3D and 2D Deformation Measurements using Digital Image Correlation System

Jae B. Kwak Email: jkwak1@binghamton.edu Phone: 607-777-4969 Director: Dr. SB Park Email: <u>sbpark@binghamton.edu</u>

What is the DIC?

- 1. Digital Image Correlation System (DIC) :
- To measure both In-plane and Out of plane Deformation induced by thermal or mechanical loading.

2. Advantages of DIC :

- Many applications
 - Warpage measurement
 - Modulus and Poisson's Ratio

Modulus and Poisson's Ratio Measurement

← Sprayed SU-8 material is horizontally mounted on the Micro Tensile Tester and DIC is placed to take images while mechanical loading (pulling) is applied.

- Coefficient of Thermal Expansion (CTE)
- Availability of Measurement as a function of Temperature ightarrow
- High sensitivity 10x8 mm of field of view \rightarrow 0.3 Microns \bullet - 100x80 mm of field of view \rightarrow 3 Microns
- User Friendly ullet

Deformed image series in horizontal (x) and vertical (y) direction

Principle / Methodology

Camera Bar set up

Facet on the sample

- A pair of cameras capture images and build 3D shape \bullet
- Determine deformations and strain by tracking changes of facets
- **3D Image Correlation**
 - 3D Coordinates of Facets
 - Each Facet is recognized as an extensometer

 \rightarrow Measure changes of center of facet and interpolate \rightarrow Compare a reference image to a series of deformed image

Young's Modulus $E = \sigma/\epsilon_{x}$

Poisson's Ratio $v = \varepsilon_v / \varepsilon_x$

Warpage Measurement

Top surface of bottom LSI package sprayed to provide enough contrast for DIC before the measurement

• Absolute Warpage

CTE Measurement

Die attachment material named AB8290 is free-heated from room temperature to 175°C.

At 25°C At 250°C

• Relative Warpage

Warpage diagram at various temperature

The LSI sample is warped away from the view up to 150°C then it started to warp coming toward at higher temperatures.

Strain vs. Temperature plot can be obtained so that CTE value is determined by linear curve fitting.

Coefficient of Thermal Expansion $\alpha = \epsilon_{\rm y} / \Delta T$

