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ABSTRACT

Channel dispersion is inevitable in asynchronous
cooperative transmissions even in flat fading environ-
ment, which may greatly degrade the gain of cooper-
ative diversity and cast doubts on their application in
wireless sensor networks for energy efficiency or reli-
ability. This paper studies the interference caused by
such channel dispersion, and shows that the average
SIR can be decreased to 10 dB even in noiseless trans-
missions. We propose two methods to mitigate the dis-
persion: a simple sampling time optimization method,
and an over-sampling combining method. Simulations
show that they can achieve average SIR near 30 dB and
near 60 dB, respectively, with two cooperative trans-
mitters.

1. INTRODUCTION

Recently there have been great research interests in
cooperative transmissions in sensor networks and ad
hoc networks, where the increased density of network
communication devices can be exploited to enhance
performance. For wireless sensor networks, coopera-
tive transmissions using multiple sensors have the gain
of cooperative diversity, and thus can be exploited to
enhance transmission energy efficiency as well as link
reliability. This is extremely important for wireless
sensor networks considering the limited reliability and
communication capability of each single sensor.

Since cooperative transmissions use an array of trans-
mitters similarly as physical antenna array transmis-
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sions, the rich research results of the latter can natu-
rally be extended for the former. Especially, space-
time block codes (STBC) [1], [2] have been widely
investigated for cooperative transmissions because of
their efficient computation.

Nevertheless, one of the major differences between
cooperative transmissions and conventional array trans-
missions is that cooperative transmitters need to have
the same data before transmission. This raises the over-
head of cooperation, and causes performance loss. As
a matter of fact, this problem has been a focused re-
search area for cooperative communications [3], [4].
Only very recently, there have been work toward an-
other major difference, i.e., the synchronization of co-
operative transmitters [5]-[11]. It is difficult, and in
most cases impossible, to achieve perfect synchroniza-
tion among distributed transmitters. This is even more
a reality when low-cost, small-sized transmitters are
used, such as tiny sensors [6]. Note that the synchro-
nization among the transmitters is different from the
conventional synchronization between the transmitter
and the receiver. For the former, usually hand-shaking
has to be conducted among the transmitters, which in-
duces more synchronization overhead and eats away
the benefits of cooperative diversity.

When the cooperative transmitters are not synchro-
nized, their signals arrive at the receiver with arbitrary
delays. This has two effects. First, any intended signal
structure, such as the orthogonal structure of STBC en-
coding, is destroyed, so that the conventional receivers
may not work anymore. Next, there is channel dis-
persion because of the pulse shaping and because uni-
versally ideal sampling time instants for all transmit-
ter’s signals do not exist. If the environment is already
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frequency selective fading, then such extra dispersion
may not be significant since it only makes channels
longer. However, if the environment is flat fading, as
expected in wireless sensor networks, then such dis-
persion makes the channels fundamentally different.
In contrast to flat fading, dealing with dispersive chan-
nels not only makes the receiver excessively complex
and energy consuming, but also greatly reduces perfor-
mance, especially if the optimal maximum-likelihood
sequence estimation is not affordable [6].

It has been shown that via proper coding, the diver-
sity order of conventional array transmissions can be
preserved in asynchronous cooperative transmissions
if the timing asynchronism is in integer (not fractional)
number of symbol intervals [10], [11]. The underly-
ing assumption, however, is that the channels are still
flat fading. Note that the diversity order is defined as
the power of the received signal-to-noise ratio (SNR)
used in evaluating receiving error-rate. The problem is
that, when channels become dispersive, there is inter-
symbol interference (ISI), and the ISI drastically re-
duces SNR if not mitigated. Therefore, the ISI has a
detrimental effect even in case the diversity order can
be preserved.

We have shown that the orthogonal structure of the
STBC can be preserved by special encoding schemes
conducted at the transmitters [5], or by channel equal-
ization conducted at the receiver [6]. Nevertheless, in
both cases, we still suffer from heavy performance loss
compared with the ideal flat fading case. On the other
hand, one may suggest to use OFDM transmission for
easy equalization and timing asynchronism mitigation
[7]. But OFDM has its own problems, such as residue
carrier frequency offset [8], lower power amplifier ef-
ficiency, as well as more complex implementations.

Considering that it is still not very clear as to whether
cooperative transmissions really provide positive over-
all gain in asynchronous flat fading environment, in
this paper, we investigate the performance of asyn-
chronous cooperative transmissions by studying the ISI
due to channel dispersion, and by comparing its signal-
to-interference ratio (SIR) against the original flat fad-
ing cases. Note that we consider only the asynchro-
nism caused by different transmission times and prop-
agation delays among the transmitters. Carrier fre-
quency mismatch only makes channels time-varying,
and can be addressed by adaptive techniques if the vari-

source
sensor

node 1

node J destination
sensor

sensor
relay

hop 2hop 1

Fig. 1. Multi-hop wireless sensor network model with
cooperative transmissions.

ation rate is slow enough.
This paper is organized as follows. In Section 2,

we give the asynchronous transmission model and dis-
cuss the difficulty of synchronization. Then in Section
3, we propose two methods to mitigate the channel dis-
persion. Their performance is investigated by exten-
sive simulations in Section 4. Finally, conclusions are
presented in Section 5.

2. SYSTEM MODEL

Consider a wireless sensor network where a source
sensor needs to transmit a data packet to a destination
sensor through multi-hop relaying as shown in Fig. 1.
In each hop, multiple sensors may cooperatively for-
ward the data packet to the next hop.

We consider the cooperative transmission among
nodes 1 to J in hop 1. Note that all these nodes can
have the knowledge of the data packet from the trans-
mission in the previous hop. The passband signal to
be transmitted by each transmitter i has a general form
Re[

∑∞
m=−∞ si(m)pb(t−mT )ej2πfct], where si(m) is

the complex symbol transmitted within symbol inter-
val [mT, (m + 1)T ), pb(t) is the baseband pulse shap-
ing filter, and fc is the carrier frequency. After delay-
ing with δi, the passband signal transmitted from the
transmitter i, 1 ≤ i ≤ J , and received by the receiver
is Re[

∑∞
m=−∞ si(m)pb(t − mT − δi)ej2πfc(t−δi)].

We assume flat-fading propagation in this paper.
The received passband signal at the receiver is

rp(t) = Re[
J∑

i=1

αi

∞∑
m=−∞

si(m)

pb(t − mT − δi)ej2πfc(t−δi) + vp(t)], (1)

where αi are (complex) fading of the propagation.
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We assume asynchronism in transmission time and
propagation delays, which means that δi are different
for different transmitters.

Without loss of generality, we can demodulate (1)
by e−j2πfct to obtain the continuous-time complex base-
band signal

rb(t) =
J∑

i=1

αie
jθi

∞∑
m=−∞

si(m)pb(t−mT−δi)+vb(t),

(2)
where vb(t) is the equivalent baseband noise, and the
phase θi = −2πfcδi.

Since δi may be different for different transmitters,
it is impossible to achieve timing synchronization or to
find a universally ideal sampling time instant. Then,
without loss of generality, we perform baseband sam-
pling at time instant nT + τ , which gives the sample

x(n)
�
= rb(nT + τ), where 0 ≤ τ < T . The sample

x(n) can be written as

x(τ)(n) =
J∑

i=1

αie
jθi

∞∑
m=−∞

si(m)pb[(n − m)T + τ − δi] + v(τ)(n), (3)

where v(τ)(n)
�
= vb(nT + τ).

We assume that the pulse shaping filter have sup-
port [−KT,KT ]. Obviously, each sample x(τ)(n) de-
pends on multiple transmitted symbols, so the channel
should be dispersive. On the other hand, the dispersive
channel model in this case is different from that due to
multipath propagation. One of the major differences is
that once we know the delay δi and sampling timing
τ , we know all dispersive channel coefficients, which
are determined completely by the pulse-shaping filter
pb(t).

Define channel coefficients (due to pulse shaping
only, not the propagation flat fading) as

hi(�) = pb(�T + τ − δi), (4)

Then the received sample can be written as

x(τ)(n) =
J∑

i=1

αie
jθi

∞∑
m=−∞

si(m)hi(n−m)+v(τ)(n),

(5)

which can be rewritten as

x(τ)(n) =
J∑

i=1

αie
jθi

∞∑
�=−∞

hi(�)si(n − �) + v(τ)(n),

(6)
Now we need to estimate the range of �. Because

−KT ≤ �T + τ − δi ≤ KT, (7)

we have

−K +
δi − τ

T
≤ � ≤ K +

δi − τ

T
. (8)

Define the lower range and the upper range as

LL
i,τ

�
=

⌈
−K +

δi − τ

T

⌉
, LU

i,τ
�
=

⌊
K +

δi − τ

T

⌋
.

(9)
Then the channel model becomes

x(τ)(n) =
J∑

i=1

αie
jθi

[
hi(LL

i,τ ), · · · , hi(LU
i,τ )

]

×




si(n − LL
i,τ )

...
si(n − LU

i,τ )


 + v(τ)(n). (10)

Though there are investigations to synchronize the
cooperative transmitters [9], perfect synchronization is
difficult, and comes at high overhead and complex-
ity. All the transmitters should have identical clock,
carrier frequency and symbol timing in order to get
perfect synchronization so as to directly use existing
encoded transmission and decoding techniques. The
challenge comes from the fact that the propagation de-
lays, i.e., time required for the signal from the trans-
mitter to reach the receiver, may be different among
the transmitters. So do the carrier frequencies due to
Doppler shifting when the transmitters and receivers
are moving independently. As a matter of fact, syn-
chronizing all transmitters to one receiver may increase
asynchronism toward another receiver [5]. Therefore,
instead of considering the more complex and resource
consuming perfect synchronization, it may be more
advantageous to consider directly the asynchronous trans-
missions instead.
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3. DISPERSION INTERFERENCE AND ITS
MITIGATION

Using the model (10), we need to either find ways to
mitigate the channel dispersion, and hence ISI, or oth-
erwise suffer from ISI-induced SIR reduction. In this
paper, we consider only the pre-processing of the re-
ceived samples without knowing the encoding details.
We will try to restore the original flat fading chan-
nels by mitigating dispersion (though we still have de-
lays in integer symbol intervals). Then we will evalu-
ate the interference due to residue dispersion, and the
reduction of SIR. After this, the subsequent decod-
ing/detection of the cooperatively transmitted signals
can simply use flat fading channel model based on the
pre-processed samples.

As a basis for comparison, we consider first the
case when the receiver just uses the flat fading chan-
nel model by assuming all other channel coefficients
in (10) be interference, which we call dispersive inter-
ference. We define the SIR as

SIR =
∑J

i=1 max� |hi(�)|2
J

∑J
i=1 (

∑
� |hi(�)|2 − max� |hi(�)|2)

. (11)

Note that the SIR defined in (11) refers to the SIR per
transmitter, averaged over the fading coefficients. We
have (11) also because the signal part and the interfer-
ence part have the same symbol variance.

For the ideal noisy case (without asynchronism)
the signal-to-noise ratio (SNR) can be defined as

SNR =
Jσ2

s

σ2
v

, (12)

which is also the average over the fading coefficients.
Then, in case of asynchronism, the extra interference
in (11) makes the receiver’s signal-to-interference-and-
noise ratio (SINR) to be

SINR =
1

1
JSIR + 1

(
PJ

i=1 max� |hi(�)|2/J)SNR

. (13)

Therefore, both SIR and the reduced value of channel
coefficients max� |hi(�)|2 makes the SINR lower than
the ideal case SNR. In particular, if SIR�SNR, then
SIR dominates and becomes the SINR floor, which
means in high SNR environment, the SINR is limited
to be SIR. On the other hand, if SIR�SNR, then the

interference does not degrade system performance too
much.

As a result, by examining SIR instead of SINR,
we can reduce complexity while are still able to show
the impact of the asynchronism-induced interference.
Therefore, to simplify the problem, we consider noise-
less transmission in this paper so as to focus on the
interference.

3.1. Use fixed sampling timing

We refer (10) as the “fixed” sampling scheme, and use
it as a basis for comparison. With the fixed scheme,
without loss of generality, we can use τ = 0. From

hi(�) = pb(�T + τ − δi) = pb(�T − δi), (14)

we can decompose the delay δi into an integer value
δ
(1)
i and a fractional value δ

(2)
i so that

δi = δ
(1)
i T + δ

(2)
i T, (15)

and

−1
2

< δ
(2)
i ≤ 1

2
. (16)

In addition, we assume that the delays of the transmit-
ters are independent and uniformly distributed, which
means δ

(2)
i is a uniform random variable with proba-

bility density function (pdf)

f(δ(2)
i ) = 1, for − 1

2
< δ

(2)
i ≤ 1

2
. (17)

Based on the model (14)-(15), we can rewrite the
SIR (11) as

SIR =
∑J

i=1 |pb(δ
(2)
i T )|2

J
∑J

i=1

∑
k |pb(kT + δ

(2)
i T )|2

, (18)

where the range of the integer k in the denominator of
(18) is

�−K − δ
(2)
i � ≤ k ≤ �K − δ

(2)
i �, k �= 0. (19)

3.2. Mitigate interference by optimizing sampling
timing

Since the delays are random, the SIR of (10), or the
“fixed” sampling scheme, may not be good enough. A
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simple enhancement scheme is to look for the optimal
time instant τ0, where 0 ≤ τ0 < T , such that

τ0 = arg max
τ∈[0,T )

SIR. (20)

With the optimized τ0, we have channel coefficients

hi(�) = pb(�T + τ0 − δi). (21)

Similarly, we can define τ0 − δi = diT + ziT , where
di is an integer, and zi ∈ (−1/2, 1/2]. Then the SIR
expression (11) becomes

SIR =
∑J

i=1 |pb(ziT )|2
J

∑J
i=1

∑
k |pb(kT + ziT )|2 , (22)

where the range of the integer k in the denominator of
(22) is

�−K − zi� ≤ k ≤ �K − zi�, k �= 0. (23)

The major difference between (18) and (22) is that
δ
(2)
i has uniform distribution, but zi has a distribution

more concentrated around 0, so that (22) is more likely
larger than (18).

To see this point clearly, we assume the following
simple (maybe suboptimal) choice of τ0, i.e.,

τ0 =
1
J

J∑
i=1

δ
(2)
i , (24)

which means τ0 is the average of the fractional portion
of the delays.

For J = 2, it is easy to show that zi has a marginal
pdf

f(zi) =




2(1 + 2zi), for − 1/2 < zi ≤ 0
2(1 − 2zi), for 0 ≤ zi < 1/2
0, else.

(25)
For larger J , f(zi) can be approximated as normal
distribution N (0, J−1

12J ), with the value of zi limited
within range −(J − 1)/J < zi < (J − 1)/J .

Obviously, zi has higher probability to be near 0
(or to be small), which means the SIR in (22) has higher
probability to be larger than that in (18). In Section 4,
we will use numerical methods to evaluate the distri-
bution of SIR over all possible delays. For example,
the SIR averaged over all delays can be evaluated from∫

SIRf(x)dx, (26)

where x denotes J random variables zi, i = 1, · · · , J .
In practice, we may over-sample the signal, and

then select one of the sampling timing as τ0 by opti-
mizing (20), with the knowledge about the delays and
the channel coefficients. On the other hand, because
the channels and the optimization (20) are determined
completely by delays δi and τ , the receiver may di-
rectly analyze and obtain τ0 before sampling, such as
using (24).

3.3. Mitigate interference by over-sampling and com-
bining

The basic idea is that the received signals have a rich
structure because of different delays, so the over-sampled
signals contain new information.

Consider over-sampling by a factor N , which means
we have N +1 samples in each symbol interval at time
instants τk, k = 0, · · · , N , where 0 ≤ τk < T . Then
similarly to (10), for each τk, we have the correspond-
ing sample

x(τk)(n) =
J∑

i=1

αie
jθi

[
hi(LL

i,τk
), · · · , hi(LU

i,τk
)

]

×




si(n − LL
i,τk

)
...

si(n − LU
i,τk

)


 + v(τk)(n). (27)

Note that for different τk, we may have different
channel length and index ranges [LL

i,τk
, LU

i,τk
], which

means that the sample may involve slightly different
symbols. Define

LL
i = min

τk

LL
i,τk

, LU
i = max

τk

LU
i,τk

. (28)

We stack N + 1 samples of each symbol interval to
obtain the following vector model

x(n) =
J∑

i=1

αie
jθiHisi(n) + v(n), (29)

where

x(n) =




x(τ0)(n)
...

x(τN )(n)


 , si(n) =




si(n − LL
i )

...
si(n − LU

i )


 ,

v(n) =




v(τ0)(n)
...

v(τN )(n)


 ,
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and the (N +1)× (LU
i −LL

i +1) dimensional channel
matrices

Hi =




0LL
i,τ0

−LL
i

hi(LL
i,τ0

) · · · hi(LU
i,τ0

) 0LU
i −LU

i,τ0
...

...
0LL

i,τN
−LL

i
hi(LL

i,τN
) · · · hi(LU

i,τN
) 0LU

i −LU
i,τN




Note that 0k denotes a 1 × k dimensional zero vector.
Then we can combine the samples by an N + 1

dimensional vector f to obtain

y(n) = fHx(n). (30)

Ideally (with zero-forcing criterion) we expect

y(n) ≈
J∑

i=1

αie
jθigisi(n − di) + w(n), (31)

which becomes a flat fading channel model, although
there may have integer delays di. The key point is that
the problems with respect to dispersive channels are
gone [10],[11].

Using zero-forcing criterion means that

fHHi ≈ gieT
di

, i = 1, · · · , J, (32)

where edi
is a unit vector with value 1 in the dth

i entry
and zeros elsewhere.

Under the assumption of extremely low noise, one
way to calculate the vector f is

fH =
[

eT
d1

· · · eT
dJ

] [
H1 · · · HJ

]+
. (33)

Note that (·)T , (·)H , and (·)+ denote transpose, Her-
mitian, and pseudo-inverse, respectively. In order to
find the optimal fH using (33), we still need to con-
sider all possible integer delays di ∈ [LL

i , LU
i ], for

i = 1, · · · , J . But we can also use the information
of δi to reduce search complexity.

Obviously, in most practical situations, there is still
residue dispersion in (30). The SIR of y(n) can be cal-
culated similarly as (11), but with the new composite
vectors fHHi in place of hi(�).

4. SIMULATIONS

In this section, we use simulations to compare the SIR
of the three schemes: fixed sampling time (Section
3.1), selective optimized sampling time (Section 3.2),
and linear combining (Section 3.3).

Fig. 2 shows that larger roll-off factor (when using
raised-cosine pulse shaping filter) is better for interfer-
ence mitigation. The fixed method has SIR between 10
dB to 21 dB, depending on roll-off factor γ. The selec-
tive method can enhance the SIR by 10 dB, while the
combining method by almost 40 dB. In addition, the
Monte-Carlo simulated results fit well with the analy-
sis results.

Fig. 3 and Fig. 4 show the cumulative distribution
of SIR. Specifically, we see that for fixed method, the
SIR has 80% probability of being lower than 15 dB.
But for the selective method, the SIR has 80% proba-
bility to be higher than 15 dB. The combining method
has 99% probability higher than 30 dB.

5. CONCLUSIONS

In this paper, we investigate the performance of asyn-
chronous cooperative transmissions in flat fading en-
vironment, where the channel becomes dispersive due
to pulse shaping. We show that without any dispersion
mitigation techniques, the SIR can only be very low.
With our proposed dispersion mitigation techniques,
we can greatly remove dispersion interference, and en-
hance SIR by 10 to 40 dB in two-transmitter coopera-
tion.
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