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ABSTRACT

Information-theoretic secrecy gives the strongest
information security that is important for military wire-
less networks. In this paper, we show that random-
ized MIMO transmissions can achieve such secrecy.
A method is proposed to randomize the MIMO trans-
mission coefficients. The received signal of the adver-
sary has some special statistical distributions, based
on which the indeterminacy of the adversary’s blind
deconvolution is proved. Receiving error rates and
secret channel capacity are analyzed and simulated.
This paper points out a practical way to realize the
well-known wire-tap channel for perfect secrecy, which
is one of the interesting challenges in information the-
ory. The proposed method is also useful for key man-
agement in military wireless networks.

1. INTRODUCTION

Advanced wireless techniques such as multi-input multi-
output (MIMO) techniques are important to broadband
and highly dynamic wireless communication networks
that are essential for military operations. Such tech-
niques are developed with efficiency instead of secu-
rity as the primary criterion, or even without security
consideration at all. Because wireless transmissions
are lack of physical boundary (any adversary can re-
ceive the signal within the range), the lack of security
in these techniques may potentially result in a weak
physical-layer security, which may even weaken the
end-to-end network security.

∗This work was supported by US AFRL under grant FA8750-
05-1-0233.

Innovative cross-layer security designs with both
physical-layer security and upper-layer security tech-
niques are desirable for military wireless networks. While
the physical-layer may rely on upper-layer encryption
techniques for security, it is interesting to study whether
the physical-layer can have built-in security and whether
physical-layer security techniques can assist upper-layer
security designs.

The built-in security of the physical-layer is de-
fined as that physical-layer transmissions guarantee low-
probability-of-interception (LPI) based on transmission
properties such as modulations, signals and channels,
without resorting to source data encryption. No se-
cret keys are required before transmission. This is in
contrast to the traditional techniques such as spread
spectrum that rely on secret codes shared between the
transmitter and the receiver.

One of the fundamental issues for physical-layer
built-in security is the capacity of the transmission chan-
nel when built-in security is guaranteed. Such capac-
ity is named secret channel capacity. The secrecy is
defined as information-theoretic secrecy, i.e., the ad-
versary’s received signal gives no more information
for eavesdropping than purely guessing. Information-
theoretic secrecy is in fact equivalent to perfect secrecy
[1]. Practically, it means negligibly low interception
probability.

One of the recent attempts on specifying secret chan-
nel capacity is [2], where the MIMO secret channel
capacity is analyzed under the assumption that the ad-
versary does not know even his own channel. Un-
fortunately, such an assumption does not seem prac-
tical if considering deconvolution or blind deconvo-
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lution techniques. As a matter of fact, almost all ex-
isting results on secret channel capacity are based on
some kinds of assumptions that appear impractical [3],
[4], [5]. It has been a challenge in information theory
for decades (after [3]) to find practical ways to realize
information-theoretic secrecy.

Recently, we have found that antenna array trans-
missions may provide valid ways to realize information-
theoretic secrecy when the transmission redundancy
and the limit of blind deconvolution are appropriately
exploited [6]. LPI can be guaranteed by using some
extra antennas with some more transmission power or
bandwidth. This innovative concept of secure wave-
form design is completely different from the traditional
techniques such as spread spectrum.

This paper extends the results of [6] into multiple-
input multiple-output transmissions so that the com-
plexity of exhaustive search, the only way left for the
adversary, is an order of magnitude higher. In con-
trast to [6] where the secrecy is discussed qualitatively,
we derive a quantitative analysis of secrecy based on
a formal proof of the indeterminacy of the blind de-
convolution. We develop the new scheme within the
framework of secret-key agreement in order to show
that physical-layer security techniques can indeed as-
sist upper-layer encryption techniques.

This paper is organized as follows. In Section 2, a
framework of MIMO transmission for secret-key agree-
ment is introduced. In Section 3, we develop the new
MIMO transmission scheme, whose secrecy is proved
in Section 4. Simulations are given in Section 5 and
conclusions are presented in Section 6.

2. MIMO TRANSMISSION FOR SECRET-KEY
AGREEMENT

2.1. Secret-key agreement

In cryptography, secret-key agreement denotes the pro-
cedure by which Alice sends messages to Bob for the
latter to extract a secret key. During this procedure,
the adversary Eve can not obtain sufficient information
about the key.

The Shannon secrecy model [1] is traditionally used
for secret-key agreement protocols, where Eve is as-
sumed to receive messages identical to Bob. It is well
known that perfect secrecy is impractical under the Shan-

non model. Instead, with computational secrecy, keys
can be generated based on some intractable computa-
tional problems such as factorizing integers in a feasi-
ble time. Nevertheless, such intractability assumption
is unproven, so does the secrecy [7].

In contrast, information-theoretic secrecy is prov-
ably realizable under some models that are more re-
laxed but also more practical than the Shannon model.
In wireless communications, Bob and Eve usually have
different received signals, which is different from the
Shannon model assumptions. In particular, the noise
difference between Bob and Eve has been studied for
information-theoretic secrecy. The first of such work
is the famous wire-tap channel [3]. If Bob and Eve
have different receiving bit-error-rate (BER) ε and δ,
respectively, then the secret channel capacity from Al-
ice to Bob can be [4]

C1 =
{

h(δ) − h(ε), if δ > ε
0, else

(1)

where h(ε) denotes the binary entropy function h(ε) =
−ε log2 ε− (1− ε) log2(1− ε). In addition, if Bob and
Alice can exchange information over another public
and insecure channel (messages on this channel may
be known to Eve), the secret channel capacity becomes
[5]

C2 = h(ε + δ − 2εδ) − h(ε), (2)

which is always positive unless ε = 0.5 or δ = 0.5.
Unfortunately, if noise is considered as the only source
of receiving error, it is possible for then Eve’s error rate
δ to be much less than Bob’s ε. In this case, C1 is zero
whereas C2 becomes too small to be useful.

2.2. MIMO transmission model

We consider the case where Alice transmits to Bob us-
ing J transmitting antennas. Bob uses K receiving an-
tennas. During this procedure, Bob extracts a secret
key whereas Eve should be deprived of signal inter-
ception capability, as illustrated in Fig. 1.

In this paper, we consider the secret channel only,
where Alice transmits a secret sequence to Bob using
the J transmitting antennas. Other than that, they may
communicate with each other using another insecure
public channel shown in Fig. 1. Though messages
in the insecure channel may be known to Eve, this
channel guarantees a higher secret channel capacity (2)
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Fig. 1. System model for secret-key agreement be-
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Fig. 2. Block diagram of secure MIMO transmission.

than (1). Obviously, it can also be used to transmit en-
crypted data for higher efficiency, but with keys gener-
ated by the secret channel. In addition, Alice can use
an extra transmitting antenna for piloting purpose, i.e.,
for Bob to synchronize in both time and frequency.

In the secret channel, a MIMO transmission scheme
shown in Fig. 2 is used by Alice and Bob. A vector
symbol sequence {b(n)} is processed by Alice with a
corresponding matrix sequence {W(n)}, which gives
the transmitted signal vector sequence {s(n)}. Specif-
ically, we have

s(n) = W(n)b(n), (3)

where s(n), W(n), and b(n) have dimensions J × 1,
J × K and K × 1, respectively.

The signal vector s(n) is transmitted through the J
transmitting antennas in the nth symbol interval. As-
sume the propagation channel be Rayleigh flat fading.
The signal received by Bob is

x(n) = Hs(n) + v(n), (4)

where x(n) is the K × 1 received sample vector, v(n)
denotes the K×1 AWGN vector with zero-mean. The
channel matrix H is K × J , whose coefficients are in-
dependent complex circular symmetric Gaussian dis-
tributed with zero-mean and unit variance.

We assume that H is block fading [2], i.e., it is con-
stant or slowly time-varying during the transmission of
a block of symbol vectors, but may change randomly

between blocks. The symbols (i.e., elements in b(n))
are independent uniformly distributed with zero-mean
and unit variance. The transmission power is thus de-
termined by the processing weights W(n).

Eve may use multiple receiving antennas for better
interception, and the interception becomes much eas-
ier when the propagation is flat-fading. Therefore, we
consider the worst case (to Alice and Bob) where Eve
receives signals from M receiving antennas,

xu(n) = Hus(n) + vu(n), (5)

where xu(n) and Hu are with dimension M × 1 and
M ×J , respectively. The vector vu(n) is AWGN with
zero-mean and covariance matrix σ2

vIM . The notations
are similar to (4) except that (·)u is used to denote the
unauthorized user Eve. Each element of Hu has the
same distribution as, but is independent from, those of
H. From the extensive studies on MIMO channels, we
know that as long as the distance between Bob and Eve
is larger than several carrier wavelengths, then their
channels can be considered as independent.

Eve does not know the channels H and Hu, but
she may try blind or non-blind methods to estimate Hu

from xu(n). Alice and Bob do not know both channels
either, and in particular, they can not estimate Hu.

Note that although we study one direction secrecy
only, the same scheme can be set up on the other di-
rection. Or, as one direction is secured, the other di-
rection can easily be secured too. In addition, although
we consider a single-point to single-point transmission
in this paper, the scheme also fits single-point to multi-
point transmission (multi-user communication or broad-
casting) scenarios. For each specific user, all other
ones can be treated as adversaries because different
users have different channels.

3. MIMO TRANSMISSION PROCEDURE

Since we can not depend on noise as the only source of
receiving error for Eve, we create some intentional dif-
ference between Bob and Eve’s signals by exploiting
the redundancy of antenna array transmissions. Tradi-
tionally, such redundancy is used completely to opti-
mize transmission efficiency. When some of the re-
dundancy is used for secrecy, the optimal transmis-
sion efficiency may not be available. This indicates
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the fundamental trade-off between the transmission ef-
ficiency and secrecy. Our objective is not to make our
scheme competing against the traditional encryption-
based schemes in terms of transmission efficiency. But
rather, we are interested in information-theoretic se-
crecy for a security level higher than the latter. Never-
theless, the efficiency loss can be small.

3.1. Transmission and receiving from Alice to Bob

As shown in [6], a valid way to guarantee a high δ is
to prevent Eve from channel estimation. In terms of
channel estimation, Bob has no advantage over Eve.
Therefore, our objective is to design a transmission
scheme so that Bob can detect signals without chan-
nel knowledge, which can be realized by shifting the
channel estimation task from the receiver Bob to the
transmitter Alice. Once Alice has the channel knowl-
edge, she can adjust the MIMO transmission so that
Bob does not need to estimate channel in order for
symbol estimation.

There are various ways for Alice to estimate the
channel H [6]. We use the reciprocity of the forward
and backward channels in this paper. Bob first trans-
mits a pilot signal to Alice using the same carrier fre-
quency as the secret channel, during which Alice can
estimate the backward channel, and use it for array
transmission. Note that this procedure is required only
once as an initialization, and gives no useful informa-
tion to Eve.

From (3)(4), Alice design the matrix W(n) so that

HW(n) = A, (6)

where A is a K × K diagonal matrix determined by
Alice but unknown to Bob and Eve. The key point is
to make A to have positive diagonal elements so that
Bob can estimate them easily. Without loss of general-
ity, we assume that H is full row rank. Otherwise the
system simply reduces to the one with a smaller K.

From the received signal x(n) = Ab(n) + v(n),
Bob can easily detect signals as

b̂(n) = A−1x(n). (7)

where A can be estimated from the received signal
power because A is diagonal with positive elements.
Since no channel estimation is required, it is not nec-
essary for Alice to transmit training sequences. As a

result, Eve has no training available either, and has to
rely on blind deconvolution.

3.2. Transmission weights design

Although (6) looks similar to transmit beamforming,
the major difference is that W(n) changes randomly
in each symbol interval n so that HuW(n) becomes
random, which prevents Eve from channel/symbol es-
timation. This can be realized by selecting randomly
the elements of W(n) while satisfying the constraint
(6). Obviously, we need J > K, i.e., more transmit-
ting antennas than receiving antennas.

The criteria for designing W(n) include satisfy-
ing (6), preventing Eve from detecting b(n) based on
(5), limiting the total transmission power, balancing
the transmission power among the transmitting anten-
nas, and finally, being computationally efficient.

Considering those criteria, we use a procedure sim-
ilar to [6] to determine W(n). We first select randomly
K columns from H to form a K × K submatrix H0

(with sufficiently large ‖H0‖). Without loss of gen-
erality, we assume that the first K columns of H are
chosen, i.e.,

H =
[

H0 H1

]
. (8)

We can subdivide the matrix W(n) accordingly into
W0(n) and W1(n) so that (6) becomes

H0W0(n) + H1W1(n) = A. (9)

Then the MIMO processing matrix W(n) is

W(n) =
[

H−1
0 [A − H1W1(n)]

W1(n)

]
. (10)

Therefore, the transmission weights design procedure
is to first select H0, then generate randomly W1(n),
and finally calculate W(n).

The computational complexity is O(J3) per trans-
mission. Nevertheless, the matrix inversion is required
only once for each channel realization. Transmission
power can be adjusted by choosing W1(n), A and se-
lecting H0 appropriately.

As a comparison, the optimal W(n) in the tradi-
tional MIMO is the so-called eigen-beamforming. In
this case,

Wopt(n) = Vopt

[
D−1

optU
H
optAopt

B

]
, (11)
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with the singular-value decomposition (SVD) H =
Uopt[Dopt, 0]VH

opt, Aopt = IK/
√

tr(D−2), and B =
0. Unfortunately, even though B can be random, this
design is susceptible to the blind deconvolution of Eve,
similarly as shown in [6].

4. TRANSMISSION SECRECY

4.1. A randomization scheme

Since the matrix W1(n) is with dimension (J −K)×
K, there are K(J − K) degrees of freedom in de-
signing W(n), which can be exploited to randomize
W(n) so that the transmitted signal vector s(n) has
distribution unknown to Eve (and Bob). It is well known
that blind deconvolution requires some a priori knowl-
edge about the statistics of the transmitted sequence
{s(n)}, such as independence, non-Gaussian distribu-
tion, and/or distinct power spectral [6]. From (10), we
can choose W1(n) appropriately to violate all such
conditions in order to prevent Eve from blind decon-
volution.

Nevertheless, Eve knows that Alice and Bob de-
pends on (6) for secret transmission although she does
not know H and the diagonal elements of A. This
makes it non-trivial to design and analyze the secret
transmission.

We propose that Alice simply designs W1(n) such
that s1(n) = W1(n)b(n) is (J−K)-variate Gaussian
distributed [8] with mean µ and covariance matrix Σ,
i.e., s1(n) ∼ NJ−K(µ,Σ), where

E[s1(n)] = µ, E[(s1(n) − µ)(s1(n) − µ)H ] = Σ.
(12)

In particular, µ and Σ can be made unknown to both
Eve and Bob.

From (10) and (3), we have

s(n) =
[

s0(n)
s1(n)

]
=

[
H−1

0 [Ab(n) − H1s1(n)]
s1(n)

]
.

(13)
The total transmission power is

tr{E[s(n)sH (n)]} = tr{µµH + Σ}+
tr{H−1

0 [AAH + H1(µµH + Σ)HH
1 ]H−H

0 },(14)

whereas the diagonal entry of E[s(n)sH(n)] gives the
transmission power of each antenna. We need both to
reduce the total power and to balance the power among

the transmitting antennas. This can be conducted by
choosing properly A, µ and Σ. Details will be re-
ported elsewhere due to space limit. Instead, we focus
on the transmission secrecy analysis in this paper.

4.2. Indeterminacy of Eve’s blind deconvolution

Since s1(n) is multi-variate Gaussian NJ−K(µ,Σ),
from (13), for a given symbol vector b(n), the signal
vector

s0(n) = −H−1
0 H1s1(n) + H−1

0 Ab(n)
�
= Gs1(n) + g (15)

is K-variate Gaussian NK(Gµ + g,GΣGH).
From (5) and (13), Eve’s received signal becomes

xu(n) =
[

HuF IM

] [
s1(n)
vu(n)

]
+ Huf , (16)

where

F =
[

G
IJ−K

]
, f =

[
g
0

]
. (17)

Obviously, for a given symbol vector b(n),
[

s1(n)
vu(n)

]
∼ NM+J−K

([
µ
0

]
,

[
Σ 0
0 σ2

vIM

])
.

(18)
Then Eve’s signal is M -variate Gaussian distributed,

xu(n) ∼
NM

(
HuFµ + Huf ,HuFΣFHHH

u + σ2
vIM

)
(19)

Since the distribution (19) depends on µ and Σ, the
unknown µ and Σ contribute to the indeterminacy of
Hu.

Proposition 1. For an unknown symbol vector b(n)
and unknown H, µ and Σ, from the distribution of
xu(n), the channel matrix Hu is indistinguishable from
HuP with a J × J matrix

P =
[

U GV − UG
0 V

]
, (20)

where U and V are arbitrary nonsingular K × K and
(J − K) × (J − K) matrices, respectively.

Proof. From (15) and (17), we redefine the distri-
bution (19) as a function f(Hu,H0,H1,µ,Σ). First,
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for any matrices U and H0, there exists nonsingular
matrix Z such that U−1H−1

0 = H−1
0 Z, which can be

verified by simply letting Z = H0U−1H−1
0 .

Define

F̃ =
[ −U−1H−1

0 Z−1H1

IJ−K

]
,

f̃ =
[

U−1H−1
0 Ab(n)
0

]

µ̃ = V−1µ, Σ̃ = V−1ΣV−H .

Then we can verify that

HuPF̃µ̃

= HuP
[ −U−1H−1

0 Z−1H1

IJ−K

]
V−1µ

= Hu

[ −H−1
0 H1V
V

]
V−1µ = HuFµ.

Similarly,

HuPf̃ = HuP
[

U−1H−1
0 Ab(n)
0

]
= Huf .

In addition, it is easy to show that

HuPF̃Σ̃F̃HPHHH
u

= HuFVΣ̃VHFHHH
u = HuFΣFHHH

u .

Then we find that

f(HuP,H0U,Z−1H1,V−1µ,V−1ΣV−H)
= f(Hu,H0,H1,µ,Σ).

Therefore, from the distribution of xu(n), Eve can not
discriminate between Hu and HuP. �

As a result, there is ambiguity of a K × K matrix
U and a (J −K)× (J −K) matrix V for Eve’s blind
channel estimation. This ambiguity is also reflected in
symbol vector estimation.

Proposition 2. Assume xu(n) is generated by trans-
mitting b(n). Then xu(n) has identical distribution as
those generated by transmitting any other symbol vec-
tor d(n).

Proof. The distribution of xu(n) is described by
(19), where the only information available about b(n)
is the mean vector in terms of Huf . Since Hu is in-
distinguishable from HuP, Huf is indistinguishable
from

HuP
[

g
0

]
= Hu

[
UH−1

0 Ab(n)
0

]
.

Since U is arbitrary (nonsingular), there exists some
matrix Ũ such that ŨH−1

0 Ad(n) = UH−1
0 Ab(n).

This can be easily verified from the fact that for any
two vectors x = H−1

0 Ab(n) and y = H−1
0 Ad(n),

we can of course find two matrices U and Ũ such that
Ux = Ũy. Therefore, the distribution of xu(n) is
identical whether b(n) or d(n) is transmitted. �

Note that the distribution defined above is due to
the random W1(n), conditioned on the symbol vector,
i.e., P [xu(n)|b(n)] = P [xu(n)|d(n)]. When consid-
ering random sequences {b(n)} and {d(n)}, we have
P [{xu(n)}|{b(n)}] = P [{xu(n)}|{d(n)}] because
the symbol vectors are i.i.d.

With the optimal MAP detector, Eve can estimates
{b(n)} from arg maxP [{b(n)}|{xu(n)}]. Because

P [{b(n)}|{xu(n)}]
= P [{xu(n)}|{b(n)}]P [{b(n)}]/P [{xu(n)}]
= P [{xu(n)}|{d(n)}]P [{d(n)}]/P [{xu(n)}]
= P [{d(n)}|{xu(n)}], (21)

Eve can not estimate symbols. Therefore, her receiv-
ing error rate is ε = 0.5.

On the other hand, Bob’s receiving error rate δ is
identical to the optimal MIMO eigen-beamforming if
A = Aopt is used. The cost is higher transmission
power. Based on such ε and δ, we may quantify the
secret channel capacity using either (1) or (2). Due to
space limits, such results will be reported elsewhere.

The only way left for Eve is an exhaustive search
of all possible channels Hu. In fact, she just needs to
guess a K ×K complex detection matrix, which gives
a complexity of q2K2

with quantization level q. For
example, the complexity of exhaustive search can be
at least 2128 for K = 4 and q = 16 in order to obtain
meaningfully low BER [6].

5. SIMULATIONS

In this section, we show the performance of the pro-
posed transmission scheme in terms of bit-error-rate
(BER) and secret channel capacity. For comparison
purpose, we also evaluate the performance of the op-
timal eigen-beamforming (11). Eve is assumed to es-
timate symbols blindly, which is almost no different
from guessing.
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Alice transmits QPSK symbol packets. Each packet
contains 400 QPSK symbols. J = 6 and K = 4 are
used. We use 5000 runs to obtain each BER value.
The BER results are shown in Fig. 3, from which we
see that Bob can reliably receive signals while Eve can
not.

Based on the BER of Bob and Eve, we can derive
the secret channel capacity using (1) and (2). For com-
parison purpose, we also plot the secret capacity when
noise is considered as the only source of error. In this
case, Eve is assumed to have the same BER as Bob.
As can be seen from Fig. 4, the proposal scheme gives
much higher secret capacity.

6. CONCLUSIONS

In this paper, we propose to use MIMO transmissions
to realize informational-theoretic secrecy. The redun-
dancy of MIMO transmissions is exploited to create a
difficult signal interception situation for the adversary.
The indeterminacy of the adversary’s blind deconvolu-
tion is proved, and the high error rate is shown. Suffi-
ciently high secret channel capacity is shown by simu-
lations. The proposed scheme indicates that physical-
layer technique can assist upper-layer security designs
by providing secret-key agreement with information-
theoretic secrecy. It can be useful in military wireless
communications where security is of primary impor-
tance.
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