller
ain, G, and voltage, Vref

ig. 8 Effect of amplification factor, �, on static pull-in graph

or G=0.8
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that the voltage range for the bistability decreases from 9 V for
�=1.527 V to 4.5 V for �=3 V. Therefore, the controller gain
G and the amplification factor � need to be balanced to obtain a
wide bistable region at deflection values far from pull-in. By
choosing G=0.8 and �=3 V, we obtain a reasonable voltage
range for bistability of 4.5 V and an upper stable equilibrium that
is less than %90 of the gap. Henceforth, we will adopt these
values for the controller gains in conjunction with system param-
eters in Table 1 for the dynamic analysis of the bistable system.

3.2 Dynamic Analysis. Here the stability of the fixed points
will be examined and then the dynamic responses are presented
using a one-mode-model. The use of multiple modes to study the
dynamic response was examined in a previous work �24�. It was
shown that using the first three mode shapes in the model has the
same qualitative dynamic behavior as using the first mode shape
only. The difference is that the response of the three mode shape
model features small oscillations on top of the phase portrait of
the first mode shape. Due to its extensive computational time, a
one-mode-model is used in this study. To analyze the closed-loop
dynamics after adding the controller, first the state space equations
are derived. Derivation is performed by discretizing Eqs. �11� and
�13� using Galerkin’s method. Using the first mode approxima-
tion, the resulting two differential equations would be in terms of
q1, the normalized beam-tip deflection for a single mode. Letting
y1=q1, y2= q̇1, and y3=Vs, the system state space equations be-
come

ẏ1 = y2

ẏ2 = − �y2 − �1
2y1 +

c3G2�Vr − y3�2

1 + c1y1 + c2y1
2 �20�

ẏ3 = − r�y3 −
y1

1 − y1
����

For the dynamic analysis, the reference voltage, Vref, will include
a dc and an ac component so that the nondimensional reference
voltage Vr is

Vr = ��Vref = ���Vdc + Vac cos��t�� �21�

where � is the nondimensional circular frequency of excitation,
and Vac and Vdc are the ac and dc voltages, respectively.

3.2.1 Stability of Fixed Points. To determine the stability char-
acteristics of the fixed points, Eq. �20� is linearized about an equi-
librium point. Equation �15� is used in Eq. �20� to reduce the third
order system to a second-order system. The eigenvalues of the
Jacobian of the second-order system are then found at a given
voltage for the corresponding static deflection. Table 2 shows the
eigenvalues for the fixed points at input voltage, Vref=110 V �Fig.
8�. Only four roots of Eq. �17� are listed in Table 2 since the fifth
root is aphysical with a value greater than 1. The first and third
fixed points are stable foci, whereas the second and fourth fixed
points are saddles.

The eigenvalues of the stable foci also reveal the magnitude of
the natural frequency. In Table 2, the nondimensional frequencies
for the first and third fixed points are 1.97 and 4.45, respectively.

Table 2 Eigenvalues for the fixed points at Vref=110 V in Fig. 8
for G=0.8, �=3 V

q1 Eigenvalue 1 Eigenvalue 2

0.37 −0.37−1.98i −0.37+1.98i
0.68 1.60 
2.33
0.864 −0.37−4.45i −0.37+4.45i
0.985 61.17 
61.90
Since the canonical frequency for the undeflected cantilever beam
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s 3.5158 �corresponding to 153.3 kHz�, decreasing the frequency
t the lower stable equilibrium indicates a linear softening effect
f the electrostatic forces and increasing the frequency at the up-
er stable equilibrium point reveals a linear hardening effect of
he controller. Figure 9 shows the nondimensional frequency ob-
ained for the lower and upper stable equilibrium points using a
ne-mode approximation. It is interesting to note that in the bista-
ility region �108–112.5 V�, the system has a distinct fundamental
atural frequency for each equilibrium point shown with black
ines. In this graph, doubled and tripled natural frequencies of the
ower equilibrium are also shown with blue and magenta lines,
espectively; their intersections with the dashed black line reveal
he possible interaction between the two equilibrium points. That
s, once we excite the upper equilibrium at its natural frequency at
hose intersections, it can excite the lower one at its subharmonics.

3.2.2 Dynamic Response Results. The dynamic response of
he system is first studied for the single stable system mentioned
n Sec. 3.1 for a controller gain larger than the threshold value,
hen the analysis for the bistable system follows, which will be
sed for the creation of chaos. Results are obtained by numeri-
ally solving Eq. �20� using long time integration.

For the single stable system with the static profile of Fig. 6 and
gain of G=4, Fig. 10 depicts the phase portrait and the time

eries of the beam deflection both converging to the equilibrium
oint at 0.8309 of the gap. The graph is drawn for the maximum
dc=26.2 that the system can have one stable point. Increasing the
oltage makes the top electrode pull-in to the bottom electrode

ig. 9 Nondimensional circular frequency versus input volt-
ge Vref

ig. 10 The nondimensional phase portrait and beam deflec-
ion, Vs, for system parameters of G=4, �=1.5274 V, r=100,
=0.73, Vac=0 V, Vdc=26.2 V, and initial condition of „q1

˙
0.3, q1=0, Vs=0.009…
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and the system loses its stability. The continuous stable solution
enables actuation up to 83% of the initial gap higher than 60%
achieved by Lu and Fedder �26�.

To create chaos for the bistable system, one needs to choose the
operating voltage from the bistability region because outside this
region only periodic orbits are observed and as these orbits grow
�by increasing the voltage� pull-in happens. We set the dc voltage
to Vdc=110 V with G=0.8 and �=3 V for all dynamic results of
the bistable system from this point forward. Figures 11 and 12
show the dynamic response of the system, starting from an initial
condition in the vicinity of the upper equilibrium point, in the
bistability region for Vac=0.7 V and Vac=0.9 V, respectively.
The normalized controller output voltage amplitude �Vs� is found
to be a maximum of 0.5 in the two cases, this value, when divided
by ��=0.014, yields 35.7 V. Figure 11 shows a limit cycle around
the upper equilibrium point in the upper potential well. Figure 12
shows the boundaries of the upper potential well. As the operating
ac voltage is increased from 0.7 V to 0.9 V, the orbit becomes too
large for the upper well, touches the stable manifold of the saddle,
and escapes to the lower well on a small limit cycle around the
lower equilibrium point. The size of the lower-well orbit at Vac
=0.9 V is smaller than the size of the upper well orbit at Vac
=0.7 V, 0.02 versus 0.05, which indicates that the lower potential
well is deeper than the upper well. When the orbit escapes the

Fig. 11 The phase portrait, beam-tip deflection w1 and control-
ler output voltage, Vs, for �=0.7, �=3.5158, Vac=0.7 V, and the
initial condition „q1=0.86, q̇1=0, Vs=0.266…. The small circle
and the cross show the location of the stable focus and saddle,
respectively.

Fig. 12 The phase portrait, beam-tip deflection w1, and nor-
malized controller output voltage, Vs, for system parameters of
�=0.7, �=3.5158, Vac=0.9 V, and initial condition of „q1

˙
=0.86, q1=0, Vs=0.266…
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Downlo
pper well to the lower one, it never comes back and it keeps
scillating in the lower well within a small limit cycle. Now that
he asymmetry in the potential wells is known, we examine how
o create chaos both in one and two potential wells.

3.2.3 Force Sweep. We sweep the amplitude of the harmonic
xcitation voltage Vac while holding the excitation frequency fixed
t �l=1.98, the nondimensional natural frequency of the lower
quilibrium, to obtain the bifurcation diagram of the actuator
hown in Fig. 13. The solution to the dynamic system is found for
duration of 4000 periods of excitation, and the data for the last

28 periods are presented. Poincaré sections are taken by sam-
ling the data at the period of excitation starting from the maxi-
um displacement. The amplitude of excitation starts at 4 V, and

nce we increase it, the amplitude of response increases until we
bserve period doubling, and periods 2 and 4 and higher appear in
ne well, as illustrated in Fig. 14. Results are shown for the last
00 time units after the transients disappeared at 4 V, 4.4 V, and
.7 V. Multiple periods are recognized by the fast Fourier trans-
orm �FFT� plot of the beam-tip displacement time series profile.
n the FFT of period 2 �Fig. 14 middle�, in addition to the peaks at
he period one �top�, we see the appearance of middle peaks. This
rend is also seen in the FFT of period 4 �bottom�.

Following the period doubling in Fig. 13, chaos happens in one
ell very close to period 8 and the attractor size keeps increasing.
haos occurs in two bands, one around the lower equilibrium and

he other around the middle saddle. The size of the lower band is

ig. 13 Bifurcation diagram constructed from a force sweep
ac at fixed nondimensional natural frequency of lower well �l
1.98

ig. 14 The phase portraits and fast Fourier transforms using
one-mode model, the system parameters �=0.7, �=1.98.

Top… Periodic Vac=4.1 V. „Middle… Period two Vac=4.4 V. „Bot-

om… Period four Vac=4.7 V.
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larger than the upper band. The phase portrait of the chaotic at-
tractor is shown in Fig. 15 for the voltage of 4.861 V. The two
band attractor crosses the zero velocity axis at four solid thick
areas, two of which are joined on the left side. The Poincare
section at periods of excitation in Fig. 13 records the points in Fig.
15 at the intersections of two solid areas on the right with the zero
velocity axis around 0.45 and 0.75. The difference in the attractor
band size is obvious by comparing the thickness of the solid lines
about 0.45 and 0.75 of the gap. A FFT plot in Fig. 15 is zoomed in
by the rectangle area that reveals the broad range of frequencies
present only in a chaotic type of vibration. The actuator oscillates
primarily in the lower well with brief excursions into the upper
well. Comparing these results to the reports of Nayfeh et al. �27�
and Najar et al. �28� of period doubling followed by pull-in in a
single-well actuator, we conclude that the upper well functions as
a barrier against pull-in in this case. In other words, once the
energy becomes large, the orbit passes the potential hump to the
upper well that consumes its energy and therefore protecting it
from pull-in.

Inside the chaotic attractor presented in Fig. 13, there also ex-
ists a period of 10 window for the excitation voltage range of
�4.875–4.888� �Fig. 16�. Consequently after period 10, chaos fol-
lows and the attractor size keeps decreasing until it disappears
through a reverse period doubling ending in a period 2 orbit. This
orbit disappears at Vac=5.02 V where pull-in occurs. No stable
orbits exist beyond this point.

3.2.4 Frequency Sweep. We also found a two-well chaotic so-
lution by sweeping the frequency of excitation. The complete pic-

Fig. 15 The phase portrait and fast Fourier transform of cha-
otic oscillation. The system parameters are �=0.7, �=1.98, and
Vac=4.861 V.

Fig. 16 Phase portrait of period 10 in one well once the ampli-
tude of excitation Vac=4.883 and the nondimensional frequency

of excitation � is 1.98
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Downlo
ure of the bifurcation diagram for sweeping the frequency of
xcitation is given in Fig. 17. Above the natural frequency of the
ower equilibrium �at 37% of the gap �Table 2��, 1.98, and an ac
mplitude of 4 V, there only exist lower-well periodic orbits. Be-
ow it, once we decrease the frequency, first period doubling hap-
ens, which develops into the primarily one-well chaotic attractor.
he bifurcation diagram shows the softening behavior typical to
lectrostatic actuators. The one-well chaos disappears by decreas-
ng the frequency and changes to a periodic two-well solution.
ubsequently at a frequency of �=1.45, a period doubling cas-
ade happens to the two-well orbit culminating in a two-well cha-
tic attractor. It continues while decreasing the frequency until it
ncounters a window of period three orbits in the frequency range
1.122–1.143�. The chaotic attractor disappears to be replaced by
period 1 orbit in the lower well at �=1.031. In this range, the

uperharmonic resonance of order 2 at �=�L /2 strengthens the
egularity of the actuator oscillations, thereby eliminating the cha-
tic attractor and replacing it with a periodic orbit. A weaker
oftening behavior is also observed around this frequency that
onverts to a period doubling cascade and takes the orbit back to
two-well chaos. The two-well chaos changes to superharmonic

rbits at the frequency of �=0.817 that continues to exist down
he frequency with occasional chaotic oscillations. The disappear-
nce of one-well periodic orbits at low excitation frequencies can
e explained by considering the total energy of the system. At low
xcitation frequencies, the velocity, which is proportional to �, is
ow and the kinetic energy is low, so the potential energy has to
bsorb the orbit energy via large displacement over the orbit so-
ution. As the excitation frequency increases, the velocity in-
reases and absorbs most of the energy and consequently the orbit
isplacement shrinks leading to one-well periodic orbit.

In studying the dynamic behavior of the system by changing the
requency, we also observed superharmonic resonances of order 2,
, and 6 of the natural frequency of the lower equilibrium. In Fig.
8, we show the phase portraits and the FFT of these orbits. The
rst resonant peak in Fig. 18�a� splits to two, three, and six in
arts �b�, �c�, and �d�, respectively, indicating the aforementioned
uperharmonic resonances.

To illustrate the chaotic oscillation observed, the phase por-
raits, and the Lyapunov exponents of the one-well chaotic attrac-
or at �=1.84, and the two-well attractor at �=1.081 are shown
n Figs. 19 and 20, respectively. The one-well attractor is fully
eveloped and located primarily in the lower well with occasional
xcursions over the saddle. The two-well attractor consists of os-
illations in the lower well and between the two wells with no
xclusive oscillations in the upper well. The leading Lyapunov
xponents are obtained by tracking the distance between two tra-
ectories starting from initial conditions at a distance d0=10−9

ig. 17 Bifurcation diagram sweeping the frequency of excita-
ion at fixed Vac of 4 V
rom each other in phase space. The overtime evolutions of the

11001-8 / Vol. 6, JANUARY 2011
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logarithm of the distance d1 normalized with respect to the initial
distance are illustrated in Figs. 19�b� and 20�b� by the dotted lines
and their moving averages are shown by the solid lines. The slope
of the solid curve during the chaotic attractor expansion is the
leading Lyapunov exponent. It is found to be positive for both
attractors proving that they are indeed chaotic �29�.

4 Summary and Future Work
A chaotic micro-actuator is developed by adding a voltage

regulator �controller� to an electrostatic microcantilever beam ac-
tuator. Nonlinear elements present in the model include a voltage
regulator and the electrostatic forcing. Static and dynamic re-
sponses of the nonlinear system are explored. The static response
shows that by adjusting the controller gains, the system can be
configured as either a stable single-valued actuator or a bistable
actuator. The single-valued system is a stable smoothly varying
actuator with a stroke of as much as 83% of the capacitor gap,
much larger than the pull-in deflection of 45% of the open-loop
electrostatic actuator. The bistable system, on the other hand, is
used to create a chaotic actuator. We found that bistability was
necessary but not a sufficient condition for chaos. The excitation
ac voltage amplitude and frequency had to be chosen properly to
obtain chaos.

Both one-well and two-well chaotic attractors have been found.
The excitation parameter boundaries of the chaotic attractors were
obtained using force and frequency sweeps. Period doubling, re-
verse period doubling cascades, and a banded one-well chaotic
attractor were obtained in the force sweep. Beyond a threshold of
ac voltage amplitude, pull-in occurs and precludes bounded mo-
tion. In addition, sweeping the frequency of excitation, we ob-
served one-well and two-well chaotic attractors. A softening-type
nonlinearity beside superharmonic resonances are also observed
in the response as we decrease the excitation frequency below the
natural frequency.

Our future work includes implementing the system by building
an electronic circuit on a print circuit board for the voltage regu-
lator �controller� that functions according to Eq. �13�. The velocity
of the microbeam will be measured by a laser interferometry vi-
brometer and the corresponding analog signal will be fed to the

Fig. 18 Phase portraits and FFT for the periodic orbit at the „a…
natural frequency of the lower equilibrium Ω=�l=1.98, „b… su-
perharmonic resonance of order two at Ω=�l /2=0.99, „c… su-
perharmonic resonance of order three at Ω=�l /3=0.66, and „d…
superharmonic resonance of order six at Ω=�l /6=0.33
controller circuit. The controller output voltage will be adjusted
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Downlo
y the circuit to produce the desired voltage difference between
he two electrodes for deriving the beam chaotically.

The chaotic oscillator presented opens the door to a range of
pplications since the chaotic attractors are bounded, well devel-
ped, active, and existed over a wide range of control parameters.
hese applications include secure communication and enhanced

esolution sensing.
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