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A shear viscosity model for the underfill flow is proposed based on slug flow,
which is appropriate in the case of neutrally buoyant particles. However, the
filling particles used in practice are often heavier than the liquid carriers. The
effect of non-neutrally buoyant particles is investigated in this work. The flow
of dense slurry in which the filling particles are heavier than the liquid carrier
is analyzed by considering the particle-particle and particle-wall interactions,
which are derived from fluid film lubrication theory. The effect of settlement
causes the flow behavior to depart from that of slug flow. Nevertheless, steady
flow is still found possible, and, for a few representative packing patterns
considered, somewhat modified flow patterns exist.
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INTRODUCTION

This work was motivated by the need to understand
the flow behavior of dense slurry in a narrow gap. The
intended application is underfill encapsulation of elec-
tronics packaging, especially in flip chip packages and
chip on board (COB) applications. The purpose of
encapsulation is to protect the solder interconnects
linking the silicon chip and the substrate from damage
arising from the mismatch of the coefficients of ther-
mal expansion (CTE) of the two materials. The under-
fill encapsulant is dense slurry consisting of a liquid
carrier filled with particles (or fillers) in high volume
fraction. Flow of the underfill into the gap between the
chip and the substrate is driven by capillary action
governed by the small height of the gap. Two manu-
facturing concerns arise regarding the underfill flow.
One is the slow flow speed and curing time that make
the filling process inefficient. The other is the forma-
tion of voids around the solder interconnects that
reduces the reliability of the package. Various meth-
ods have been tried and proposed to improve on these
two aspects, such as filling at elevated temperature,
filling under pressure or vacuum, multiple-boundary
dispensing, or the opening of dispensing passages at
critical spots. Clearly, the foundation of all these rem-
edies is understanding the flow behavior of dense
slurry in geometries relevant to the package.

A key material parameter that governs the flow
behavior of dense slurry is its effective viscosity. In

Ref. 1, a model of the effective viscosity is advanced,
where the flow behavior is considered to be governed
by the interactions between neighboring particles and
between particles and channel walls, and these inter-
actions are realized through thin liquid films trapped
between the solid surfaces. Fluid film lubrication
theory is used to obtain the formulas of these interac-
tions, which are then applied to the flow, between two
horizontal parallel walls, of slurry densely packed
with neutrally buoyant particles. When the effect of
settlement is not present, the particles cluster in the
middle of the channel due to the stronger particle-wall
interaction. A slug flow is therefore envisioned, where
the particles are so tightly packed that no gap is left
between the closest neighbors. The filler particles
have no relative motions with respect to each other,
and move along the channel as a slug. Three packing
patterns were considered for the particles in the slug,
namely the rectangular cubic (rc), body-centered cubic
(bcc), and face-centered cubic (fcc). Closed-form formu-
las for the effective viscosity of the flow are obtained.

In practice, however, the filler particles in the
encapsulants are often heavier than the liquid car-
riers. During flow, the particles tend to settle toward
the bottom wall and, because of unequal drags from
the top and bottom sides, also tend to rotate. Then
the particles would have relative motions with
respect to each other, and the slug flow model may
not represent the underfill flow well. This paper is
devoted to the study of the departure from slug flow
due to the settlement effect. Specifically, the issues to
be resolved are whether steady flow is still possible,(Received February 22, 2006; accepted June 22, 2006)
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and whether some modified patterns would result for
the three representative packing patterns.

TRANSIENT MOTION

Consider the transient motion of a slurry contain-
ing one layer of spheres (of radius R) between two
closely spaced horizontal walls (see Fig. 1). The
motion is driven by a given pressure gradient along
the channel. Let the spheres initially be evenly
spaced with gap s, their distances from the top
and bottom walls being equal, and possess neither
translational nor rotational velocities. After the
motion starts, the gap s remains constant because
every sphere is subjected to the same set of forces.
However, due to gravity the distance with the top
wall, ht, increases and that with the bottom wall, hb,
decreases. The unequal drags from the two walls
then cause the spheres to rotate. Let the position
of the center of a representative sphere be (xp, zp),
its corresponding velocity components be (u,w), the
rotational velocity of the sphere be V, the mass
of the sphere be m, and its moment of inertia be I
(= 2mR2/5). It is further specified that

ht 1hb ¼ �ds (1)

where the parameter �d characterizes the particle-wall
clearance relative to the particle-particle clearance.
Note that the two clearances are independent of each
other and must be specified in a problem, thus the
introduction of a dimensionless parameter �d.
The forces acting on the sphere are shown in

Fig. 2. The hydrostatic force (not shown) due to
the given pressure gradient is

Fpres ¼ �dp

dx

� �
4

3
p R3 (2)

The forces Wst and Wsb are due to squeeze action
caused by the sphere approaching either the top or
the bottom wall. These forces may be written as1

Wst ¼ 6pmwR
R

ht

� �
HðwÞ (3)

Wsb ¼ 6pmð�wÞR R

hb

� �
Hð�wÞ (4)

where H(w) is the Heavyside function defined as

HðwÞ 51 if w. 0
50 if w � 0

(5)

Note that if the sphere moves away from a wall,
there is no (negative) squeeze action between them.
The forces Wt and Wb are due to entrainment action
between the sphere and the walls and can be
expressed as1

Wt ¼ 9:72411
R

ht

� �0:51953

m
u�VR

2
R (6)

Wb ¼ 9:72411
R

hb

� �0:51953

m
u1VR

2
R (7)

The forces Ft and Fb are the friction forces arising
from the interaction with the two walls and can be
expressed as1

Ft ¼ 2pmðu1VRÞR ln 11
R

2ht

� �

� 3:80525m
u�VR

2
R ln

R

ht

� �

1 7:95520m
u�VR

2
R (8)

Fb ¼ 2pmðu�VRÞR ln 11
R

2hb

� �

� 3:80525m
u1VR

2
R ln

R

hb

� �

1 7:95520m
u1VR

2
R (9)

There is no entrainment action between the
neighboring spheres because the two surfaces move

Fig. 1. Transient motion of one layer of spheres.

Fig. 2. Forces acting on a sphere (weight and pressure forces not shown).
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in opposite directions. Therefore, the entrainment
velocity U is zero. Hence, there are only
friction forces acting between them. These friction
forces are1

Fl ¼ Fr ¼ 2pmVR2 ln 11
R

4s

� �
(10)

Note that the reduced radius for two equal-sized
spheres is R/2.1

The equations of motion for the sphere may there-
fore be written as:

m
du

dt
5Fpres � Ft � Fb (11)

m
d2zp

dt2
¼�ðrs�rlÞg

4

3
pR3�Wt�Wst1Wb1Wsb (12)

I
dV

dt
5FbR�FtR�FlR�FrR (13)

where g is the gravitational constant, and rs and rl are
the densities of the sphere and liquid, respectively.

The variables and equations are normalized before
solutions are sought. Because the flow is driven by a
given pressure gradient, the latter is used as the
main reference quantity for normalization. The
dimensionless variables are defined as:

�zp ¼ zp
s

�ht ¼ ht

s
�hb ¼ hb

s
�t5t

� dp
dx

� �
R

m

�u5
mu

R2ð�dp=dxÞ �w5
mw

R2 � dp
dx

� � �V ¼ mV

Rð�dp=dxÞ

W5
W

R3 � dp
dx

� � �F5
F

R3 � dp
dx

� �
(14)

After normalization, four dimensionless parameters
appear in the formulation. They are the tightness

parameter �e [
s

R
, the particle-wall clearance parame-

ter �d; the inertia parameter �m [
m

m2
�dp

dx

� �
; and the

gravity parameter �b[
ð�a� 1Þrlg
�dp=dx

where �a is the density

ratio rs/rl.
The material properties and dimensions used in

the calculation are those used in a laboratory exper-
imental study of the underfill flow and are as follows:

rl 5 0:83 � 103 kg=m3

rs 5 2:5 � 103 kg=m3

m 5 0:019 Ns=m2

s (surface tension of liquid carrier)530 � 10�3N=m

R525 � 10�6 m

L ðchannel heightÞ5100310�6 m

By using these s and L values, the pressure jump
across the meniscus of the flow front may be
estimated as:

Dp 5
2s

L
5 600 N=m2

For a channel length of about 40 mm, a represen-
tative pressure gradient value is:

�dp

dx
515200 N=m3

Based on the above values, it is found that

�a ¼ 3:012; �b ¼ 1:077; �m 5 6:893 10�3

The system of Eqs. (11–13) in dimensionless form
was integrated using the Runge-Kutta method. The
system is stiff because of the presence of small
parameters �m and �e in the coefficients of the highest
order derivatives. The time step used had to be very
small. After several trials, a time step of 5 3 10�7

was adopted. The calculation was carried out for a
total of 4 3 107 time steps. Figure 3 presents the
results of �u, �w, �V, and �zp for �e ¼ 0:001 and �d ¼ 2.

It is seen that the velocity components jump from
their initial zero values to high magnitudes almost
instantly (within 1000 time steps); then �u readjusts
itself very gently while �w rapidly decays to zero. The
rotational velocity �V and the particle’s vertical posi-
tion both settle to their final values exponentially.
At �t5 20, (i.e., 1 sec after the flow starts), the values
obtained are:

�u5 0:069667

�w ¼ �6:53 10�7

�V ¼ 0:0011397

�zp ¼ �0:30234 ðcorresponding to �ht ¼ 1:30234,

�hb ¼ 0:69766Þ

These values are in agreement with the steady
state values obtained by solving Eqs. (11–13) with
the time-derivatives and w set to zero. The dimen-
sional velocity is calculated to be u 5 34.833 3 10�6

m/s. Using this value as a guide, it takes about 19
min. for the slurry to flow through a channel 40 mm
long. In comparison, the transient period leading to
the steady state is indeed very short. Therefore, in the
following only the steady-state flow will be of concern.
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STEADY MOTION

Consider the three packing patterns of particles,1

namely the rc, bcc, and fcc packing patterns.
Because of gravity, particles will settle, develop rel-
ative motions with respect to each other, and
arrange themselves differently than they were in
the original patterns. These cases are treated sepa-
rately below.

Rectangular Cubic Packing Pattern

Consider that the channel contains one rc cell in
the z-direction. After steady motion is established,
the equilibrium configuration may be as sketched in
Fig. 4. The spheres shown are all located in the (x, z)
plane. To preserve a continuous pattern, the dis-
tance between neighboring spheres in the same
layer (both the top and the bottom) must be a con-
stant s. However, the two layers are not aligned,
and two distances, b and d, are used to describe
the distorted pattern. A geometrical relation may
be written as:

b1 2R1ht 1hb ¼ L (15)

To characterize the particle-wall clearance rela-
tive to the particle-particle clearance, a parameter
�d is introduced such that

L� 4R 5 �ds (16)

Combining Eqs. (15) and (16), one obtains:

b� 2R1ht 1hb ¼ �ds (17)

Let all the spheres translate with the same
velocity u, the spheres in the top layer rotate with
angular velocity V1, those in the bottom layer rotate
with V2 (directions of V1 and V2 as shown). Then,
there are seven unknowns to be determined,
namely, u, V1, V2, b, d, ht, and hb.

Fig. 3. Transient solution for one layer of spheres flowing in a closely spaced channel ð�e ¼ 0:001 ; �d ¼ 2 ; �b ¼ 1:077 ; �m 5 6:89310�3Þ.

Fig. 4. Steady-state flow of one cell of rectangular cubic packing.
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The forces acting on a representative top layer
sphere are shown in Fig. 5, and those on a repre-
sentative bottom layer sphere in Fig. 6. These
forces can be obtained, based on the formulas given
in Ref. 1 in the same way as in the Transient
Motion section. Note that in steady flow, no
squeeze forces are present. For each sphere, three
equilibrium equations may be written (one for the
forces in the x-direction, one for the forces in the z-
direction, and one for the moments about the y-
axis). Along with Eq. 17, there are altogether seven
equations.

The parameters in the problem are �e, �b (which
includes the effect of �a), and �d as defined in Eq.
16. The inertia parameter �m is no longer present
because a steady-state problem is being dealt with.

MATHCAD2 was used to solve the equations. It
was found that employing proper initial values
greatly helped the convergence of the built-in iter-
ation processes. The converged solution was then
verified by checking the residues of the equations.
Table I lists the solutions for four cases, where all
the variables are normalized as in the Transient
Motion section, with the additional variables b and
d normalized by particle radius R.

For example, in the case of �e = 0.001 and �d = 1 (i.e.,
the particle radius is 1000 times the interparticle
clearance s, and the channel height is one s larger
than the height of two particles stacked together), it
is found that all the particles translate downstream
at the same dimensionless velocity (0.35309); the bot-
tom layer spheres rotate at a dimensionless speed
(0.04976) faster than that of the top layer spheres
(0.03645); and the direction of rotation of the top layer
spheres is opposite that shown in Fig. 4. The distance
between the two layers of spheres is b = 1.73339R (in
contrast to 2R in the case of slug flow), and the top
layer spheres shift 1.00185R downstream relative to
the bottom layer spheres. The distance of the spheres
from the bottom wall (25.91791s) is of course smaller
than that from the top wall (241.68718s), as a result
of the gravity effect. However, both values are much
larger than the interparticle clearance.

Body-Centered Cubic Packing Pattern

Consider that the channel contains one bcc cell in
the z-direction. If there is no distortion of the cell, its
size is

e5
4R1 2sffiffiffi

3
p (18)

where s is the smallest gap between a corner sphere
and the center sphere. After steady motion is estab-
lished, the distorted cell may be sketched as shown
in Fig. 7. The cell size in the top layer and in the
bottom layer must remain the same e. However, the
two layers may be misaligned in the x-direction. The
center sphere is shifted in the x-direction. Further-
more, because of gravity, the distance of the center
spheres from the top layer is different than that
from the bottom layer. The distorted pattern may
be described by distances d1, d2, b1, b2, and e. A
geometrical relation may be written as

b1 1 b2 1 2R1ht 1hb ¼ L (19)

where L is the channel height. To characterize the
particle-wall clearance to the particle-particle clear-
ance, a parameter �d is introduced such that

e þ 2R þ �ds ¼ L (20)

Combining Eqs. (19) and (20), one obtains:

Fig. 5. Forces acting on a top layer sphere (weight and pressure
forces not shown).

Fig. 6. Forces acting on a bottom layer sphere (weight and pressure
forces not shown).
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b1 1 b2 1ht 1hb � e 5 �ds (21)

Let the rotational velocities of the three represen-
tative spheres 1, 2, and 3 be V1, V2, and V3, respec-
tively, as shown in Fig. 7, but the three spheres
translate with the same velocity u. Thus, there are
ten unknowns to be determined: u, V1, V2, V3, b1, b2,
d1, d2, ht, and hb.
The forces acting on the three representative

spheres are sketched in Fig. 8. These forces can be
similarly obtained by using the formulas given in
Ref. 1. The work is, however, tedious because the
forces acting on each sphere are not coplanar. For
brevity, the derivation is not given here. The details
can be found in Yang.3 Again, one can write three
equilibrium equations for each sphere. (The equili-
brium of forces in the y-direction is automatically

satisfied by symmetry.) Along with Eq. 21, there
are altogether ten equations.

The parameters in the problem are �e, �b (which
includes the effect of �a), and �d as defined in Eq. 20.
MATHCAD2 was used to solve the ten equations.
It was even more difficult than the case of rc pack-
ing to reach convergence of the iteration processes.
Solutions were obtained with careful selections of
the initial values. Table II lists the solutions for four

Table I. Results in the Case of Rectangular Cubic
Packing Pattern (a = 3.012, b = 1.077)

e = 0.005 e = 0.001

d = 1 u 0.36516 0.35309
V1 �0.04947 �0.03645
V2 0.06388 0.04976
ht 48.73614 241.68718
hb 5.64179 25.91791
b 1.73311 1.73339
d 1.00436 1.00185

d = 3 u 0.36714 0.35350
V1 �0.04949 �0.03645
V2 0.06405 0.04978
ht 50.62038 243.58143
hb 5.74642 26.01633
b 1.73317 1.73340
d 1.00443 1.00186

All variables in dimensionless form.

Fig. 7. Steady-state flow of one cell of bcc packing.

Fig. 8. Forces acting on the three representative spheres (weight and
pressure forces not shown). Note that the forces on each sphere are
not coplanar and not all the forces are shown.

Table II. Results in the Case of Body-Centered-
Cubic Packing Pattern (a = 3.012, b = 1.077)

e = 0.005 e = 0.001

d = 1 u 0.31897 0.25040
V1 �0.00612 �0.04597
V2 �0.00366 �0.00132
V3 0.06506 0.05074
ht 3.34689 2.90666
hb 1.04519 1.46229
b1 1.14907 1.15359
b2 1.14914 1.15359
d1 1.15765 1.15529
d2 1.15768 1.15529

d = 3 u 0.33950 0.26362
V1 �0.05102 �0.04725
V2 �0.00458 �0.00168
V3 0.06962 0.05339
ht 4.99418 4.34307
hb 1.36835 1.98678
b1 1.14912 1.15361
b2 1.14925 1.15362
d1 1.15767 1.15529
d2 1.15773 1.15530

All variables in dimensionless form.
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cases, where all the variables are normalized as
in the Transient Motion section, with the additional
variables b1, b2, d1, d2 normalized by particle
radius R.

For example, in the case of �e = 0.001 and �d = 3 (i.e.,
the particle radius is 1000 times the interparticle
clearance s, and the channel height is three s larger
than the cell size plus two times the radius), it is
found that all the particles translate downstream at
the same dimensionless velocity (0.26362); the bottom
layer spheres rotate the fastest (at a dimensionless
speed of 0.05339); the top layer spheres rotate with
a dimensionless speed of 0.04725 opposite to the
direction shown in Fig. 7; and the middle
layer spheres rotate at an almost negligible speed
(�0.00168). The cell size in the z-direction is reduced
to b1 1 b2 = 2.30723R, in contrast to the undistorted
size of 2.31056R as given by Eq. 18. The shifted posi-
tions of the top and bottom layer spheres are d1 =
1.15529R and d2 = 1.15530R, respectively, relative
to the middle layer spheres. Compared with the
undistorted position of 1.15528R, such shifts are
indeed very minute. The distance of the spheres from
the bottom wall (hb 5 1.98678s) is of course smaller
than that from the top wall (ht = 4.34307s) due to
gravity. However, both values are still quite large
compared with the interparticle clearance.

Face-Centered Cubic Packing Pattern

Consider that the channel contains one fcc cell in
the z-direction. Figure 9 shows a sketch of four such
cells in the undistorted configuration. Let the situa-
tion be first simplified with symmetry arguments.
Consider the top layer of spheres. The center
spheres B1, B2, D1, D2, and the corner sphere C2

also form a cell (shown by the long dashed lines).
Suppose that, in the steady-state flow, the center
sphere B2 in the cell A2A3C2C3 were closer to the
line C2C3. Then the center sphere C2 in the cell
B1B2D1D2 would be farther from the line D1D2,
which contradicts the supposition. Therefore, the
center sphere of any cell must remain in the middle.
This argument applies not only to the top layer, but

also to the middle and bottom layers as well. Thus,
to analyze the steady-state flow configuration, only
three spheres, such as A1, F1, G1, need to be consid-
ered, and only four distance parameters, similar to
the distances d1, d2, b1, b2 in Fig. 7, need to be used
to describe the distorted pattern. There are ten
equations (three equilibrium equations for each
sphere and one equation describing the geometric
constraint) to solve for ten unknowns (one transla-
tional velocity, three rotational velocities, the clear-
ances with the top and bottom walls, and the four
distance parameters mentioned above), just like the
bcc case. It is conceivable that the solution to the
problem can be found, as in the bcc case.

However, the equilibrium equations are much more
involved. The sphere A1 in the top layer interacts with
eight neighboring spheres (four in the top layer and
four in the middle layer) plus the top wall. Likewise,
the sphere G1 interacts with eight neighboring spheres
plus the bottom wall. The sphere F1 in the middle
layer interacts with twelve neighboring spheres, four
in the (x, y) plane and in equal separation distances,
four in the (x, z) plane, but not in equal separation
distances, and four not exactly in the (y, z) plane due
to the misalignment of the three layers of spheres. It is
conceivable that solving the ten equations would be
more difficult than the bcc case and require even more
careful selections of the initial values.

It is expected that the results of computation
would be similar to those of the rc and bcc cases,
and the qualitative features of the flow configura-
tion would remain the same.

SUMMARY AND DISCUSSION

This work is concerned with the effect of settle-
ment on the flow behavior of a dense slurry. At first
the transient flow of one layer of spheres embedded
in a carrier liquid is studied. It is found that, under
the condition of underfill flow, the transient period
is very short, and the essential flow behavior may be
studied without considering the inertial effect.
Gravity causes the spheres to settle but does not
terminate the particulate motion by depositing
them on the bottom wall. What happens is that, as
the spheres settle toward the bottom wall, the stron-
ger wall drag causes them to rotate, which further
strengthens the normal separating force between
the spheres and the wall. This strengthened sepa-
ration force counterbalances gravity and keeps the
spheres from touching the wall.

The equilibrium configurations of the spheres for
three representative packing patterns are then
studied. It is found that the spheres can arrange
themselves in specific relative positions and differ-
ent rotation speeds, while all moving with the same
translational velocity, so that the forces and
moments on each sphere are balanced. The equili-
brium configurations deviate from their original
undistorted patterns. In the case of the rc packing
pattern, the top layer shifts about one radius in the
flow direction relative to the bottom layer. In theFig. 9. Sketch of four undistorted fcc cells.
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case of the bcc packing pattern, the deviation is very
small. The distances of the configurations from the
bottom wall (hb) are of course smaller than those
from the top wall (ht), as a result of the gravity
effect. However, the hb values are still much larger
than the interparticle distances. This is because, in
addition to the rotation effect previously mentioned,
the reduced radius of particle-wall interaction is
twice as much as that of particle-particle interac-
tions, and a larger reduced radius enhances both
the entrainment and squeeze actions.
In the case of neutrally buoyant particles, the

stronger particle-wall interactions are not counter-
balanced by the weight of the particles. As a result,
the particles cluster in the middle of the channel,
which makes it reasonable to simulate the slurry
flow with the slug flow model.1

In the study of dense slurry flows, a diffusion of
particles was observed, which appeared to be
related to shear rate.4,5 The observed migration of
particles is generally from the higher shear rate
region (usually near the wall) to the lower shear
rate region (the center of the channel).6,7 The phe-
nomenon has been modeled as a diffusion process
driven by the concentration gradients, with phe-
nomenological coefficients of diffusion depending
on the shear rate.8,9 From the point of view of par-
ticle interactions, the spacing between neighboring
particles is smaller in the higher concentration
region, which produces larger normal separating
forces. If on top of the tight spacing a shear gradient
is superimposed, particle rotation would be induced,
which would further strengthen the normal sepa-
rating forces. Thus, lubrication mechanisms (en-
trainment and squeeze actions) offer a plausible
kinetic-theoretical explanation for the observed
shear-induced migration. The main finding of the
current study—that gravity does not terminate the
particulate motion by depositing them on the bot-
tom wall; instead the particles are kept away from
the wall by the strengthened separation forces—is
consistent with the idea of ‘‘migration of particles.’’
Guo et al.10 implemented the particles diffusion idea
in their calculation of underfill flows and found bet-
ter agreement with the measured data than without
considering particles diffusion. Their work might be
taken as an indirect support to our analysis.

EXPERIMENTAL VERIFICATION

In Ref. 1, an experiment of flowing dense slurries
in horizontal channels is described. Two kinds of slur-
ries were prepared. One consisted of glycerine (of
density 1261 kg/m3) as liquid carrier and polymethyl-
methacrylate (PMMA) spheres (of density 1190 kg/
m3) as fillers. This kind of slurry was used to approx-
imate the situation of neutrally buoyant particles.
The measured effective viscosity values for different
channel heights are presented in Ref. 1. The other
consisted of honey (of density 1340–1400 kg/m3) as
liquid carrier and glass beads (of density 2550 kg/
m3) as fillers. This latter kind of slurry was used to

investigate the effect of heavier filler particles. The
channel height was controlled to be ten particle diam-
eters. The flows were driven by controlled constant
pressure heads. The effective viscosity values,
obtained in the same way as in Ref. 1 are presented
in Table III (Test 1 and Test 2). For comparison pur-
pose, the case in which PMMA particles with glycer-
ine are used is included in Table III as Test 3, and the
theoretical values (available only for neutrally buoy-
ant particles) are given in Table IV. The results are
consistent with the common observation that the
effective viscosity of a slurry was larger with a higher
volume fraction. No settlement of particles onto the
bottom wall was observed during these flow tests in
spite of the fact that glass beads were markedly heav-
ier than honey. The experiment appears directly sup-
portive to the theoretical finding of this study.

It should be noted that the mechanism that pre-
vents the settlement of heavy particles on the bot-
tom wall arises from the strong particle-wall
interaction, which is an essential feature of slug
flow. Such a mechanism may not exist if slug flow
is not achieved. In such a case, one should not
expect the effective viscosity to increase with chan-
nel height, as demonstrated in Ref. 1.
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Table III. Measured Values (L/R = 20)

Test
Test

Description* f
Head
(mm)

Flow
time
(min)

meff

/m

1 glass beads (s.g. = 2.55,
dia. = 200 mm) in honey
(s.g. = 1.40, m = 5.07 Pa s)

0.29 60 15 35.5

2 glass beads (s.g. = 2.55,
dia. = 200 mm) in honey
(s.g. = 1.34, m = 5.07 Pa s)

0.61 61 15 40.1

3 PMMA spheres (s.g. =
1.19, dia. = 300 mm) in
glycerine (s.g. = 1.261,
m = 1.41 Pa s)

0.49 51 5 37.1

*s.g. = specific gravity; dia. = diameter.

Table IV. Theoretical Values (L/R = 20)

rc bcc fcc

h0/R = 0.001 31.7 26.1 31.3
h0/R = 0.01 21.1 17.3 20.7
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SYMBOLS

Symbols topped with bars are dimensionless. Most
normalized variables are defined in Eqs. (14).

b, d distances defined in Fig. 4; these variables
are normalized by R

b1, b2, d1, d2 distances defined in Fig. 7; these
variables are normalized by R

e size of a bcc cell in the (x, y) plane, given in Eq.
18

F friction force

Fpres hydrostatic force due to pressure gradient

g gravity constant

hb clearance from the bottom wall

ht clearance from the top wall

I moment of inertia of a sphere

L channel height

m mass of a sphere

�m inertia parameter defined in Transient Motion

n number of cells contained in channel height

p pressure

R particle radius

Re reduced radius, defined in Eq. 4 of Ref. 1

s smallest clearance between two closest neigh-
boring spheres

t time

U entrainment velocity, defined in Eq. 23 of Ref. 1

(u, w) velocities of sphere in (x, z) directions

W normal separating force

(x, y, z) coordinate system

(xp, zp) coordinates of the center of a sphere

�a density ratio; 5 rs/rl
�b gravity parameter defined in Transient Motion

section

�d particle-wall clearance parameter, separately
defined in Eqs. (1), (16), and (20)

�e tightness parameter; 5 s/R

m viscosity of liquid carrier

rl density of liquid carrier

rs density of filler particles

s surface tension of liquid carrier

V rotation speed of sphere

Subscripts

s due to squeeze action

b at bottom

t at top

l at left

r at right

u between top and middle layers

d between middle and lower layers

g between spheres not lined-up

1,2,3 designating different spheres
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