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ABSTRACT

An important building block of the cross-layer network se-
curity design is the physical-layer security which addresses prob-
lems such as whether the physical-layer can have build-in security
and whether physical-layer techniques can assist the upper-layer
encryption-based security techniques. This paper provides a posi-
tive answer by realizing information-theoretic secrecy with space-
time transmissions. While most existing results on information-
theoretic secrecy rely on some impractical assumptions, we pro-
pose a more practical approach that uses the redundancy of space-
time transmissions to create intentional ambiguity to the adversary.
Secrecy can be guaranteed even if the adversary has extremely
high receiving signal-to-noise ratio. This approach is presented
as a new way for secret-key agreement. Simulations in terms of
receiving error rate and secret channel capacity are presented.

1. INTRODUCTION

In terms of security, wireless transmissions are lack of physical
boundary since any adversary can receive the signal within the
range. This may cause a weak physical-layer security, and may
potentially weaken the end-to-end network security. Innovative
cross-layer security design, where the physical-layer security tech-
niques and the upper-layer security techniques are jointly designed,
is desirable for wireless networks. While traditional encryption-
based techniques can be exploited to secure physical-layer (the
top-down approach), it is interesting to study whether the physical-
layer can have build-in security and whether physical-layer secu-
rity techniques can assist upper-layers (the bottom-up approach).
Existing researches are mostly in the top-down approach. In con-
trast, the bottom-up approach is mostly open.

We define the build-in security of the physical-layer as that
physical-layer transmissions are secured against adversaries based
on transmission properties such as modulations, signals and chan-
nels, without resorting to source data encryption. Physical-layer
transmission with build-in security means that the transmitted sig-
nal has negligibly low probability of interception (LPI) to any ad-
versary, but can be detected successfully by the authorized user.
Importantly, such transmission does not assume that the transmit-
ter and the authorized receiver share some a priori knowledge se-
cret to the adversary, such as encryption keys. In other words,
security depends on the signal and channel properties.

∗This work was supported by US AFRL under grant FA8750-04-1-
0213.

One of the fundamental issues for physical-layer security de-
sign is the capacity of the transmission channels when build-in
security is guaranteed. Such capacity is named secret channel ca-
pacity, and can be measured by the number of bits per second per
unit frequency that can be transmitted with certain level of LPI.
As an inherent capacity limit, the secret channel capacity needs to
be specified based on information theory. The corresponding se-
crecy should preferably be information-theoretic secrecy, i.e., the
adversary’s received signal gives no more information for eaves-
dropping than purely guessing. The information-theoretic secrecy
is in fact equivalent to perfect secrecy [1]. In addition, the focus
on information-theoretic secrecy makes the new physical-layer se-
curity study meaningful and competitive compared with the tradi-
tional encryption-based techniques.

Traditional network security or cryptography depends on se-
cret encryptions keys. The procedure of generating and distribut-
ing such keys is called secret-key agreement. With cryptography
terminology, the procedure is usually described as that Alice sends
messages to Bob who will extract a secret key from the messages,
during which the adversary Eve who has access to the channel be-
tween Alice and Bob can not obtain sufficient information about
the key.

The Shannon secrecy model [1] is usually the basis for secret-
key agreement, where Eve is assumed to have full access to the
channel, i.e., she receives identical messages as Bob. It is well
known that perfect secrecy is impractical according to the Shan-
non model. Instead, with computational secrecy, keys can be gen-
erated based on some intractable computational problems such as
factorizing integers in a feasible time. Note that such intractabil-
ity assumption is unproven in practice, so does the secrecy [2].
New computing power, especially the future quantum computer,
has been shown to challenge such intractability assumption. For
example, the complexity of factorizing integers can be polynomial
on a quantum computer as shown in [3], whose results have been
partially demonstrated by experiments

Although perfect secrecy is widely considered as a theoreti-
cal limit only based on the classic Shannon’s secrecy model, there
are results suggesting that it may be realizable in practice. One of
the results is quantum key distribution (QKD), which has obtained
rapid progress recently after decades of investigation. However,
currently QKD still requires dedicated laser links. It is unknown
how QKD can be used conveniently in ordinary multi-hop net-
works, especially wireless networks.

Another result, which is more desirable for wireless networks,
is the information-theoretic secrecy [4], whose key idea is that in



many practical communication systems, especially in wireless sys-
tems, Eve’s channels or signals are not exactly the same as those
of Bob. For example, their signals may be corrupted by different
noise. As a result, they may have different bit-error-rates (BER)
during receiving.

One of the earliest examples on information-theoretic secrecy
was the wire-tap channel invented by Wyner [5], [6], which states
that if Bob and Eve have different BER ε and δ, respectively, then
the secret channel capacity from Alice to Bob can be

C1 =


h(δ) − h(ε), if δ > ε
0, else

(1)

where h(ε) denotes the binary entropy function defined by h(ε) =
−ε log2 ε − (1− ε) log2(1− ε). Obviously, if noise is considered
as the only source of error, it requires that Eve’s channel is nois-
ier than Bob’s in order to achieve any positive capacity. Such a
requirement is in most cases impractical unfortunately.

More recently it has been shown that such a noisier require-
ment can be relaxed to that Eve suffers from a known (and suffi-
cient large) error floor [4]. Specifically, the secret channel capacity
can be

C2 = h(ε + δ − 2εδ) − h(ε), (2)

which is obtained when Alice and Bob can exchange (insure) in-
formation via another public channel. Equation (2) means that
information-theoretic secrecy can be achieved in practice with pos-
itive capacity unless ε = 0.5 (i.e., Bob does not receive reliably)
or δ = 0, 1 (i.e., Eve can reliably receive signals). Unfortunately,
if noise is considered as the only source of receiving error as did
in the existing literature, Eve’s error rate δ can be much less than
that of Bob. If δ � ε, the capacity specified by (2) becomes too
small to be useful.

Nevertheless, existing information-theoretic secrecy results are
interesting because they suggest perfect secrecy be possible with
ordinary wireless transmissions, which is in contrast to the pes-
simistic view from the classic Shannon secrecy model. The prob-
lem remains to find valid ways to realize such secrecy in practice,
or more specifically, to guarantee a high enough δ.

Recently, we have shown that instead of considering noise
only, attacking the problem within the physical-layer signal pro-
cessing framework provides new approaches. In particular, signal
processing techniques can be exploited to deprive Eve’s receiv-
ing capability if proper space-time transmission schemes are em-
ployed. In [7], we exploit the limit of blind deconvolution to make
sure Eve can not estimate her channels. In contrast, in this paper,
we show that even if Eve has her channel knowledge, information-
theoretic secrecy is still achievable by exploiting properly the re-
dundancy of antenna array space-time transmissions.

We depend on a special property of wireless transmissions for
secrecy, i.e., signals received by Bob and Eve are different be-
cause their channels are different. Extensive literature on space-
time channels tells us that as long as the distance among antennas
is large enough, the channel coefficients vary independently and
randomly.

This paper is organized as follows. In Section 2, a framework
of space-time transmission for secret-key agreement is formulated.
In Section 3, we show that traditional transmissions do not guaran-
tee secrecy. Then, an intentional ambiguity scheme is developed
in Section 4. Simulations are given in Section 5 and conclusions
are presented in Section 6.
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Fig. 1. System model for secret-key agreement between Alice,
with J transmitters, and Bob.
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Fig. 2. The block diagram of secure space-time transmission.

2. SYSTEM DESCRIPTION

We consider a wireless network where Alice transmits to Bob us-
ing J transmitting antennas, which we call J transmitters. From
the received signal, Bob needs to extract a secret key, during which
Eve should be deprived of signal interception capability, as illus-
trated in Fig. 1.

A beamforming-like array transmission scheme shown in Fig.
2 is used by the J transmitters. A symbol sequence {b(n)} is fed to
all J transmitters. Before transmission, the sequence is processed
by the transmitters. Though more complex filters can be used, we
consider single-tap weights wi(n) for simplicity. In addition, each
of the transmitters may appropriately delay (or advance) the signal
by δi. The transmitted signal from the transmitter i is thus si(n),
whereas Bob receives signal x(n).

If the propagation channel is Rayleigh flat fading, the signal
received by Bob is

x(n) =

JX
i=1

h∗
i si(n) + v(n)

�
= hHs(n) + v(n), (3)

where v(n) denotes AWGN with zero-mean and variance σ2
v , chan-

nel coefficients h∗
i are independent complex circular symmetric

Gaussian distributed with zero-mean and unit variance, the chan-

nel vector h
�
= [h1, · · · , hJ ]T , and

s(n)
�
=

2
64

s1(n)
...

sJ(n)

3
75 =

2
64

w1(n)
...

wJ (n)

3
75 b(n)

�
= w(n)b(n). (4)

In this paper, (·)∗, (·)T , and (·)H denote conjugation, transposition
and Hermitian, respectively. We assume that h is block fading [8],
i.e., it is constant or slowly time-varying when transmitting a block
of symbols but may change randomly between blocks. The sym-
bols b(n) are independent uniformly distributed with zero-mean
and unit variance. The transmission power is thus determined



by the transmitting weights w(n), whereas the received signal-
to-noise-ratio (SNR) is determined by both w(n) and σ2

v .
Eve may use multiple receiving antennas for better intercep-

tion, and the interception becomes much easier when the propaga-
tion is flat-fading. Therefore, we consider the worst case (to Alice
and Bob) where Eve receives signals from M receiving antennas.
In addition, though the delays δi may not be zero because Eve ad-
justs δi in favor of Bob, in this paper we assume zero delays for
simplicity. The received signal of Eve can then be written as

xu(n) = Huw(n)b(n) + vu(n). (5)

The notations are similar to (3) except that (·)u is used to denote
the unauthorized user. Each element of the channel matrix Hu has
the same distribution as hi, but is independent from hi.

In this paper, we focus only on the case that Alice (with J
transmitters) transmits a secret sequence to Bob. Other than that,
they can communicate with each other using another insecure chan-
nel, and messages on this insecure channel may be known to Eve.
If this second channel is used, then we can use (2) for a higher se-
cret channel capacity than (1). In addition, this channel can also be
used to transmit the normal high rate encrypted data with keys gen-
erated by the secret channel. Furthermore, Alice may use an extra
transmitting antenna for piloting purpose, i.e., for Bob to synchro-
nize in both time and frequency.

Note that although we study one direction secrecy only, the
same scheme can be set up on the other direction. Or, as one di-
rection is secured, the other direction can easily be secured too. In
addition, although we consider a single-point to single-point trans-
mission, the scheme also fits single-point to multi-point transmis-
sion (broadcasting) schemes. Because different users have differ-
ent channels, all other users can just be treated as adversaries to
one specific user.

3. TRADITIONAL TRANSMISSIONS DO NOT
GUARANTEE SECRECY

In this section, we assume that Eve does not know the channels
h and Hu. But she may try to estimate them by training/blind
methods. In order to realize data transmission from Alice to Bob,
ways have to be designed for them to estimate h and symbols.

Under such a problem setting, traditional transmit beamform-
ing methods do not guarantee secrecy although they are optimal in
terms of performance and power efficiency. A typical beamform-
ing method uses w(n) = h/‖h‖, which has unit total transmis-
sion power since E[‖s(n)‖2] = E[tr(w(n)b(n)b∗(n)wH(n))] =
E[‖w(n)‖2] = 1. Obviously, w(n) is not random if the channel
h is constant or slowly time-varying. Eve’s received signal be-
comes xu(n) = (Huh/‖h‖)b(n) + vu(n), from which many
blind equalizers including the constant modulus algorithm (CMA)
can be applied for symbol detection. The same conclusion holds
for other designs of w(n) that are not random. Therefore, to
guarantee secrecy, a necessary condition is that w(n) be random.
Therefore, antenna array transmissions are necessary, since single-
antenna transmissions are susceptible to blind detection.

More generally, w(n) can be obtained from the singular value
decomposition (SVD) of h, i.e., hH = UDVH . In this special
case, U = 1, D = diag{‖h‖, 0, · · · , 0}, and V is a J × J
unitary matrix whose first column equals h/‖h‖. For transmit

beamforming, w(n) can be w(n) = V[1, z2(n), · · · , zJ(n)]T
�
=

V[1, zT
1 (n)]T , where zj(n), j = 2, · · · , J , can be arbitrary.

However, such a classic approach does not have any secrecy even
if w(n) is randomized by choosing randomly z1(n). For example,
CMA may be used to estimate symbols from

xu(n) = HuV

»
1

z1(n)

–
b(n) + vu(n). (6)

Here the key problem is that w(n) is designed with optimal power
efficiency. As a result, in order to guarantee secrecy, we may not
achieve the optimal unit transmission power. Therefore, there is a
tradeoff of transmission power for secrecy.

4. SECRET TRANSMISSION SCHEME WITH
INTENTIONAL AMBIGUITY

In this section, we develop a transmission scheme with the objec-
tive of guaranteeing secrecy even if Eve knows her own channel
Hu and has extremely high SNR or even works in noiseless envi-
ronment. Such an assumption makes this paper completely differ-
ent from [7] where the limit of blind equalization is exploited for
secrecy.

4.1. Transmission with intentional ambiguity

With the known channel Hu, Eve’s signal (5) can be simplified to

xu(n) = w(n)b(n), (7)

where the noise is skipped under the assumption of high SNR. To
guarantee secrecy under (7), we propose to introduce intentional
ambiguity into xu(n) by designing properly w(n).

When Alice knows the channel h, for example, through the
reciprocity property, she can calculate a new w(n) in each sym-
bol interval by generating a J × (J − 1) random matrix F =
[f1, · · · , fJ−1], where each fi is a J × 1 vector. Let

a(n) =

2
64

‖f1‖c1(n)
...

‖fJ−1‖cJ−1(n)

3
75 , (8)

where {ci(n)}, 1 ≤ i ≤ J − 1, are secret sequences known only
to Alice. Without loss of generality, we assume that ci(n) = ±1,
∀i, n, and {ci(n)} and {cj(n)} are independent from each other.
We make each column of the matrix F to have the same distribu-
tion as h. In other words, each element of F is complex circular
symmetric Gaussian distributed with zero-mean and unit variance,
just as hi. In addition, each column fi has a similar time-varying
property as h. The matrix F is known to Alice only. To both Bob
and Eve, each fi looks statistically identical to h.

Then we calculate w(n) by solving»
hH

FH

–
w(n) =

» ‖h‖
a(n)

–
. (9)

Since F is randomly generated, it is equivalent to saying that w(n)
is random except satisfying hHw(n) = ‖h‖. For Bob, the re-
ceived signal becomes

x(n) = ‖h‖b(n) + v(n), (10)

from which the symbol b(n) can be detected via estimating the
received signal power. The key point for guaranteeing secrecy is



that Eve becomes unable to discriminate h from any column of F,
as analyzed in Section 4.2.

The total transmission power of this scheme has a lower bound

E[‖w(n)‖2] ≥ E

"
‖[h F]‖−2

‚‚‚‚
» ‖h‖

a(n)

–‚‚‚‚
2
#

=
hHh + aH(n)a(n)

tr([h F]H [h F])

= 1. (11)

However, the unit lower bound usually can not be obtained. For
example, considering the case that the columns of F are orthogonal
to each other and to h, the transmission power is E[‖w(n)‖2] =
J .

From (9), the norm of w(n) depends on the eigenvalues of
the random matrix [h F]. Since F is randomly generated, it is
possible for [h F] to become ill-conditioned. As we have shown,
simply orthogonalizing this matrix does not give optimal transmis-
sion power.

4.2. Secrecy to Eve

In the following, we use P [x] to denote the probability of a random
variable X for notational simplicity. Specifically, P [x] equals the
pdf fX(x) if X is continuous, or the probability mass function px

when X is discrete.
Proposition. Even if Eve knows her channel Hu and works

in noiseless environment, she can not discriminate h from any col-
umn fi of F, i.e., P [h|{xu(n)}] = P [fi|{xu(n)}], 1 ≤ i ≤ J−1,
where {xu(n)} denotes the sequence including all the available
samples.

Proof. Considering the maximum a posteriori probability (MAP)
detector for h, Eve has

P [h|{xu(n)}] = P [{xu(n)}|h]
P [h]

P [{xu(n)}]
= P [{w(n)b(n)}|h]

P [h]

P [{xu(n)}]
= P [{w(n)}|h]P [{b(n)}] P [h]

P [{xu(n)}] .

Because of (10), one element of w(n) is completely determined
by others given h. Let w1(n) be determined by random variables
z1(n) =[w2(n), · · · , wJ (n)]T . Then

P [h|{xu(n)}] = P [{z1(n)}]P [{b(n)}] P [h]

P [{xu(n)}] .

Similarly, if Eve considers fi instead of h, it has

P [fi|{xu(n)}] = P [{z1(n)}]P [{b(n)}] P [fi]

P [{xu(n)}] . (12)

Because P [fi] = P [h], the proposition is proved. �

The proposition shows that Eve can not discriminate h from
fi. In other words, she can not discriminate b(n) from ci(n)b(n).
This is the ambiguity created intentionally. The only way left for
her is to guess {b(n)} from all possible sequences {ci(n)b(n) :
1 ≤ i ≤ J − 1}, which is the essence of information-theoretic
secrecy, i.e., Eve can only guess the result as if she has no any
information on the received signal xu(n). For the guessing-based
exhaustive search, the complexity increases when the channels are
(block) time-varying. Therefore, a small coherence time of the
channel can greatly enhance the secrecy.
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5. SIMULATIONS

In this section, we show the performance of the proposed trans-
mission scheme in terms of bit-error-rate (BER), secret channel
capacity, and transmission power. We use BER to compare the
receiving performance of Bob and Eve. For comparison purpose,
we evaluate the performance of the optimal transmit beamforming
discussed in Section 3, and give the theoretical BER curve of the
Rayleigh fading channel without diversity. For Eve, we assume
that she can only try to estimate each w(n) blindly, which is al-
most no difference from guessing.

Alice transmits QPSK symbol packets. Each packet contains
200 QPSK symbols. We use 5000 runs to obtain each BER value.
We let Alice to find the best w(n) from J different realizations of
F matrices in order to reduce transmission power and to avoid ill-
conditioned matrices. The BER results are shown in Fig. 3, from
which we see that Bob can reliably receive signals while Eve can
not.

Based on the BER of Bob and Eve with the proposed transmis-
sion scheme, we also derive the secret channel capacity using (1)
and (2). For comparison purpose, we also plot the secret capacity
of the traditional transmission schemes when noise is considered
as the only source of error. In this case, Eve is assumed to have
the same SNR as Bob. As can be seen from Fig. 4, the proposal
scheme gives much higher secret capacity. Note that considering
the possibility that Eve can actually have higher SNR than Bob,
the advantage of our scheme is even more exceptional.

The transmission power (both the total transmission power and
the transmission power of a typical single transmitting antenna)
is studied by simulation in 5(a) and (b). We compare the pro-
posed method with the method in [7] and the optimal transmit
beamforming. Obviously, the transmit beamforming is optimal in
transmission power, while the proposed method and the method
in [7] have a trade-off between transmission power and secrecy.
The method in [7] requires both larger total transmission power
and larger single-antenna transmission power than the proposed
method, which is because the proposed method has better opti-
mization when calculating transmitting coefficients w(n). In ad-
dition, the standard deviation of power consumption among 5000
runs is also shown. The standard deviation of transmission power
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of the proposed method is relatively constant.

6. CONCLUSIONS

This paper studies the informational-theoretically secret transmis-
sions for secret-key agreement. By considering the physical-layer
signal processing, the redundancy of space-time transmissions with
antenna arrays can be exploited to create a difficult signal intercep-
tion situation for the adversary. When the adversary suffers from
high receiving errors, sufficiently high secret channel capacity can
be realized in practice. This paper points out an innovative way for
physical-layer security design and shows that physical-layer tech-
niques can assist upper-layer security designs.
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