Optimal multiple-relay selection in dual-hop
amplify-and-forward cooperative networks

Xiaohua Li

Algorithms and rules for the optimal selection of multiple amplify-and-
forward relays are developed in a dual-hop coopetative network.
A Tinear fractional programming approach is first formulated. Then, a
surprisingly simple water-filling-like closed-form solution is
derived, which shows many interesting properties of the optimal
relay selection.

Introduction: Cooperative communication has attracted much attention
and has achieved rapid progress in the last few years because of its
advantage of exploiting redundant nodes as relays to boost transmission
performance. Nevertheless, while coopetative communication has been
an active research area for years, a fundamental issue remains challen-
ging and open, ie. how to select relays optimally from all available
redundant nodes. The relay selection problem can in general be
divided into single-relay selection and multiple-relay selection problems
[1]. The former has been studied extensively [2]. Unfortunately, the
latter is more challenging. Some suboptimal or heuristic methods have
thus been proposed, e.g. selecting relays closer to the source node, or
selecting relays with SINR above a certain heuristic threshold {3]. In
this Letter, we give an optimal yet simple result on multiple-relay
selection.
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Fig. 1 Dual-hop cooperative wireless network with N candidate relay nodes

Dual-hop cooperative network: We consider a wireless ad hoc network
with a source node (node 0), a destination node (node N + 1) and N
other nodes that can potentially work as relays, as illustrated in Fig. 1.
The edge (ij) from node i to j has complex gain gy For any node i
that is selected as the telay, we adopt the following dual-hop two-
phase amplify-and-forward relaying scheme. During the first phase,
the source node broadcasts the signal s(f) to all the other nodes. The
signal received by the node i is

x(t) = guv/Ps(t — m) +vi(®), i=1- N+1 o)
where 7y is the propagation delay, P is the maximum transmission
power of any node, and v;(#) is the additive white Gaussian noise
(AWGN). During the second phase, each relay i amplifies the received
signal x;(¢) to cettain transmission power P; and transmits signal
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The source node may transmit again the signal so(#) = s(1) in this phase
with a new transmission power Po, where 0 < Py < P. The destination
node’s received signal is

N
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where T; 1 is the propagation delay arid v, (£) is the AWGN.

We assume that all AWGNs are independent from each other and
from s(r), and have zero mean and variances E[lvi(H)*] = Uf We
define the nominal SINR for edge (i,f) as
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Linear fractional programming: From (1), the destination node has
SINR v = Plog y4112/0%,, in the first phase. During the second

phase, the destination’s signal (3) can be written as
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The SINR of (5) is

vi(t — Ti,n41) + va(d)
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With the nominal edge SINR (4), we can readily rewrite the overall des-
tination SINR as
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problem becomes the optimisation
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where a; = ¥y Di z; :F'. Then, the relay selection
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It is easy to see that 7511) = ayy1 is a constant, and 75,2) is in a linear frac-

tional programming (LFP) form. Therefore, the optimisation (8) can be
solved by standard linear programming algorithms [4].

Optimal relay selection rule: It is more desirable to look for a closed-
form solution to (8). Surprisingly, there is such a simple yet optimal

closed-form solution, as shown below:

Proposition: Optimal multiple-relay selection (8) leads to Py = P and
for all other nodes { = 1, ,N
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lated from (7) by letting z; = 1 or z; = 0 according to ).

Proof: Consider (7). Obviously, for maximum v, we should have
zg=1 since ayy1 > 0. Then we just need to maximise
fla) = axblzl + -+ aybyzy + an+i
1Z1+'-'+bNZN+1
with a; < a;. We can rewrite f({z}) as f({z:}) = (@ibiz + a;bjzi+
@)/(bizi + bjz; + B) where a, B denote all the remaining items. Then
we change to f({z;}) = a; + hi/(biz: + bjz; + B) where h; = a — a;+
(a; — a;b;z;. Because all the variables a;, b, z; are non-negative, to
maximise f({z;}) we should have: if h; > 0 then z; = 0; and if 2; <0
then z; = 1. Next, we .change f({z}) similarly to fUzh) = a+
hi/(biz; + bz + B) where by = o — ;B + (a; — ap)biz;. It is easy to
verify that h; —h; = 0. Then for all the following three cases,
O=hi>h, iy =0=h, and ; = h; = 0, we must have, respectively,
zm=1,z=1}, {z=0,z= 1}, and {z =0,z; =0}. This result
means that for any two nodes with a; < a;, if z; = 0 then z; = 0; and
if z = 1 then z; = 1. In other words, there exists a node i* such that
for all the nodes j = 1, - -, N we must have

. Consider any two nodes i,/

Zj:{O, if @ <ap (10)
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Therefore, to determine whether a node i can work as a relay, we let
z=0 for all aj <a; and z =1 for all a; = a;. Then we have



+1H A M, which can be changed to f(z;) = a; + (& — aiB)/
bz + B

(b,-zi—}—fB). If & — a;f < 0 we must have z; = 1, which is the same as
(9). Otherwise, if z; =0 instead, then according to (10) we have
a;« > a;. Considering f(zp) = ap + (@ — aw )/ (bpzx + B, it is
easy to verify that o* — axf* < & — a;8 < 0. This means zx = 0, a
contradiction to (10). This concludes the proof.

Some interesting properties can be observed from this proposition.

First, relays either use full transmission power or stop transmission.
Secondly, the higher the nominal SINR, the higher the priority of

using this edge (and thus this relay). Thirdly, since
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increasing, we can find an x* such that /' (*) = 0. Then nodes (edges)
with nominal SINR ,; > x* will be selected as relays. The procedure
is somewhat similar to the classical water-filling principle.

Simulation results: We simulated a random wireless ad hoc network
where the nodes’ positions were randomly generated within a square
of 1000 x 1000 m. Nominal edge SINRs were calculated as
V= 108d,.]T 26 where dj is the propagation distance. Source/destination
nodes were fixed with distance dp y+1 = 1000 m. We simulated the LFP
algorithm (‘LFP”), our new rule (9), and two heuristic methods: one uses
a single relay closest to the source (‘use single relay’), and the other uses
all the N relay nodes (‘use all relays’). Baseline source—destination
transmission (‘S-D direct’) SINR was compared as well. Simulation
results in Fig. 2 indicate that our optimal relay selection rule (9) gave
the same results as LFP, and thus is optimal. They both achieved the
optimal destination SINR.
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Fig. 2 Average signal to interference and noise ratio (SINR) against number
of relay candidates

Conclusion: For a dual-hop amplify-and-forward cooperative network,
we give a closed-form solution to the problem of multiple-relay selection
for maximum destination SINR. It shows many interesting properties of
the optimal relay selection.
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A successive cancellation stack (SCS) decoding algorithm is proposed
to improve the performance of polar codes. Unlike the conventional
successive cancellation decoder which determines the bits successively
with a local optimal strategy, the SCS algorithm stores a number of
candidate partial paths in an ordered stack and tries to find the global
optimal estimation by searching along the best path in the stack.
Simulation results in the binary-input additive white Gaussian noise
channel show that the SCS algorithm has the same performance as
the successive cancellation list (SCL) algorithm and can approach
that of the maximum likelihood algorithm. Moreover, the time
complexity of the SCS decoder is much lower than that of the SCL
and can be very close to that of the SC in the high SNR regime.

Introduction: Polar codes (PCs) have been proved to achieve the capacity
of symmetric binary input discrete memoryless charmels (B-DMCs) under
a successive cancellation (SC) decoding [1]. However the finite-length
performance under SC is not satisfactory. The belief propagation (BP)
decoding algorithm can improve the performance [2, 3], whereas the
optimal scheduling of messages in BP is hard to know. In [4], a linear
programming (LP) decoder is introduced; unfortunately, it cannot
work on channels other than the binary erasure channel (BEC).
Moreover, there is a gap between the BP JLP algorithm and the
maximum likelihood (ML) algorithm. The successive-cancellation list
(SCL) decoder [5] can approach the performance of the ML decoder
for a moderate list size L. Nevertheless, the time complexity of the
SCL decoder is fixed and slightly high. Inspired by the stack decoding
of the convolutional code [6], we propose an alternative decoding
strategy called the successive cancellation stack (SCS) algorithm.
Compared with the SCL decoder, the SCS algorithm can achieve the
same performance and has lower time complexity.

Polar coding: In this Letter, we apply the same notation defined in [1].
We assume communication over a symmetric B-DMC W : 0,1} - R.
Let N = 2" denote the code length. After channel combining, we get a
vector channel Wy (/Y lud) = [T, W(,bx), where xY =l Gy, Gy is
the generator matrix defined in [1], ulf xy e {o, 1}V are the source
and code block, respectively, 3 € RY is the received signal and
W(y;lx;) is the channel transition probability of W. By applying
channel splitting, the transition probability of the polarised subchannel
W](\;) can be defined as
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where i1, ul, are the subvectors of uff. Moreover, the transition
probabilities in (1) can be easily calculated by a recursive structure
[1]. After using Bhattacharyya parameters to caleulate the reliability,
the information bits 14 are assigned to the more reliable subchannels,
AC{1,2,...,N}. Frozen bits u 4 are transmitted through the others,
where A° is the complement set of A. Without loss of generality, the
frozen bits can be set to zeros when the channels are symmetric.

Decoding: In [1], the successive cancellation (SC) algorithm is used to
decode polar codes with low complexity O(V log N). Let the estimation
vector of transmitted bits be fz’lv = (i, fip, + -+, ). If bit i is frozen,
then #; = 0. Otherwise, the decoding rule is as follows:

o= {0, w oY o s = 0) = wPOY e =1 (g
1, otherwise
where i € A. A code tree of polar codes can be constructed by this suc-
cessive bit determination procedure. A decoding path d} = (d1, da,
Load),ie{l2,..., N} is composed of i branches in the tree. Along
the path, the branch in the level-7 denotes the corresponding bit taking
the value of d;. SC decoding can be seen as a greedy search algorithm
in the code tree and in each level only the one of two branches with
larger probability is selected for further processing. Once a decision
error occurs, there is no chance to correct it in the later procedure.
Theoretically, the performance of ML decoding can be obtained by
traversing all the N-length paths in the code tree. But the time complex-
ity of this brute-force search is exponential. As a width-first search
algorithm, SCL doubles the number of decision paths and selects the

ELECTRONICS LETTERS 7th June 2012 Vol. 48 No. 12 695




