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To analyze the flow of an underfill encapsulant between the chip and sub-
strate, a shear viscosity model is needed. This paper presents a model of the
viscosity for the flow of slurry between two parallel walls, which is a typical
situation found in electronic packaging applications. It is postulated that
the flow behavior of a dense slurry is governed by the particle-particle and
particle-wall interactions. Fluid film lubrication theory is used to find the unit
solutions of interaction between two particles. The unit solutions are applied
to the simple case of slurry flow densely packed with neutrally buoyant par-
ticles. The dependence of the effective viscosity of the slurry on packing
parameters is revealed.
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INTRODUCTION

Encapsulation is an integral part of electronic
packaging especially in flip-chip packages and
chip-on-board (COB) applications. The purpose of
encapsulation is to protect the solder interconnects
linking the silicon chip and the substrate from dam-
ages arising from the mismatch of the coefficients of
thermal expansion (CTE) of the two materials. The
encapsulant is a thermosetting epoxy filled with
particles (or fillers) in high volume fraction. Flow
of the encapsulant into the gap between the chip
and the substrate, called the underfill flow, is driven
by capillary action governed by the small height of
the gap. Two manufacturing concerns arise regard-
ing the underfill flow. One is the slow flow speed
that makes the filling process inefficient. The other
is formation of voids around the solder intercon-
nects that reduces the reliability of the package.
To improve on these aspects, the underfill flow proc-
ess needs to be better understood.

Since the pioneering work of Washburn,1 capil-
lary flows have been analyzed by considering the
flow to consist of two regions: the marching front
region and the bulk flow region following the march-
ing front. In the marching front region, surface ten-
sion draws the meniscus to move forward and
induces a pressure drop behind the meniscus. The
liquid in the bulk region is considered to be driven
by the pressure difference between the low pressure
at the front caused by surface tension and the
higher ambient pressure behind the liquid. How-

ever, the two regions of flow are coupled. The bulk
flow velocity determines the marching velocity of
the meniscus, which is related to the contact angle(s)
between the liquid and the solid boundaries. The
contact angle(s), in turn, affects the pressure drop
behind the meniscus. Therefore, a complete treat-
ment of capillary flows involves the interaction be-
tween the two regions of flow. In the bulk flow
region, the most important material parameter is
the viscosity of the liquid.

Using Washburn’s approach, underfill encapsu-
lant flows have also been analyzed.2,3 However, the
fluid in this study is a dense slurry consisting of a
liquid carrier and filling particles in high volume
fraction. A key question may thus be posed: if the
slurry is modeled as a single phase fluid, then what
should its effective viscosity be?

Numerous studies were made on the viscosity of a
mixture. Einstein4 obtained a formula for the effec-
tive viscosity of a dilute mixture, applicable when
the volume fraction f, defined as the volume of solid
particles per unit volume of the mixture, is less than
;3%. Leighton and Acrivos5 proposed a formula that
extends the volume fraction range to much higher
values,
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where meff is the effective viscosity, m the liquid vis-
cosity, and f0 the volume fraction at the closest(Received February 22, 2006; accepted June 12, 2006)
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packing. This formula is based on the assumptions
that the particle diameter is much smaller than the
channel size and that the mixture flow obeys the no-
slip boundary condition at the channel walls. The
flow behavior of mixtures has also been studied by
numerical simulation techniques6 using the as-
sumptions mentioned above, and by experiments,
e.g., the recent work of Prasad and Kytomaa.7 In
their work, the viscometer was designed in such a
way that particles were embedded in the channel
walls to simulate the no-slip boundary condition.
In the case of underfill flows, the gap between the

chip and the substrate is ;70 mm or less, and the
particle size is ;5–10 mm. Hence, the particle size is
not much smaller than the channel size. Besides,
the volume fraction in an encapsulant is approach-
ing to that possible at the closest packing. Equation
1 then results in an effective viscosity value of infin-
ity. In a recent work,8 a correlation formula for the
effective viscosity based on measured data was pre-
sented. That formula is essentially Eq. 1 multiplied
by a factor that corrects the effect of shear rate. At
the maximum volume fraction, the formula also pre-
dicts infinite viscosity. Thus, formulas similar to Eq.
1 might not be applicable for mixtures with high
volume fraction fillers.
In this study, the slow motion of a dense slurry in a

vertical glass tube (10 mm inner diameter) was ob-
served. The slurry was made of glass beads (1 mm
outer diameter) mixed in honey. After the glass tube
was filled with the slurry, the plug at the bottom of the
tube was removed to start the flow. It was observed
that the glass beads next to the tube wall translated,
and even slowly rotated, relative to the wall. This
latter aspect was also observed in particulate two-
phase flows by Acrivos.9 In our experiment, except
very near the wall, the beads translated almost as a
slug, i.e., they appeared to have no relative motion
with respect to each other. A slug flow model is thus
envisioned wherein the flow behavior of a dense
slurry may be governed by the interactions between
neighboring particles and between particles and
their neighboring walls through thin liquid films
trapped between the solid surfaces. Because of the
small clearances between the solid surfaces, it may
be feasible to study the flow behavior by using fluid
film lubrication theory. In this work, formulas for
the interaction forces and leakage flow rates are
derived based on fluid film lubrication theory for a
Newtonian liquid. In the section ‘‘Slug Flow Model,’’
these formulas are applied to the flow of a slurry
containing one-size, neutrally buoyant, spherical
particles. The analysis is aimed at obtaining the
effective viscosity for this type of slurry flow. The
situation of arbitrary shape and nonuniform size
of the particles is not addressed in this analysis.
In the literature (e.g., Ref. 8) encapsulants are

often modeled as viscoelastic fluids. The rheological
equations used are invariably modifications of New-
tonian viscosity (of the encapsulant) with factors or
terms correcting for the effect of shear rate. Never-
theless, there does not appear to exist a model for

the Newtonian viscosity itself in the densely packed
limit. The present work is intended to provide such
a model.

UNIT SOLUTIONS FOR INTERACTIONS
BETWEEN TWO PARTICLES

Consider two spherical particles interacting with
each other through a thin liquid film between them.
If the two spheres approach each other along their
center line, the liquid film is subjected to a squeeze
action, and a normal resistance force (i.e., along the
center line) is developed. If the two spheres rotate
with respect to each other, the liquid film is sub-
jected to entrainment action, and then both a nor-
mal separating force and friction forces tangent to
the surfaces of the spheres are developed. These two
types of actions are treated separately.

Squeeze Action

Figure 1a shows two spheres approaching each
other and the polar coordinate system used in the
analysis. Let the radii of the two spheres be R1

and R2. The gap between the two surfaces may be
approximated by

hðr; tÞ5h0ðtÞ1 r2

2R1
1

r2

2R2
; r � R1 or R2 (2)

This gap function is equivalent to that between a
sphere of radius Re and a plane,

hðr; tÞ5h0ðtÞ1 r2

2Re
(3)

where Re, called the reduced radius, is given as

1

Re
5

1

R1
1

1

R2
(4)

In the above, h0(t) is the liquid film thickness at the
smallest gap. Because h0/Re is much smaller than
unity, lubrication approximations may be invoked
that greatly simplify analysis of the flow.

The simplified equations governing the film flow are

1

r

@

@r
ðrVrÞ1 @Vz

@z
5 0 (5)

Fig. 1. Squeeze action between two spheres: (a) two rigid spheres
separated by a liquid film; (b) equivalent system of a rigid sphere of
effective radius Re.
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@p

@z
5 0 (6)

@p

@r
5m

@2Vr

@z2
(7)

where Vr and Vz are the velocity components of
flow in the r and z directions, respectively, p is the
pressure, and m is the viscosity of the liquid film.
The boundary conditions for the velocity compo-
nents are

At z5 0; Vr ¼ 0 and Vz ¼ 0

At z5h; Vr ¼ 0 and Vz ¼ �VðtÞ (8)

The system above can be reduced to a single equa-
tion for the pressure:

@p

@r
¼ �6mV

r

h3
(9)

which can be solved with the boundary condition

p ! 0 when
r2

2Reh0
� 1 (10)

Integrating the pressure solution over the film
domain, one obtains the normal separating force

W � 6pmVRe
Re

h0

� �
(11)

The equation shows that the normal separating

force is of the order
Re

h0
if h0 � Re. When h0 ap-

proaches Re, the normal separating force reduces to

W5 6pmVRe (12)

which is the well-known Stokes’ law of drag for a
sphere translating in a viscous fluid.

Entrainment Action

When two spheres spaced h0 apart rotate relative
to each other, the surrounding liquid is entrained
into the gap. As a result, a normal force is developed
to separate the spheres, and friction forces are de-
veloped countering the rotational motion. Figure 2
shows a sketch of this interaction. Here, a Cartesian
coordinate system is used where the (x, y) plane is
normal to the line of centers and rotations are about
the y axis.

The gap function between the two spheres is given
by

hðx; yÞ5h1 1h2 (13)

where h1 and h2 are approximated as

h1 ¼ h0

2
1

x2 1 y2

2R1
(14)

h2 ¼ h0

2
1

x2 1 y2

2R2
(15)

With the reduced radius Re defined in Eq. 4, the gap
function can be expressed as

hðx; yÞ5h0 1
x2 1 y2

2Re
(16)

Because h0/Re is much smaller than unity, lubri-
cation approximations may be used and the govern-
ing equations take the form:

@Vx

@x
1

@Vy

@y
1

@Vz

@z
5 0 (17)

@p=@z5 0 (18)

@p=@x5m
@2Vx

@z2
(19)

@p=@y5m
@2Vy

@z2
(20)

where Vx, Vy, and Vz are the velocity components of
flow in the x, y, and z directions, respectively.

The velocity boundary conditions are as follows at
different z values:

At z ¼ �h2;Vx ¼ �V2; Vy ¼ 0; Vz ¼ V2
@h2

@x

At z5h1;Vx ¼ V1; Vy ¼ 0; Vz ¼ V1
@h1

@x

(21)

The system above can be reduced to a single equa-
tion for the pressure (Reynolds equation):

@

@x
h3 @p

@x

� �
1

@

@y
h3 @p

@y

� �
5 12mU

@h

@x
(22)

where U is the entrainment velocity,

U5
V1 � V2

2
(23)

Equation 22 would yield negative p in the diver-
gent part of the gap. Because a liquid film cannot
sustain negative (gauge) pressure under steady flow

Fig. 2. Entrainment action between two rotating spheres.
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conditions, any negative solution of Eq. 22 would
be unrealistic and unacceptable. Hence, the solution
domain V needs to be determined by the require-
ment that the pressure is everywhere non-negative,
so as to avoid cavitation of the liquid film.
The normal separating force can be obtained by

integrating the pressure over the fluid film domain:

W5

ð
V

ð
pdxdy (24)

The friction forces acting on the two surfaces, F1

and F2, can be obtained by integrating the shear
stresses evaluated on these surfaces:

F1;2 ¼
ð
V

ð
6

h

2

@p

@x
1

mðV1 1V2Þ
h

� �
dxdy (25)

The volume flow rates entering and leaving the
solution domain can be obtained by integrating the
unit volume flow rates

qx ¼
ðh1

�h2

Vxdz ¼ � h3

12m

@p

@x
1Uh

qy ¼
ðh1

�h2

Vydz ¼ � h3

12m

@p

@y

(26)

over appropriate portions of the domain boundary.
It should be noted that, if the two spheres are in

relative translation perpendicular to their center
line, rather than rotating with respect to each other,
there appears to be no entrainment action. How-
ever, the analysis is valid in the limiting case of
one sphere becoming infinitely large compared with
the other, in which case the surface of the large
sphere becomes a plane wall and the rotation veloc-
ity of the large sphere can be considered as the
translation of the plane wall relative to the finite-size
sphere (whether in rotation or not). Thus, the
result obtained here is applicable to the case of a
plane wall sliding past a sphere.
The problem as formulated above has been solved

numerically by Dalmaz and Godet10 and Brewe
et al.11 However, their solutions provide only the pres-
sure distribution and formulas for the normal sepa-
rating force. For our subsequent analysis, we need
not only the normal separating force but also the
friction forces and volume flow rate. Because these
latter quantities are not available in the literature,
the problem needs to be solved more completely.
The problem was discretized by using the finite

difference method and solved numerically by using
the successive-over-relaxation iterative scheme. The
solution domain is determined with Christopher-
son’s algorithm.12 The integrated properties are ob-
tained by numerical correlation and are given by the
following formulas:

Normal separating force

W5 9:72411ðRe=h0Þ0:51953 mURe (27)

Friction forces

F1 5 2pmðV1 1V2ÞRe ln 11
1

2

Re

h0

� �

1 3:80525mURe ln
Re

h0

� �
� 7:95520mURe

(28)

F2 5 2pmðV1 1V2ÞRe ln 11
1

2

Re

h0

� �

� 3:80525mURe ln
Re

h0

� �
1 7:95520mURe

(29)

Volume flow rates

Qx in ¼ 0:7046UR2
e (30)

Qx exit ¼ 0:3616UR2
e (31)

Qy ¼ 60:1715UR2
e at y ¼ 6Re (32)

More details of the solution are given in Yang.13

SLUG FLOW MODEL

Consider a dense slurry, containing spherical par-
ticles of equal radius R, flowing under a given pres-
sure gradient between two horizontal parallel walls.
This paper deals with the simple case that the par-
ticles are neutrally buoyant. The particles are kept
away from the walls and cluster in the middle of the
channel. Therefore, a slug flow model may be envi-
sioned, where the particles are tightly packed together
leaving no gap between the closest neighbors, have no
relative motion with respect to each other, and move
along the channel as a slug. The flow behavior is
then solely determined by the interaction between
the slug and the walls. From the result of the pre-
vious section, this interaction can be characterized
by a ‘‘tightness parameter’’ h0/R, where h0 is the
smallest gap between the particles and the walls.

There are numerous ways in which particles are
packed. Three representative packing patterns are
studied, viz. rectangular cubic (RC), body-centered
cubic (BCC), and face-centered cubic (FCC). Each
different packing pattern results in a different vol-
ume fraction f. In the case that no gap is left be-
tween the closest neighboring particles, the volume
fraction takes values of 0.5236 (RC), 0.6802 (BCC),
and 0.7405 (FCC), respectively.

Suppose the slug flow can be described by an
effective viscosity meff; then it is conceivable that
the ratio meff/m would be a function of f and h0/R.

Rectangular Cubic Packing Pattern

One Layer of Spheres (L � 2R)

This case is shown in Fig. 3a. A train of spheres is
translating with velocity Vx down a channel of height
L. There is no gap between neighboring spheres, nor
is there squeeze action between the spheres and the
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walls. The interaction between one sphere and the
walls is detailed in Fig. 3b. The sphere is in equili-
brium under the pressure force in the downstream
direction and the two friction forces in the upstream
direction. The pressure force equals the pressure
gradient (�dp/dx) times the volume of the sphere.
The friction force F2 can be obtained from Eq. 29 by
setting V1 5 Vx, V2 5 0, and Re 5 R:

F2 ffi 2pmVxRðln R

h0
� ln 2Þ � 3:80525m

Vx

2
R ln

R

h0

1 7:95520m
Vx

2
R ¼ mVxR½4:38056 ln R

h0

� 0:37757� [ mVxRz

(33)

where the symbol z is used to represent the quantity
in the square bracket because of the latter’s frequent
appearance. Thus, the equilibrium equation for the
sphere is

�dp

dx

� �
4

3
pR3 ¼ 2mVxRz (34)

The volume flow rate (Q) of the slurry down the
channel for a channel width 2R (in the y direction)
may be written as

Q5VxL2R� 2Qx (35)

where the back flow (Qx) through the clearance
between the sphere and a wall can be obtained from
Eq. 31 by setting U 5 Vx/2 and Re 5 R.

Qx ¼ 0:1808VxR
2 (36)

The slurry flow may be modeled as a plane Pois-
euille flow (see Ref. 14, p. 326) with an effective
viscosity meff:

Q5 2R
L3

12meff

�dp

dx

� �
(37)

By substituting Eqs. 34, 35, and 36 into Eq. 37
and rearranging the terms, one obtains a correla-
tion for the effective viscosity:

meff

m
5

1

8p

L

R

� �3
z

L
R � 0:1808
� � (38)

Because L � 2R in this case, the formula is
reduced to

meff

m
5 0:17497z (39)

The dependence of the effective viscosity on the
tightness parameter is shown in Fig. 4.

n Cells of Rectangular Cubic Packing Pattern
(L � ne 1 2R, e 5 2R, RH 5 0.60657R)

Figure 5a shows two layers of spheres in the chan-
nel. For the convenience of analysis, let us define
the cell size of the rectangular packing to be e 3 e
3 e with e 5 2R, as shown in the figure. Consider
that the channel contains n such cells in the z direc-
tion; then, the channel height is approximately

L � ne1 2R (40)

Because the slug is porous, liquid permeates
through the pores under the given pressure gradient.
To account for the permeated flow, the concept of
hydraulic radius15 is used, which may be defined as
two times the ratio of volume to surface of the pore
space. The hydraulic radius can be calculated based
on one cell, as shown in Fig. 5b.

RH ¼ 2
e3 � 4

3pR
3

4pR2
5 0:60657R (41)

Using Poiseuille flow in a capillary (see Ref. 14,
p. 337) to model the permeated flow, the volume flow
rate for one cell is

Qp ¼ pR4
H

8m
�dp

dx

� �
(42)

Fig. 4. Effective viscosity as a function of h0/R (one layer of spheres
in the channel).

Fig. 3. One layer of spheres translating in a closely spaced channel:
(a) flow configuration; (b) entrainment action between a sphere and
the walls.
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and the friction force exerted by the permeated flow
in one cell on the slug (acting in the downstream
direction) is

Fp ¼ pR2
H �dp

dx

� �
e (43)

The equilibrium equation for a slug of dimensions
e 3 e in the (x, y) plane but consisting of n cells in
the z direction is

�dp

dx

� �
ðn1 1Þ 4

3
pR3 1nFp ¼ 2F2 (44)

The volume flow rate of the slurry for a channel
width e is

Q5VxLe1nQp � 2Qx (45)

Note that F2 and Qx remain to be given by Eqs.
33 and 36. Again, using the plane Poiseuille flow
formula

Q5 e
L3

12meff

�dp

dx

� �
(46)

to correlate the result, we obtain

meff

m
5

1

6p

L

R

� �3

z

L
R � 2ð0:1808Þ Re
� �

4
3 ðn1 1Þ1n RH

R

� �2 e
R

h i
1 n

4
RH

R

� �4 R
e

� �
z

(47)

Note that in this case L � (n 1 1)2R, e 5 2R, and RH

is given by Eq. 41. According to Eq. 47, the effective
viscosity increases with n. The solid and dashed
lines in Fig. 6 show the dependence of the effective
viscosity on the number of cells and the tightness
parameter.

Body-Centered Cubic Packing Pattern (L �
ne 1 2R, e 5 2.30940R, and RH 5 0.31347R)

In the BCC packing pattern there are eight
spheres at the vertices of a cube and one sphere at
the center of the cube. Figure 7a shows one cell of
this pattern. When the spheres are packed so closely
that there is no gap between the center sphere and
the corner spheres, the cell size is given by

e5
4ffiffiffi
3

p R5 2:30940R (48)

Consider that the channel contains n body-centered
cells in the z direction. Figure 7b shows this case for
n 5 1. The channel height is then approximately

L � ne1 2R (49)

The hydraulic radius can be calculated, based on
one cell, as

Fig. 5. RC packing (two layers): (a) as viewed in the (x,z) plane; (b) as viewed in the (y,z) plane (lightly drawn lines show the leakage
path).

Fig. 6. Effective viscosity in RC packing.
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RH ¼ 2
e3 � 2 4

3pR
3

� �
2ð4pR2Þ 5 0:31347R (50)

The equilibrium equation for a slug of dimension
e 3 e in the (x, y) plane but consisting of n cells in
the z direction is

�dp

dx

� �
ð2n1 1Þ 4

3
pR3 1nFp ¼ 2F2 (51)

The volume flow rate of the slurry for a channel
width e is given by Eq. 45. Following the same pro-
cedure as was done in the section ‘‘n Cells of Rec-
tangular Cubic Packing Pattern,’’ we obtain

meff

m
5

1

6p

L

R

� �3

z

L
R � 2ð0:1808Þ Re
� �

4
3 ð2n11Þ1n RH

R

� �2 e
R

h i
1 n

4
RH

R

� �4R
e z

(52)

Equation 52 differs from Eq. 47 only slightly. How-
ever, in this case e and RH are given by Eqs. 48
and 50, respectively. The solid and dashed lines in
Fig. 8 show the effective viscosity as a function of n
and h0/R.

Face-Centered Cubic Packing Pattern
(L � ne 1 2R, e 5 2.82843R, RH 5 0.23366R)

In the FCC packing pattern there are eight spheres
at the vertices of a cube and a sphere at the center of
each of the six faces. Figure 9a shows one cell of this
pattern. When the spheres are packed so closely that
there is no gap between the center sphere and the
corner spheres on any face, the cell size is given by

e5 2
ffiffiffi
2

p
R5 2:82843R (53)

Consider that the channel contains n such cells in
the z direction. Figure 9b shows this case for n 5 1.
The channel height is (approximately) still given by
L � ne 1 2R. The hydraulic radius can be calcu-
lated, based on one cell, as

RH ¼ 2
e3 � 4 4

3pR
3

� �
4ð4pR2Þ 5 0:23366R (54)

The equilibrium equation for a slug of dimension
e 3 e in the (x, y) plane but consisting of n cells in
the z direction is

�dp

dx

� �
ð4n1 2Þ 4

3
pR3 1nFp ¼ 4F2 (55)

The volume flow rate of the slurry for a channel
width e is

Q5VxLe1nQp � 4Qx (56)

Following the same procedure as was done in the
section ‘‘n Cells of Rectangular Cubic Packing Pat-
tern,’’ we obtain

Fig. 7. BCC packing: (a) location of spheres; (b) one cell in the channel.

Fig. 8. Effective viscosity in BCC packing.
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meff

m
5

1

3p

L

R

� �3

z

L
R � 4ð0:1808Þ Re
� �

4
3 ð4n1 2Þ1n RH

R

� �2 e
R

h i
1 n

2
RH

R

� �4R
e z

(57)

In this case, e and RH are given by Eqs. 53 and 54.
The solid and dashed lines in Fig. 10 show the effec-
tive viscosity as a function of n and h0/R.

SUMMARY AND DISCUSSION

This work was motivated by the need to model the
underfill encapsulant flows, which are slurries con-
sisting of liquid carriers and filling particles in
high volume fraction. It is postulated that the flow
behavior of such dense slurries is governed by the
particle-particle and particle-wall interactions.
These interactions are realized through thin liquid
films trapped between the solid surfaces. In the sec-

tion ‘‘Unit Solutions for Interactions Between Two
Particles,’’ fluid film lubrication theory was used to
obtain the formulas for these interactions, including
the normal separating force and friction forces act-
ing on the surfaces and the film flow rate between
the surfaces. These formulas are new and readily
usable for evaluating the effects of fluid film lubri-
cation.

In the section ‘‘Slug Flow Model,’’ these lubrica-
tion formulas were applied to the slug flow of a dense
slurry, under a pressure gradient, between two par-
allel walls. Three closed-form formulas for the effec-
tive viscosity, Eqs. 47, 52, and 57, were obtained for
the RC, BCC, and FCC packing patterns, respec-
tively. The volume fraction values of these patterns
are 0.5236, 0.6802, and 0.7405, respectively. These
formulas reveal the dependence of the effective vis-
cosity on the packing pattern, the tightness param-
eter h0/R, and the number of cells n contained in the
channel height. Contrary to the predictions by other
viscosity formulas in the literature, the current
model shows that the effective viscosity is finite in
the high volume fraction limit.

Several limitations of the proposed theory should
be noted. Because lubrication theory is used, the
packing of solid particles should be near the dense
limit or the tightness parameter should be small.
One should expect the theory to break down if the
tightness parameter becomes.0.01. Within the val-
idity of lubrication theory, it is clear that a smaller
h0/R results in a large wall drag and hence a higher
meff/m.

The filling particles in slurry probably would not
flow in a prescribed formation, yet only three spe-
cific packing patterns were considered. Despite our
ignorance of the flow formation, it may be reasoned
that different packing patterns in essence expose
different numbers of interaction points between
the slug and the walls and provide different degrees
of permeability of the porous slug. However, results
of the current study (Figs. 6, 8, and 10) show that

Fig. 9. FCC packing: (a) location of spheres; (b) one cell in the channel.

Fig. 10. Effective viscosity in FCC packing.
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the three patterns yield qualitatively the same pic-
ture. It may thus be conjectured that the true for-
mation would yield this same qualitative picture.

Lubrication effects are stronger with a smaller
tightness parameter. When a sphere interacts with
another sphere, the reduced radius given by Eq. 4 is
R/2. When a sphere interacts with a plane wall, the
reduced radius is R. The latter produces a smaller
tightness parameter for the same h0. Hence, the
particle-wall interaction is stronger than the particle-
particle interaction. As a result, the particles are
kept away from the walls and cluster in the middle
of the channel. A slug flow model was therefore
adopted to model the slurry flow. The simple experi-
ment mentioned in the Introduction also provided
justification for adopting this model. The model,
however, produces a pronounced effect of n on meff.
Note that the volume flow rate of a slug flow is basi-
cally proportional to the channel height L (which is
essentially proportional to n), whereas that of the
plane Poiseuille flow is proportional to L3. If the
former is to be correlated by the latter, the effective
viscosity must increase with L2 (or proportional to
n2). On the other hand, for the same pressure gra-
dient, a large L causes a proportional increase in the
pressure force on the slug while the wall drag
remains the same, which causes the flow rate to
increase, or equivalently, the effective viscosity to
decrease. Competition between these two factors
results in an almost linear increase of meff with n.
This result is a consequence of the slug flow model.
One might conceive that, as the channel height
becomes large, departure from slug flow behavior
would become more likely. The question of how
large n can be for the slug flow model to remain
usable should be answered by experiment.

In addition, the proposed theory considers only the
situation of one size, neutrally buoyant, spherical
particles. If the distribution of particle size is bimodal
or broadly dispersed, the packing of particles would
be denser and its porosity smaller, resulting in a
smaller permeated flow through the slug. Mean-
while, interaction of the slug with the channel walls
would still be dominated by the large particles. The
combined effect of these factors on the effective vis-
cosity requires further investigation. The case of non-
spherical particles can perhaps be treated with an
appropriate shape factor. The effect of non-neutrally
buoyant particles is addressed in a separate paper.16

EXPERIMENTAL VERIFICATION

An experiment aimed at comparing the proposed
theory with measurements was conducted. Several
flow channels of rectangular cross section and
different channel heights (1–4 mm) were made by
gluing glass slides (253 53 mm) together. Side clear-
ances of the flow channels were sealed. Upstream of
each flow channel was a storage tank, also made of
glass slides, where a constant head (typically 60 mm
of the slurry) was maintained. Flow rates were
determined by measuring the weight of the collected

flow at the downstream end of the channel (which
was at the ambient condition) during a given time
interval (typically 5–15 min.). The effective visco-
sity of the slurry was calculated by using the plane
Poiseuille flow formula. A schematic diagram of the
flow channel is shown in Fig. 11.

Two kinds of slurries were prepared: one by mix-
ing PMMA particles (of density 1190 kg/m3 and
diameter 200–400 mm) with glycerine (of density
1261 kg/m3 and viscosity 1.41 Pa s), the other by
mixing glass beads (of density 2550 kg/m3 and diam-
eter 200 mm) with honey (of density 1340–1400
kg/m3 and viscosity 5.07 Pa s). The former was used
to approximate the situation of neutrally buoyant
particles, and the latter to investigate the effect of
heavier filler particles. The measured results of
using PMMA particles with glycerine are plotted
in Figs. 6, 8, and 10 along with theoretical predic-
tions. Each data point represents the result of five
repeated measurements. These data points were
obtained with a carefully controlled f 5 0.55.

The results clearly display the slug flow charac-
teristics, viz. the effective viscosity increases with
the number of cells contained in the channel height.
In addition, the data points lie closer to the theo-
retical prediction of a smaller tightness parameter,
indicating that lubrication mechanisms correctly
describe the interaction between the slug and
channel walls. Appreciable quantitative differences
between the theoretical predictions and measure-
ments remain. However, in view of the simplicity
of the theory, and the crude approximations made
therein, such deviations might be considered rea-
sonable. The experiment was carried only up to a
channel height of 4 mm due to expense.
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SYMBOLS

e cell size
F1, F2 friction forces
Fp friction force exerted by permeated flow on a

slug cell
h0 smallest gap between two interacting surfa-

ces
L channel height
n number of cells contained in channel

height
p pressure
Q volume flow rate
Qp permeated flow rate through a slug

cell
R particle radius
Re reduced radius, defined in Eq. (4)
RH hydraulic radius
U entrainment velocity, defined in Eq. (23)
V1, V2 velocities of interacting surfaces
W normal separating force
(x, y, z) coordinate system
z a quantity defined in Eq. (33)
m viscosity of liquid carrier
meff effective viscosity of slurry
f volume fraction
f0 volume fraction at the closest packing
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