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Wireless Sensor Networks Based on Correlations

Among Sensors
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Abstract—In densely deployed wireless sensor networks, signals
of adjacent sensors can be highly cross-correlated. This paper pro-
poses to utilize such a property to develop efficient and robust blind
channel identification and equalization algorithms. Blind equaliza-
tion can be performed with complexity as low as ( ~), where ~

is the length of equalizers. Transmissions can be more power and
bandwidth efficient in multipath propagation environment, which
is especially important for wideband sensor networks such as those
for acoustic location or video surveillance. The cross-correlation
property of sensor signals and the finite sample effect are ana-
lyzed quantitatively to guide the design of low duty-cycle sensor
networks. Simulations demonstrate the superior performance of
the proposed method.

Index Terms—Adaptive algorithm, blind equalization, channel
identification, cross-correlation, wireless sensor network.

I. INTRODUCTION

WIRELESS sensor networks have aroused much research
interest recently due to their potential wide applications

[1], [2]. They usually consist of a large number of densely de-
ployed sensors whose data can be transmitted to the desired user
through multihop relays. Since the density may be very high,
e.g., tens of sensors per square meter [3], signals from adjacent
sensors are highly cross-correlated [4], [5].

Sensors should be extremely power efficient because once de-
ployed, they may not be recharged or replaced. Since wireless
transceivers usually consume a major portion of battery power
[3], it is critical to improve their power efficiency. Nevertheless,
one of the major difficulties comes from the harsh communica-
tion environment with multipath propagation and severe fading
[2]. Sophisticated and yet computationally efficient techniques
must be used for reliable and efficient signal demodulation and
detection. Although much research has been performed on var-
ious aspects of sensor networks [3], [6]–[8], energy-efficient
wireless transmission techniques are mostly still open. In partic-
ular, blind channel estimation and equalization may be used to
mitigate multipath propagation and to improve both bandwidth
and energy efficiency. This is especially important for wideband
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sensor networks such as those for acoustic location [9] or video
surveillance [10].

For channel equalization, traditional training-based methods
[11] waste not only bandwidth but power as well. Because sen-
sors usually work with low duty-cycle in time-varying channels,
a sufficiently long training sequence has to be embedded in each
data packet. Blind equalization is useful to enhance power and
bandwidth efficiency by removing training. There is, of course,
a tradeoff because blind algorithms are usually more complex
and, thus, consume more power in computation. Blind equal-
ization methods with the same complexity as training methods,
if possible, would then be very desirable. Unfortunately, many
traditional blind methods may not be appropriate for sensor net-
works. For those based on a single-input single-output (SISO)
framework, higher than second-order statistics or nonlinear op-
timization are often required [12]–[14], which causes problems
such as local and slow convergence [11]. On the other hand,
blind methods based on a single-input multiple-output (SIMO)
framework [15]–[17] are also questionable since multiantenna
or oversampling unnecessarily reduces power efficiency. In fact,
multiantenna is not applicable in tiny sensors. The most severe
problem comes from the ill-conditioned channels such as those
with zeros on the unit circle or with common zeros among sub-
channels [11].

Traditional methods usually assume that signals from dif-
ferent users (or sensors) are uncorrelated. This is not true in
densely deployed wireless sensor networks. In this paper, we
show that the cross-correlation among sensors can be exploited
for blind channel identification and equalization. In particular,
we develop an adaptive algorithm that has linear complexity and
is robust to even ill-conditioned channels. The cross-correlation
property and its effect on channel estimation are analyzed quan-
titatively.

The organization of this paper is as follows. In Section II, we
introduce the signal and system model in wireless sensor net-
works. In Section III, we derive the blind algorithms. In Sec-
tion IV, we study the cross-correlation property and the finite
sample effect. Simulations are shown in Section V, and conclu-
sions are presented in Section VI.

II. PROBLEM FORMULATION

In wireless sensor networks with time division multiple ac-
cess or similar channel access schemes where sensors take turns
to transmit data packets in their own slots, we consider the case
that a sensor receives signals from multiple other sensors, e.g.,
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node 1 receives signals from sensor 1 to , as illustrated in
Fig. 1(a). This happens when multiple sensors transmit their
sensing values to a remote receiver or when multiple nodes relay
packets to the next hop. Note that the latter case is also addressed
in [18] with an approach called multitransmission.

The transmission of each sensor is illustrated in Fig. 1(b).
The sensing values are first processed by a data processor with
output , which is then scrambled before transmission. The
baseband symbols, which are denoted as , are transmitted
through a wireless channel .

Among the transmitting sensors, the sensors and
need to transmit two highly cross-correlated, ergodic, and
wide-sense stationary (WSS) sequences and .
The cross-correlation [19] is

, where de-
notes complex conjugation. From the sequences and

, we can find two subsequences
and , respectively, so that

(1)

where the index sets are defined as and
. Without loss of generality, the indices

in and are in increasing order. By choosing appropriate
and , we can obtain as large a cross correlation in (1)

as possible, which will aid our blind channel estimation and
equalization in Section III. This is necessary because, as can
be seen in Section IV, some symbol pairs may be more highly
correlated than others.

In order to introduce some special structure on the cross cor-
relation of the transmitted symbol sequences, we use scram-
bling: a technique widely used in practical systems. The two
sensors can use two pseudo-noise (PN) sequences and

for scrambling so that and
, respectively. We assume that the two PN sequences

are different, but both have (asymptotically) zero mean and unit
energy, i.e., .
For example, the sensors can use different long codes defined in
the IS-95 CDMA specification [20].

• Cross-correlation assumption: We assume that there
exist index sets , and PN sequences and

such that

(2)

where , and is the
Kronecker-delta function.

The credibility of the assumption (2) can be justified as fol-
lows. With and , (2)
gives

(3)

Fig. 1. (a) System model of wireless sensor networks. (b) Transmission block
diagram of each sensor.

When is large, the correlation characteristics of PN
sequences are indistinguishable from those of pure random
sequences [21]. Therefore, if we substitute and with

and , respectively, and assume ,
and are realizations of four independent WSS ergodic
random processes, then (3) approaches

, which equals

. Then, it is easy to see that (3) equals if
and equals zero if or .

Equation (2) defines the time-averaged cross-correlation
among the subsequences extracted from the transmitted
symbol sequences. With shifting parameters and , we
first find two subsequences
and . Then, we calculate their
cross-correlation weighted with

(4)

The cross-correlation becomes nonzero only for the sub-
sequences defined on and or, in other words, with
zero-shiftings .

Note that, in fact, we require (2) to be satisfied for a lim-
ited range of and only, as can be seen from the Proof
of Proposition 1. In addition, some other schemes differently
from the scrambling one are also applicable. For example, the
two sensors can use random interleavers such as those used in
Turbo codes to randomize the order of and .
Another scheme is the direct-sequence spread-spectrum trans-
mission, where our method can be used to reduce residual in-
tersymbol interference after despreading. However, to simplify
the presentation, we focus on the scrambling scheme only.

The receiving node receives signals from all sensors
sequentially, i.e., without overlapping. The received baseband
signal from sensor is

(5)



LI: BLIND CHANNEL ESTIMATION AND EQUALIZATION IN WIRELESS SENSOR NETWORKS 1513

where is the received sample at the sampling time instant
denotes the channel with order , and is the

additive white Gaussian noise (AWGN).
Let . We stack received samples together as

sample vectors . Define

...
...

... (6)

Then, from (5), we have

(7)

where the channel matrix is

. . .
. . . (8)

For simplicity, we assume that all sensors have the same
(maximum) channel length and that all channels are nor-
malized, i.e., . The AWGN and

are stationary with zero mean and variance and ,
respectively, and are uncorrelated with symbols of all sensors.
In addition, they are independent if . The symbols
are i.i.d., and satisfy (2).

III. BLIND CHANNEL ESTIMATION AND EQUALIZATION

A. Blind Channel Estimation

With the knowledge about the index set of sensor
, we choose the received sample vectors from (6) and (7)

as . If and satisfy

(9)

then the symbol is corresponding to the th column
of the matrix that contains all the channel coefficients

[cf. (8)]

(10)

where is a dimensional vector, and denotes transpo-
sition.

Proposition 1: Define the cross-correlation matrix

(11)

where denotes Hermitian. If and , we
have

(12)

Proof: Let be an square
matrix such that only the th element is 1, and all
other elements are zero. From the cross-correlation assumption
(2), we have

(13)

Since the noises are independent from each other, from the sym-
bols, and from , we have

Hence, (12) is obtained.
Note that to derive (13), we require (2) to be satisfied under

and only. In practice,
we can estimate as

(14)

with a finite number of samples.
Without loss of generality, we consider estimating the channel

of sensor with signals from all sensors. From (11), we have
an matrix

(15)

Since, from (12), each column in the matrix is simply a
weighted version of the column , the matrix is with rank
1. The vector can be estimated as the left singular vector
corresponding to the largest singular value of .

To reduce complexity, we can instead use the following two
more efficient ways to estimate . The first way is to simply
use a column in the matrix with a sufficiently large magni-
tude as channel estimation. The second way is to combine all the
columns in together recursively. To begin, we initialize with
any nonzero column from . Let such a column be ,
where we use the MATLAB notation to denote the th column.
Then, we can estimate the channel recursively as in (16), shown
at the bottom of the next page.

Proposition 2: The recursive procedure (16) converges to

(17)

i.e., channel estimation with a scalar ambiguity, where is the
phase.

Proof: See Appendix A.

B. Blind Equalization

Once channels are estimated blindly, we can estimate linear
filter equalizers by a constrained minimum-output-energy
(MOE) optimization

(18)
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where is constructed sim-
ilarly as (6) but with a larger dimension (generally
linear with ), and is an extended

version of with zero-padding for proper equalization delay
.

It is well known that (18) results in the MMSE equalizer [22]

(19)

where the correlation is

(20)

It is not necessary to estimate . Instead, the in (19)
can be estimated directly and efficiently by the matrix inversion
formula to avoid explicit matrix inversion [22]

(21)

where . Therefore, a batch algorithm can be
constructed from (14)–(16), (19), and (21), with computational
complexity .

To further reduce complexity, we can develop an extremely
efficient adaptive algorithm. First, to avoid the explicit estima-
tion of the correlation matrix (15), we use the first way in Sec-
tion III-A for channel estimation, i.e., iteratively look for only
one column of the correlation matrix as the channel estimation

(22)

where is used to track time-variation, and we need to
choose and online to increase . Then, with the
temporarily estimated channel, we adaptively implement (18)
for equalizer estimation by the Frost’s Algorithm [22]

(23)

where for all
is an identity matrix, and the parameter is used to ad-

just convergence. Note that during all iterations , where
, we use the temporary channel estimation .

During the channel estimation, only a subsequence of sample
vectors are used, while for equalizer
estimation, all available sample vectors are used.

Equations (22) and (23) form the adaptive algorithm with
computational complexity . In addition, thanks to the spe-
cial cross-correlation property (2), the new algorithms are robust
to nonideal or ill channel conditions, as can be easily seen from
(12) and (19).

IV. CROSS-CORRELATIONS AND CHANNEL ESTIMATION

In densely deployed wireless sensor networks, the cross-cor-
relation of the sensing values of adjacent sensors is high,
which is determined by the source signals’ signal-to-noise
ratio (S-SNR). However, for the blind methods in Section III,
what we need is the cross-correlation among the transmitted
symbols. Since noise in the source signal makes many data bits
in the sensing values lose cross-correlation [which is why we
use and in (2)], the number of symbols may be severely
limited for cross-correlation calculation, especially in low
duty-cycle sensor networks.

In this section, we study quantitatively how S-SNR affects the
symbol cross-correlation , and how large the symbol amount

should be for a given estimation error . It explains that
and can be determined offline from the data structure ac-
cording to specific applications, e.g., they can be set to include
the most-significant-bits (MSBs) of each source sample.

To simplify the problem, we consider binary signaling, and
all variables are thus real. As a matter of fact, binary signaling
is used in many sensor network prototypes [3], [6].

A. Source Cross-Correlation and Symbol Cross-Correlation

Consider that the sensor samples a source with noise
. The sampling values (before quantizing and encoding to

a binary sequence) are

(24)

where , and are random variables with zero
mean. Assuming noise depends primarily on the elec-
tronic circuits of the sensors, then it is independent of ,
and and are independent of each other if .
The S-SNR is defined as .
For simplicity, we use to denote the S-SNR for all sensors.

Assuming , we define the normalized
source signal cross-correlation between sensor and as

(25)

if

(16)
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where we consider them after synchronization, i.e., is the
maximum cross-correlation. Due to the independence of noise,
we have, if

(26)

Although more complicated encoding schemes may be used
during A/D conversion, for simplicity, we consider encoding

into -bit words only, where
. If is directly used in the binary trans-

mission, the symbol is .
Proposition 3: Assume . The

cross-correlation of symbol sequences depends on that of source
signals through

(27)

Proof: See Appendix B.
To analyze (27), we consider some appropriate approx-

imations. First, we skip all terms within the double sum-
mation in the left-hand side except the three terms with

. This
is reasonable because i) these three terms refer to the three
MSBs of the and , which are usually more highly
cross-correlated than others, and ii) these three terms have
larger weighting coefficients than others. Second, because
the three MSBs are affected less by noise, we assume that

for , i.e.,
the three symbol pairs have the same cross-correlation, which
is just the symbol (bit) cross-correlation. Then, from (27), we
have

(28)

Note that (28) may give an overestimated cross-correla-
tion value, which can be inferred from (27) since all terms

usually have the same sign with decreasing
values.

Since is usually large enough, a rule of thumb about the
relation between source signal cross-correlation and symbol
cross-correlation can be obtained from (28) as

(29)

Note that from (26), we have because
if is evenly distributed, and

the equality holds for noiseless case with infinite precision.
The results in (26) and (28) have been verified through nu-

merical experiments shown in Fig. 2 with . Noise is
added to a random source sequence to generate sensors’ sam-
pling values. Then symbol cross-correlations are calculated both
by (28) for the analysis results and by Monte Carlo simula-
tion for the simulated results. In addition, we also evaluate the
cross-correlation after data fusion, where a linearly constrained
least squares data fusion method [23] is applied to fuse signals

Fig. 2. Symbol (bit) cross-correlations as functions of source SNR. �: Analysis
results from (28). �: Simulation results without data fusion. 4: Simulation
results with data fusion.

from every three sensors. The fused signals are used to calcu-
late the symbol cross-correlation. Fig. 2 shows that the analysis
results fit well with the simulated results. In addition, although
symbol cross-correlation decreases during data fusion, it is still
high enough for our purpose.

B. Finite Sample Effect on Blind Channel Estimation

When calculating cross-correlation with finite number of
samples, from (2), we have

(30)

Since and , we can model
as a random variable [19] with zero mean and variance

. For symbol cross-correlations with nonzero shift-
ings, we find that

(31)

is a random variable with zero mean and variance , where
or .

For the noise and , similarly, their cross-correla-
tion may not be strictly zero in case of finite samples. Instead

(32)

is a random variable with zero mean and variance .
In addition, the cross-correlation between the symbols and the
noise is either

(33)

which is a random variable with zero mean and variance ,
or

(34)
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which is a random variable with zero mean and variance .
Then, the estimation of the cross-correlation matrix (14) be-

comes

(35)

where the th elements in the matrices
, and are

, and , respectively.
For simplicity, consider the estimation of with known

. Although the known assumption limits the accu-
racy of the analysis result, it provides us with tractable solutions.
On the other hand, results without such an assumption, if avail-
able, may not be more accurate due to the approximations that
would have to be made. From (12), the best estimation is

(36)

Define the normalized root-mean-square error (RMSE) of

the estimation as RMSE
[15]. Since all channels are assumed normalized, we have the
following.

Proposition 4: If the transmission signal-to-noise ratio
T-SNR is high

and the channel is known, in order to achieve RMSE
during the estimation of , the number of symbols used in
correlation calculation should satisfy

(37)

Proof: See Appendix C.
With sensors, the estimated channel can be simply the av-

erage of estimations (36). If for all and
, then we obtain

(38)

To obtain RMSE , we need
. However, RMSE may not be achieved

with all in (38). Instead, it can be guaranteed with
, conditioned on

the approximations we made.

V. SIMULATIONS

In this section, we present simulation results for the blind al-
gorithms in Section III with the analysis in Section IV as a guide
on our choice of parameters. We compared our new algorithms
with training-based algorithms [11], the cumulant-based (high
order statistics) blind algorithm (HOS) [14], the blind constant
modulus algorithm (CMA) [12], and the blind subspace method
[16].

We used some randomly chosen speech signals, such as 0.5
s of the word Hello. Random noise and delay (within max-
imum 5 ms) were added to generate source signals for sensors
with various S-SNR. We applied the regular pulse excitation

Fig. 3. (a) Channel estimation error and (b) equalization BER of the batch
algorithms as functions of T-SNR. Only one data packet (260 symbols) used.
Ten sensors.

with long-term prediction codec of the Global System for Mo-
bile Telecommunications (GSM) [20] to compress each 20-ms
speech signal into a 260-bit binary sequence, which in our case
is treated as a data packet. Among the 260 bits, about one third
are highly cross-correlated, which include, e.g., eight reflec-
tion coefficients, pitch and gain coefficients, and even MSB of
residues.

BPSK was used for transmission after scrambling. RMSE and
bit-error-rate (BER) were used to measure the performance. We
used 100 Monte Carlo runs to obtain the average RMSE and
BER for each experiment. With length , channels for
each sensor were randomly generated during each Monte Carlo
run, which means every time we used a different and possibly
ill-conditioned channel. For channel estimation, we used

, whereas the equalizer length was . For the subspace
method, each sensor had three receiving antennas.

Experiment 1: We used only one data packet during each run
to evaluate the batch algorithms with finite sample amount. For
our batch algorithm, we tried two S-SNR values: 10 and 20 dB.
In addition, we used one third of the symbols (i.e., 80 bits) to cal-
culate cross-correlations. HOS and training methods were all im-
plemented as batch algorithms. For the training method, we used
20%ofthesymbols,or52bits,fortraining(similartoGSM).From
Fig. 3(a) and (b), we see that with 20 dB S-SNR, our blind method
achieved almost the same performance as trainingmethod.Under
20 dB S-SNR, we have . From (38), we require

to achieve , whereas we used 80 bits to suc-
cessfully achieve this objective. Note that such a result exist only
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Fig. 4. Channel estimation error as a function of sensor number J as well as
percentage of symbols used for calculating cross correlations. S-SNR 20 dB,
and T-SNR 20 dB. One data packet.

with sufficiently high T-SNR. On the other hand, 80 bits are not
enough for the 10 dB S-SNR case.

Then, we evaluated our batch algorithm with various sensor
numbers and percentage of symbols for cross-correlation.
As shown in Fig. 4, about 30–40% symbols could be used
to achieve best performance. Using more than two sensors,
the algorithm worked reliably with 15% to 50% symbols
for cross-correlation, which indicates robustness within a
sufficiently large range. However, the performance became sat-
urated when the number of sensors was greater than 10, which
means more data packets are required for further improvement.

Experiment 2: We used more data packets to evaluate both
our batch and adaptive algorithms, with one third of each
data packet used for cross-correlation. Similarly, for the batch
training method, 20% of each data packet was dedicated for
training. As shown in Fig. 5, both the new batch and adaptive
algorithms achieved the performance of the training method
and outperformed greatly the blind HOS. More important,
the new adaptive algorithm rapidly converged to the batch
algorithm within ten data packets.

Experiment 3: We compared the convergence property of our
new adaptive algorithm, the training-based MMSE equalizer, and
theCMAequalizer,with thesamesetupas thesecondexperiment.
The initial conditions were randomly generated for all three al-
gorithms. We used for our algorithm.
As shown in Fig. 6, our algorithm converged fast to the training
method within 10 data packets. CMA might suffer from local and
slow convergence on some randomly generated channels.

VI. CONCLUSION

In this paper, we showed that cross-correlation among sen-
sors can be used to develop efficient blind channel estimation
and equalization algorithms in densely deployed wireless sensor
networks. The complexity of the algorithms can be as low as

, where is the equalizer length. Their superior per-
formance is demonstrated by simulations. We have also ana-
lyzed the cross-correlation property of sensor signals and the
effect of finite sample amount. Before transmitting, the data se-
quence may be optionally processed by, e.g., compression, mul-
tiplexing, and channel encoding. The analysis of their effects on
symbol cross-correlation remains an open problem.

Fig. 5. (a) Channel estimation error and (b) equalization BER, as functions of
number of data packets. S-SNR 20 dB, and T-SNR 20 dB. Two hundred sixty
bits per data packet. Ten sensors.

Fig. 6. Convergence of the adaptive algorithms versus number of data packets
used.

APPENDIX A
PROOF OF PROPOSITION 2

Note that channels are assumed normalized. Since each
vector in is a weighted version of , if the initial condi-
tion is obtained from , where is
the scalar magnitude, then .

Let the estimation at iteration be

(39)
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where is positive. Let the th vector in be
, where is the magnitude part of the weighting,

and is the phase. Then, from (16), we have

(40)

From (10), (12), and (15), we know that

if
if
if

(41)

where and . Hence (17) is readily available.

APPENDIX B
PROOF OF PROPOSITION 3

Define

(42)

Since and are with zero mean, from (25), we have

(43)

On the other hand, skipping the residual quantization error, we
have

(44)

Then, (27) can be readily proved.

APPENDIX C
PROOF OF PROPOSITION 4

From (35) and (36), the channel estimation error is

(45)

Then, in the case of high T-SNR, since the noise-induced vari-
ances are much smaller than , the contribution of noise to the
RMSE can be omitted, which gives

(46)

Since elements in the matrix are i.i.d. (31), after some direct
deduction, we have

(47)

Then, . Since
, (37) is proved.
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