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Abstract— The use of signal processing techniques to protect
wireless transmissions is proposed as a way to secure
wireless networks at the physical layer. This approach
addresses a unique weakness of wireless networks whereby
network traffic traverses a public wireless medium mak-
ing traditional boundary controls ineffective. Specifically, a
randomized array transmission scheme is developed to guar-
antee wireless transmissions with inherent low-probability-
of-interception (LPI). In contrast to conventional spread
spectrum or data encryption techniques, this new method
exploits the redundancy of transmit antenna arrays for
deliberate signal randomization which, when combined with
channel diversity, effectively randomizes the eavesdropper’s
signals but not the authorized receiver’s signals. The LPI
of this transmission scheme is analyzed via proving the
indeterminacy of the eavesdropper’s blind deconvolution.
Extensive simulations and some preliminary experiments are
conducted to demonstrate its effectiveness. The proposed
method is useful for securing wireless transmissions, or for
supporting upper-layer key management protocols.

Index Terms— antenna array, transmit beamforming, diver-
sity, channel, wireless information assurance

I. INTRODUCTION

Along with the rapid development of wideband wire-
less communication networks, wireless security has be-
come a critical concern [1]. Compared with wireline
networks, wireless networks lack a physical boundary
due to the broadcasting nature of wireless transmissions.
Any receivers nearby can hear the transmissions, and
can potentially listen/analyze the transmitted signals, or
conduct jamming. This makes wireless security design a
challenging task, and the challenge becomes even more
severe if considering together other unique characteristics
of wireless networks, such as severe energy/bandwidth
constraints of wireless nodes, unreliable/untrustful wire-
less links, and dynamic wireless network topology. Notic-
ing that the challenge is closely related to the unique
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physical-layer of wireless communications, physical-layer
security techniques are thus helpful, since they can be
more effective in resolving the boundary, efficiency, and
link reliability issues.

One of the important objectives of physical-layer se-
curity design is to guarantee wireless transmissions with
low-probability-of-interception (LPI). In particular, we are
interested in LPI techniques which do not directly rely on
upper-layer data encryption or secret keys.

Existing physical-layer LPI techniques can be classi-
fied into three categories: i) Signal power approaches
like beamforming and directional transmissions [2], ii)
scrambling code approaches like spread-spectrum [3],
and iii) propagation channel approaches like [4]–[6].
Traditionally, spread spectrum is the most widely used
technique for LPI. However, when data transmissions are
evolving toward wideband, spread spectrum alone may
not be enough because of the reduced space of spreading
gain [7].

In general, the security of most existing approaches
depends on some strong (and ideal) assumptions, such
as eavesdroppers have null-receiving energy, or have no
information about the spreading codes, or can not estimate
the propagation channels. Unfortunately, these strong
assumptions can hardly hold in practice. Beamforming
techniques can only reduce, but not completely nullify, the
signal energy toward eavesdroppers. Spreading codes may
be easily estimated by eavesdroppers from their received
signals [8]. Eavesdroppers may use non-blind or blind
deconvolution algorithms [9], [10] to estimate channels
and signals, which makes many channel-based approaches
such as [6] to lose security. As a result, most existing
approaches can hardly guarantee LPI, or can even hardly
withstand a rigorous LPI analysis.

There have been many important advanced wireless
transmission techniques developed in recent years, such
as antenna array, channel diversity and channel decon-
volution, some of which may bring new opportunities
for achieving LPI. In [11]–[15], we have shown that
physical-layer security can be realized based on channel
diversity by using antenna array transmissions. This idea
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Figure 1. Secure wireless transmission model. Alice transmits to Bob
using antenna array, in face of passive eavesdropper Eve. Eve may have
receiving antenna array for better interception.

in fact represents an innovative way of secure waveform
design, differently from the conventional spread spectrum
or data encryption techniques. Another innovative concept
is that we rely on signal processing theory such as the
indeterminacy of blind deconvolution [10] for security,
rather than information theory [4], [6]. The advantage is
that LPI can be guaranteed much easier in more practical
transmissions.

Based on [15], in this paper we propose a special de-
liberate randomization method for designing the transmit
antenna weights, with more detailed explanation, security
analysis and the proof of LPI. A transmission power anal-
ysis is also conducted to guide weights design. Extensive
simulations and the development of a testbed are shown
to demonstrate the proposed transmission scheme.

One of the major differences between our approach
and existing physical-layer approaches is that we do
not assume that the eavesdroppers have noisier received
signals than the authorized receiver. Instead, we depend
on two special properties of wireless transmissions for
security: channel diversity that makes signals received by
the eavesdroppers and the authorized receiver different,
and array redundancy that provides degrees of freedom
for randomizing the transmitted signals deliberately.

This paper is organized as follows. In Section II, a
framework of secure array transmission is introduced. In
Section III, we propose a deliberate signal randomization
scheme and analyze the LPI. An analysis of transmission
power for proper parameter selection is performed in
Section IV. Simulations and experiments are given in
Section V and conclusions are presented in Section VI.

II. SECURE ARRAY TRANSMISSION MODEL

We consider a wireless network where Alice transmits
to Bob in face of a passive eavesdropper Eve, as shown
in Fig. 1. Alice uses J transmit antennas in the secure
channel, and may use some other antennas communicat-
ing with Bob which form an insecure public channel.
This public channel may be used for the synchronization
purpose between Alice and Bob, e.g., for Bob to track
carrier frequency and timing. Note that such a setting with
a secure channel and a public channel is standard in many
information-theoretic security studies or key management
protocols [16].
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Figure 2. Transmit beamforming-like transmission block diagram. The
transmitter randomizes the transmitting antenna weights wi(n) based on
the channel state information, and wi(n) varies in each symbol interval
n.

We consider only the secure channel from Alice to
Bob in this paper. A beamforming-like array transmission
procedure shown in Fig. 2 [2], [17] is used by Alice to
transmit to Bob a symbol sequence {b(n)} which is as-
sumed as i.i.d. uniformly distributed with zero-mean and
unit variance. Though more complex pre-processing can
be exploited, Alice just uses a simple weighting scheme
with weighting coefficients wi(n). The transmitted signal
from the antenna i is si(n) = wi(n)b(n). Therefore,
through the J antennas, Alice transmits signal vectors

s(n)
�
=

⎡

⎢

⎣

s1(n)
...

sJ (n)

⎤

⎥

⎦
=

⎡

⎢

⎣

w1(n)
...

wJ(n)

⎤

⎥

⎦
b(n)

�
= w(n)b(n), (1)

where wi(n) denotes the weighting coefficient of the ith

transmit antenna during the symbol interval n.
Assume Rayleigh flat fading channels and assume Bob

use only one receiving antenna for both simplicity and
worst case consideration. Extension to receiving antenna
arrays can be found in [14]. The signal received by Bob
is

x(n) =
J

∑

i=1

h∗
i si(n) + v(n)

�
= hHs(n) + v(n), (2)

where v(n) denotes AWGN with zero-mean and variance
σ2

v , h∗
i denotes channel coefficients which are independent

complex circular symmetric Gaussian distributed with
zero-mean and unit variance, and

h
�
=

⎡

⎢

⎣

h1

...
hJ

⎤

⎥

⎦
. (3)

In this paper, (·)∗, (·)T , and (·)H denote conjugation,
transposition and Hermitian, respectively. Since we need
channel estimation, we assume that h is block fading
[6], i.e., it is constant or slowly time-varying when
transmitting a block of symbols but may change randomly
between blocks. Under this model, the transmission power
is determined by the transmitting weights w(n), whereas
the received signal-to-noise-ratio (SNR) is determined by
both w(n) and σ2

v .
The eavesdropper Eve may use multiple receiving

antennas for better interception, and the interception be-
comes much easier with flat-fading channels. Therefore,

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 3, MAY 2007 25

© 2007 ACADEMY PUBLISHER



we consider the worst case to Alice and Bob where Eve
receives signals from M receiving antennas
⎡

⎢

⎣

xe
1(n)

...
xe

M (n)

⎤

⎥

⎦
=

⎡

⎢

⎣

he
11 · · · he

1J
...

...
he

M1
· · · he

MJ

⎤

⎥

⎦

⎡

⎢

⎣

s1(n)
...

sJ (n)

⎤

⎥

⎦
+

⎡

⎢

⎣

ve
1(n)

...
ve

M (n)

⎤

⎥

⎦
(4)

The notations are similar to (2) except that (·)e is used
to denote the eavesdropper. The equation (4) can then be
denoted as

xe(n) = Hes(n) + ve(n), (5)

where xe(n) and He are with dimensions M × 1 and
M × J , respectively. The vector ve(n) is AWGN with
zero-mean and covariance matrix σ 2

vIM , where IM is the
M × M identity matrix.

We assume that each element of He has the same
distribution as, but is independent from, those of h. From
the extensive studies on antenna array channels, we know
that as long as the distance between Bob and Eve is larger
than half of a carrier wavelength, then their channels can
be considered as independent [18]. This will be further
demonstrated by simulations and experiments in Section
V.

Under the above assumption, channels h and He are
different almost surely, especially when J is large. We
further assume that Eve does not know h and He.
However, Eve may try blind or non-blind methods to
estimate He from her received signal xe(n). On the other
hand, Alice and Bob do not know h and He either. We
will discuss ways for Alice to obtain channel knowledge
h since transmit beamforming requires transmitter-side
channel information. Nevertheless, our major focus in this
paper is the design of transmission weights w(n) so that
Bob can detect symbols b(n) successfully with low bit-
error-rate (BER) while Eve can estimate neither He nor
b(n).

In addition, we focus only on the security of the
transmission from Alice to Bob, under the assumption that
Alice and Bob share no secret keys beforehand and know
nothing about the eavesdropper Eve. Once this direction
is secured, the reverse direction can be easily secured by
using similar techniques and/or by exchanging encryption
keys frequently.

III. ARRAY TRANSMISSION WITH DELIBERATE

SIGNAL RANDOMIZATION

To introduce high BER to Eve is to prevent Eve from
channel/symbol estimation. This means, firstly, Alice can
not transmit training signals by the J transmit antennas,
because otherwise Eve can trivially utilize such training
for channel estimation [9], [19], [20]. Without training,
the only way left for Eve is blind deconvolution [10],
[21]–[24]. Therefore, secondly, Eve’s blind deconvolution
capability must be prevented. Because Bob has no more

advantage over Eve on channel estimation, such require-
ments also mean that Bob can hardly estimate his own
channel h.

To meet both requirements, we propose a transmission
scheme in which Bob can detect symbols b(n) without
the knowledge of channel h. In addition, we use a
deliberate signal randomization technique in this scheme
to randomize Eve’s signal but not Bob’s signal so that
blind deconvolution of Eve has unresolvable ambiguity.

A. Transmission and receiving procedure from Alice to
Bob

In order for Bob to estimate symbols b(n), the channel
h from Alice to Bob has to be resolved. Traditionally,
channel deconvolution can be conducted by either Alice
or Bob, in terms of pre-equalization or equalization,
respectively. In our scheme, we ask Alice instead of Bob
to estimate and utilize the knowledge of h. Alice can
estimate h based on channel reciprocity [17], [18], [25],
where Bob first transmits a training signal to Alice using
the same carrier frequency as the secure channel, from
which Alice can estimate the backward channel. Since the
forward channel h equals the backward channel according
to reciprocity, Alice can immediately use the estimated
channel as h to design transmission weights. Note that
this procedure gives no useful information to Eve because
the latter can only estimate the channel from Bob.

An alternative way is for Bob to feedback some re-
ceived samples x(n) to Alice, so that Alice can estimate
the channel h based on her knowledge on the transmitted
signal. In this case, even if Eve can intercept the feedback
samples x(n), she can not estimate channels if both
training-based deconvolution and blind deconvolution are
prevented. To save space, we do not discuss it in details
because it is in the same situation as the normal trans-
mission discussed in the sequel.

Our basic idea is to make hHw(n) a deterministic
constant, while Hew(n) changing randomly in each
symbol interval, by exploiting the knowledge of h. For
this purpose, Alice designs the transmitting weights vector
w(n) so that

hHw(n) = ‖h‖, (6)

where ‖h‖ =
√

∑J
i=1

|hi|2 is the norm of h. Although
(6) looks similar to transmit beamforming [2], [17], the
major difference is that w(n) changes randomly in each
symbol interval n. This can be realized by selecting
randomly the elements of w(n) while satisfying the
constraint (6). Obviously, if the channel h is constant or
slowly time-varying, we need J ≥ 2 transmitters, which
explains why array transmission is necessary.

From the received signal

x(n) = ‖h‖b(n) + v(n), (7)

Bob can detect symbols as

b̂(n) = argmin
b(n)

|x(n) − ‖h‖b(n)|2 , (8)
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where ‖h‖ can be easily estimated from the received
signal power 1

N

∑

n |x(n)|2. Especially, if b(n) has con-
stant magnitude |b(n)|, e.g., PSK, then we can simply use
|x(n)| in place of ‖h‖, which means we can simply use
the phase of x(n) as symbol estimation.

Alice’s design of w(n) under the constraint (6) can
be performed as follows. In each symbol interval n,
Alice first selects from h randomly an element hi with
sufficiently large magnitude . The weighting vector w(n)
is then generated as

w(n) = Pi(n)
[

ai − fH
i zi(n)

zi(n)

]

(9)

where

ai =
1
h∗

i

‖h‖,

fi =
1
hi

[h1, · · · , hi−1, hi+1, · · · , hJ ]T , (10)

zi(n) = [w1(n), · · · , wi−1(n), wi+1(n), · · · , wJ (n)]T .

The matrix Pi(n) is a J × J permutation matrix corre-
sponding to the selection of hi from the vector h, i.e., its
function is to insert the first row of the following vector
into the ith row. The vector zi(n) is arbitrary, whose
dimension J−1 is the degrees of freedom in antenna array
transmissions that we can exploit for deliberate signal
randomization.

This array weights design procedure is outlined below
as Algorithm 1.

Algorithm 1. Update array weights vector w(n) in
each symbol interval n

1. Select randomly a channel coefficient h i,
with sufficiently large magnitude |hi| > α.

2. Generate random variables wj(n), 1 ≤ j ≤
J , j �= i.

3. Calculate w(n) by (9)-(10).

The selection of the threshold α in Step 1 will be
discussed in Section IV, whereas Step 2 will be detailed
in Section III.B.

One of the major advantages of Algorithm 1 is its
linear computational complexity. Efficient computation is
important because w(n) is recalculated in each symbol
interval.

B. A deliberate randomization scheme

From (9), we can choose zi(n) appropriately to prevent
Eve from blind deconvolution. In general, this purpose can
be fulfilled by simply making zi(n) to have a distribution
unknown to Eve since it is well known that successful
blind deconvolution requires the receiver know some
special statistics or structure of the transmitted signals
[10] [19]. However, existing results of blind deconvolution
are mostly on how to conduct blind deconvolution, not
on how to prevent blind deconvolution. The proof of the
incapability of blind deconvolution is rarely seen.

To furbish a rigorous quantitative proof of the in-
capability of blind deconvolution, we consider a more

structured scheme where Alice designs zi(n) such that
ri(n) = zi(n)b(n) is (J −1)-variate Gaussian distributed
with mean µ and covariance matrix Σ, i.e., r i(n) ∼
NJ−1(µ,Σ) [26]. The parameters µ and Σ are arbitrary
and unknown to both Eve and Bob, and can even be time-
varying.

From (9) and (1), the transmitted signal vector is thus

s(n) = Pi(n)
[

aib(n) − fH
i ri(n)

ri(n)

]

. (11)

C. LPI of the randomized transmission

1) Traditional beamforming guarantees no LPI: To
justify our new deliberate randomization scheme, we
first show that traditional transmit beamforming meth-
ods do not guarantee LPI although they are opti-
mal in terms of power efficiency. A typical transmit
beamforming method uses w(n) = h/‖h‖, which
has unit total transmission power since E[‖s(n)‖2] =
E[tr(w(n)b(n)b∗(n)wH(n))] = E[‖w(n)‖2] = 1 [2].
Obviously, w(n) is not random if the channel h is
constant or just slowly time-varying. Eve’s received signal
becomes xe(n) = (Heh/‖h‖)b(n) + ve(n), from which
many blind equalizers such as the constant modulus algo-
rithm (CMA) [21] can be applied for symbol detection.
The same conclusion holds for other designs of w(n)
that are not random. This explains why we make w(n)
random in our secure array transmissions.

More generally, w(n) can be obtained from the singular

value decomposition (SVD) of h, i.e., hH = ŨD̃Ṽ
H

[2].
In this special case, Ũ = 1, D̃ = diag{‖h‖, 0, · · · , 0},
and Ṽ is a J × J unitary matrix whose first column
equals h/‖h‖. For transmit beamforming, w(n) can

be calculated as w(n) = Ṽ[1, c2(n), · · · , cJ(n)]T
�
=

Ṽ[1, cT
1 (n)]T , where cj(n), j = 2, · · · , J , can be

arbitrary. Such a classic approach does not have any LPI
capability even if c1(n) is random. For example, the
blind equalization method CMA can be used to estimate
symbols from the received signal

xe(n) = HeṼ
[

1
c1(n)

]

b(n) + ve(n). (12)

2) Indeterminacy of Eve’s blind deconvolution: As
discussed in Section III.A, we have removed explicit
training so that Eve has no training available for channel
estimation. In this subsection, we show that Eve’s blind
deconvolution is also prevented by the deliberate signal
randomization.

After the transmitting weights wj(n) are randomized,
a major issue for security comes from the requirement
that w(n) must satisfy (9), which makes the proof of LPI
non-trivial.

From (11), Alice’s transmitted signal can be written as
s(n) = G(n)ri(n) + g(n)b(n) where

G(n) = Pi(n)
[ −fH

i

IJ−1

]

,

g(n) = Pi(n)
[

ai

0J−1

]

. (13)
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We have used 0J−1 to denote a J − 1 dimensional zero
vector. With the notations in (13), Eve’s received signal
(5) can be written as

xe(n) =
[

HeG(n) IM

]

[

ri(n)
ve(n)

]

+ Heg(n)b(n).

(14)
Obviously, in each symbol interval n, Eve’s signal is an
M -variate Gaussian distributed vector [due to the random
ri(n)], i.e.,

xe(n) ∼ NM (HeG(n)µ + Heg(n)b(n),
HeG(n)ΣGH(n)HH

e + σ2
vIM

)

(15)

Proposition 1. From the distribution of xe(n), the
channel matrix He is indistinguishable from HeQ with a
J × J matrix

Q = Pi(n)
[

u 0
0 V

]

P−1

i (n), (16)

where u is an arbitrary non-zero scalar and V is a (J −
1) × (J − 1) arbitrary nonsingular matrix.

Proof. Define

H̃e = HeQ,

G̃(n) = u−1G(n)V,

g̃(n) = u−1g(n)
µ̃ = V−1µ,

Σ̃ = V−1Σ(V−1)H .

Then we can verify that H̃eG̃(n) = HeG(n)V,
H̃eg̃(n) = Heg(n), and H̃eG̃(n)µ̃G̃(n)HH̃H

e =
HeG(n)ΣGH(n)HH

e . The distribution (15) does not
change if He, G(n), g(n), µ and Σ are replaced by H̃e,
G̃(n), g̃(n), µ̃ and Σ̃, respectively. Therefore, there is a
matrix Q ambiguity for estimating He blindly. �

The same conclusion holds if considering the sequence
{xe(n)} with respect to an unknown sequence {b(n)}
because xe(n) are independent for different n. The known
statistics of {b(n)} does not help.

Let us assume that Eve can estimate He up to the
ambiguity matrix Q in (16), then by substituting H e with
HeQ and removing He, Eve’s signal can be changed to

x̃e(n) = Pi(n)
[

ufH
i

V

]

ri(n)

+Pi(n)
[

uai

0J−1

]

b(n) + ṽe(n). (17)

In order to detect b(n), Eve has to first resolve Pi(n),
i.e., determine which hi for i ∈ [1, J ] is chosen in each
symbol interval. If the decision is wrong, then Eve in fact
detects b(n) from an entry in Vri(n), which gives a BER
of 0.5. On the other hand, if the decision is correct, then
the detection of b(n) is susceptible to the interference
fH
i ri(n). The signal-to-interference ratio (SIR) can be

made large enough for a high BER by choosing properly
Σ.

Since Eve can not estimate He, what’s left for her is a
brute-force exhaustive search of vector hHH−1

e (assume
He is invertible). The complexity increases exponentially

with the number of transmit antennas J . If Eve must
use K-level quantization of channel coefficients, then
the brute-force search needs to consider at least K 2J

possible coefficients (real and imaginary parts), which
means a complexity of O(K 2J ). For example, for QPSK
transmission at SNR 25 dB, in order to guarantee BER
0.01, K should be at least 128. In this case, a J = 8
transmit antenna array brings a complexity of O(2112).
This complexity rapidly increases with larger J , with
frequency-selective fading, and with a receiving antenna
array used by Bob [14].

IV. TRANSMISSION POWER ANALYSIS

From Section III.C.1, it can be seen that the conven-
tional transmit beamforming achieves the optimal trans-
mission power efficiency (with unit transmission power),
but has no LPI capability. There is a tradeoff of trans-
mission power for security. For example, for J = 2, if
we guarantee the minimum unit transmission power, then
there is no degree of freedom in w(n) left for randomiza-
tion. Our design of transmitting weights has taken such a
trade-off. Moreover, the procedure outlined in Algorithm
1 focuses primarily on computational simplicity instead
of power efficiency.

On the other hand, a detailed analysis of transmission
power is quite necessary, not only for enhancing power
efficiency, but also for guaranteeing LPI. Specifically, we
need both to reduce the total transmission power and
to balance the power among the transmitting antennas.
We will show in this section that this objective can be
conducted by choosing properly µ and Σ.

For our proposed scheme, from (11), conditioned on
each selected channel coefficient hi, the total transmission
power is

tr{E[s(n)sH(n)|h,Pi(n)]} =
tr{µµH + Σ} + |ai|2 + fH

i (µµH + Σ)fi, (18)

whose diagonal entry gives the transmission power of
each antenna.

Let us consider specifically the case that µ = 0 and
Σ = σ2IJ−1. The total transmission power for a given
channel realization h and a given choice of h i becomes

Pt,hi = E[sH(n)s(n)|h,Pi(n)]
= (J − 1)σ2 + |ai|2 + ‖fi‖2σ2. (19)

Equations (19) and (10) show that small h i increases the
total transmission power. In order to reduce transmission
power, we need to select hi with magnitude larger than
certain threshold α, and α should be carefully selected.
Since hi is a complex Gaussian random variable with zero
mean and unit variance, |hi|2 is exponentially distributed
with unit mean. The probability for the selected channel
coefficient hi to have energy |hi|2 greater than α is

P [|hi|2 > α] =
∫ ∞

α

e−tdt = e−α. (20)

In other words, with J transmit antennas, the average
number of selectable coefficients is Je−α.
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Proposition 2. With Rayleigh flat-fading channels, if
the channel coefficients are selected with threshold α, then
the expected total transmission power is

Pt = (J − 1)σ2 + 1 + (J − 1)(1 + σ2)Γ(0, α). (21)

Proof. For random channels, the expected total trans-
mission power is the ensemble average of the power (19)

Pt = E[Pt,hi ] = (J−1)σ2+1+E
[‖fi‖2

]

(1+σ2). (22)

Since the channel coefficients are independent from each
other, we have

Pt = (J − 1)σ2 + 1 + (J − 1)(1 + σ2)E[
1

|hi|2 ]. (23)

Because |hi|2 has exponential distribution, we have

E[
1

|hi|2 ] =
∫ ∞

α

1
|hi|2 e−|hi|2d|hi|2 = Γ(0, α). (24)

Hence (21) is obtained. �

From (21), we can see that the expected total transmis-
sion power Pt is a function of the number of transmitting
antennas J , the variance σ2 of the random weights, and
the threshold α for selecting hi. Especially, Pt increases
when σ2 increases, or α decreases, or J increases. Fig. 3
illustrates their relationships under J = 4.

If the channel h is slowly time-varying or even constant
for a long time, we need to avoid the case that the power
of one of the transmit antennas is exceptionally larger
than the others. Otherwise the array behaves as a single
antenna and the security can be compromised. Therefore,
we have to constrain the ratio of the transmission power
of the ith transmit antenna Pt,i = |ai|2 + ‖fi‖2σ2 to that
of the jth transmit antenna Pt,j = σ2. The power ratio
can be obtained from (21) as

Pt,i

Pt,j
=

1 + (J − 1)(1 + σ2)Γ(0, α)
σ2

. (25)

Obviously, it is usually impossible to obtain unit ratio
unless we change the probability of choosing h i according
to the value of |hi|2 in a way that smaller |hi|2 has smaller
probability of being selected. But the probability differ-
ence among all selectable channel coefficients should not
be too large, because otherwise the randomness of P i(n)
is reduced. From Fig. 3, the power ratio is a decreasing
function of both σ2 and α.

Larger σ2 increases Pt but decreases Pt,i/Pt,j . Since
both Pt and Pt,i/Pt,j should be small, there is a trade-
off between them when choosing σ2. In the simulations
in Section V, we have chosen σ2 = 0.5. On the other
hand, larger α reduces both Pt and Pt,i/Pt,j . But from
(20), it reduces the number of selectable h i as well as
the randomness of Pi(n). Hence there is also a trade-off
when choosing α. We have used α = 0.5 in simulations.

One may ask whether it is possible to make the power
ratio Pt,i/Pt,j unit while minimizing the total transmis-
sion power Pt. This may be accomplished by choosing
elements of r(n) with nonzero mean µ and variance σ 2.

Proposition 3. Given a channel realization h and a
choice of hi, the problem of minimizing total transmission
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Figure 3. Total transmission power Pt and power ratio Pt,i/Pt,j of
the ith transmit antenna to the jth transmit antenna (j �= i) when hi

is selected in (9). J = 4. Solid lines: total power. Dashed lines: power
ratio.

power with unit power ratio is equivalent to optimizing µ
and σ2 from

min Pt = J(|µ|2 + σ2)

s.t.,
(

2|hi|2
‖h‖2

− 1
)

|µ|2 + 2
1

‖h‖Re

⎡

⎣µ
∑

j �=i

h∗
j

⎤

⎦

+
(

2|hi|2
‖h‖2

− 1
)

σ2 = 1. (26)

where Re[·] stands for real part.

Proof. From (9), wi(n) has mean
‖h‖−µ

P
j �=i h∗

j

h∗
i

and

variance ‖hi‖2

|hi|2 σ2. Since the power of the jth transmitter
(j �= i) is |µ|2 + σ2 and that of the ith transmitter is
|‖h‖−µ

P
j �=i h∗

j |2
|hi|2 + ‖hi‖2

|hi|2 σ2, the equation (26) is readily
available for unit power ratio. �

We can solve the complex equation (26) for all µ and
σ2, and then find the minimum total transmission power.
Unfortunately, (26) may not have solutions for all channel
realizations, i.e., the total power Pt may become negative
when (26) has to be satisfied. This means that unit power
ratio can not be guaranteed for all channels and all choices
of hi when Algorithm 1 is used.

V. SIMULATIONS AND EXPERIMENTS

In this section, we use three simulation experiments
to study the effectiveness of the proposed transmission
scheme by evaluating the BER of Bob and Eve. Eve is
assumed to estimate symbols either by blind equalization
(specifically, via the CMA algorithm), or by directly using
Bob’s method, i.e., (8).

In the first simulation experiment, we used randomly
generated channels. For comparison purpose, we evalu-
ated the performance of the optimal transmit beamforming
[2], and gave the theoretical BER curve of the Rayleigh
fading channel without diversity [18]. Channels were

JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 3, MAY 2007 29

© 2007 ACADEMY PUBLISHER



0 2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

SNR E
b
/N

0
(dB)

B
it 

E
rr

or
 R

at
e

Eve
Rayleigh−fading
Beamforming
Bob

Figure 4. Receiving performance comparison. J = 4. ◦:Algorithms 1.
+:transmit beamforming. ×:theoretical BER curve with Rayleigh fading
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assumed block Rayleigh fading, i.e., they were constant
during transmission of one packet, but randomly chang-
ing between packets. Each packet contained 200 QPSK
symbols. We used 5000 runs to obtain each BER value.
We used α = 0.5, σ2 = 0.5 for proper trade-off between
transmission power and security. If there were less than
two selectable channel coefficients under (20), then we
simply selected hi between the two strongest ones in order
to make Pi(n) random.

The simulation results of the first experiment are shown
in Fig. 4 and Fig. 5. Transmissions with the proposed
Algorithm 1 have similar performance as the optimal
transmit beamforming. They both exploit the diversity of
J = 4 transmitters, which makes their BER curves much
better than that of the theoretical Rayleigh fading without
diversity. Eve can not intercept symbols using blind
equalization with 8 receiving antennas and sufficiently
good channels.

On the other hand, from Fig. 5, Algorithm 1 requires
both larger total transmitting power and larger single-
antenna transmission power than the conventional beam-
forming. In addition, the standard deviation of power con-
sumption among 5000 runs is also shown. For Algorithm
1, when J is small, especially when J = 2, both the
power and the standard deviation become large. This is
because the limited number of channel coefficients causes
very small hi being chosen.

Next, considering the importance of verifying the extent
of channel similarity between Bob and Eve, in the second
simulation experiment, our objective is to show how
confident we can claim that Bob and Eve’s channels are
different. We considered a 3× 3× 7 (height/wide/length,
in meters) room with some objects (a box and a beam)
inside, as shown in Fig. 6. We placed 3 transmitting
antennas at one end, and 523 receiving antennas at the
other end, where the receiving antennas were put on a
grid of λ = 0.3 meters, where λ is the wavelength of
1GHz carrier. Specifically, there were 15 planes, each
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Figure 5. Total transmission power and the transmission power of
each individual antenna, as well as their standard deviations. Standard
deviation is shown by × or � above the power value. ×:Total trans-
mission power of Algorithm 1. �:total transmission power of transmit
beamforming. �: individual antenna transmission power of Algorithm
1. �: individual antenna transmission power of beamforming.

had 35 receiving antennas (two antennas were missing
where there were conflictions with the objects). We let
the transmit antennas to transmit impulse signals, and
obtained the signals received by each of the receive anten-
nas. This procedure was conducted using electromagnetic
(EM) simulation software (based on FDTD). From the
signals we then estimated all effective channels on a
λ = 0.3 meter grid. Details of the EM simulation and
source data can be obtained at [27].

In this simulation, we obtained altogether 523 array
channel vectors (J = 3). Then we used each of them as
Bob’s h while each of the rest as Eve’s He to examine
LPI. Assuming Eve use Bob’s detection method, i.e.,
xe(n) = hs(n)+(He−h)s(n)+ve(n), then LPI depends
on the difference between h and He, Specifically, the
channel difference will contribute an interference to Eve’s
detection, which degrades the signal-to-interference ratio
(SIR) to be approximately [c.f., (19)]

SIR ≈ ‖h‖2

‖he − h‖2 1

J

∑J
i=1

(J − 1)σ2 + |ai|2 + ‖fi‖2σ2
.

Therefore, we evaluated the cumulative distribution of
Eve’s SIR (under noiseless assumption) for 523 × 522
possible transmission/eavesdropping cases. The results are
shown in Fig. 7, from which we clearly see that in almost
all cases (i.e., almost 100%), Eve’s signals suffer a very
high SIR loss, which prevents Eve from symbol detection.

As the third experiment, using the channels obtained
from the EM simulation, we have also simulated the error
rates of Bob and Eve. For each SNR value, Bob’s error
rate was the average of all these 523 cases, while Eve’s
error rate was obtained as the minimum value among all
523× 522 cases (100%) or the majority (99%) of 523×
522 cases. The results are shown in Fig. 9 as the dashed
curves. It can be seen that for almost all cases, Eve’s error
rate is extremely large.
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due to the difference between Bob’s and Eve’s channels. Channels are
derived by EM simulations.

We are also building a testbed using the wireless
transmission modules of ComBlock.com [27]. We imple-
mented two QPSK transmitters and two QPSK receivers.
One snap shot of the experiment is shown in Fig. 8. Four
channels were estimated and fed into the program of the
first simulation experiment to estimate BER. The results
fit well with those obtained by purely simulations (solid
lines in Fig. 9). Note that the two receiving antennas (one
for Bob, one for Eve) were purposely placed very close
to each other.

VI. CONCLUSION

In this paper, we propose to use deliberately ran-
domized array transmissions to guarantee wireless trans-
missions with LPI. The array redundancy is exploited
to create indeterminacy of the eavesdropper’s blind de-
convolution, from which LPI is proved. The method is
demonstrated by both simulations and preliminary testbed
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Figure 8. Experiment setup with 2 transmitting antennas (arrows) and
2 receive antennas (arrows). Notice the short distance between the two
receive antennas.
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Figure 9. BER of Bob and Eve. Solid lines: using channels measured
from testbed. Dashed lines: using channels obtained from EM simula-
tion.

experiments. The proposed scheme trades transmission
power for transmission security in terms of LPI.

Although another security objective LPD (low-
probability-of-detection) is not directly addressed, the
randomization procedure may in fact reduce the received
power at any unwanted places when the array is large
enough. A more detailed study on LPD is left for future.
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