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ABSTRACT

In contrast to the classical spread spectrum or data encryp-
tion methods, we propose an array redundancy-based approach
for wireless transmissions with inherent low probability of inter-
ception (LPI). The redundancy of transmit antenna arrays intro-
duces some degrees of freedom for deliberate signal randomiza-
tion, based on which, diversity is exploited to randomize the eaves-
dropper’s signal. LPI is analyzed by proving the indeterminacy
of eavesdroppers’ blind deconvolution. Extensive simulations and
preliminary experiments are conducted to demonstrate the pro-
posed method.

1. INTRODUCTION

Along with the rapid development of wideband wireless commu-
nication networks, wireless security has become a critical concern.
While many security techniques developed in wired networks can
be applied, the special characteristics of wireless networks and
wireless transmissions call for innovative wireless security design.

Wireless transmissions are inherently broadcasting, and thus
have no physical boundary. Any receivers nearby can hear the
transmissions, and can potentially listen/analyze the transmitted
signals, or conduct jamming. In addition, wireless nodes have
more severe constraints on energy and bandwidth, which means
more efficient security designs have to be developed specifically
for wireless networks. Wireless links are inherently unreliable and
untrustful, whereas wireless networks have more dynamic topol-
ogy. They all make wireless security a challenging task.

Considering that most of such issues are related to the unique
physical-layer of wireless communications, physical-layer secu-
rity techniques are important. They are necessary to resolve the
boundary control issue, and are better for bandwidth/power ef-
ficiency optimization. They can also assist resolving the unreli-
able link issue, which help upper-layer security techniques within
a framework of innovative cross-layer security design.

An important issue of physical-layer security is to guarantee
wireless transmissions with negligibly low probability of intercep-
tion (LPI) without relying on upper layer data encryption. Many
existing physical-layer secure transmissions either can not with-
stand a strict LPI analysis, or rely on encryption keys so that the
security is not in the physical-layer [1]. Traditionally, spread spec-
trum techniques are the most widely used techniques for LPI/LPD
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Fig. 1. Secure wireless transmission model.

(low probability of detection). However, when data transmissions
are evolving toward wideband, spread spectrum alone may not be
enough because of the reduced space of spreading gain [2].

In [3], we have shown that inherent security can be realized
based on the diversity of antenna array transmissions. The array
redundancy makes it possible to randomize the transmitted signals
to prevent deconvolution, especially blind deconvolution, so as to
prevent eavesdropping. Such an approach represents an innovative
way of secure waveform design, differently from the widely used
spread spectrum or data encryption techniques. Based on [3], in
this paper we propose a special randomization method for deter-
mining the transmit antenna weights. We also give a proof of LPI.
In addition, extensive simulations and the development of a testbed
to support the proposed transmission schemes are presented.

This paper is organized as follows. In Section 2, a framework
of secure array transmission is introduced. In Section 3, we pro-
pose a deliberate randomization scheme and analyze the security.
Simulations and experiments are given in Section 4 and conclu-
sions are presented in Section 5.

2. SECURE ARRAY TRANSMISSION MODEL

As shown in Fig. 1, Alice transmits to Bob without any shared
encryption keys, in face of the passive eavesdropper Eve. Other
than the J transmit antennas in the secure channel, Alice may also
use some other antennas communicating with Bob, which gives
an insecure public channel. This public channel may be used for
the synchronization purpose between Alice and Bob, or for some
special secret key management protocols [4].

We consider only the secure channel from Alice to Bob in this
paper. Using J antennas, Alice transmits to Bob a symbol se-
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Fig. 2. Transmit beamforming-like transmission block diagram.

quence {b(n)} which is assumed as i.i.d. uniformly distributed
with zero-mean and unit variance. With a transmit-beamforming-
like scheme [5] as shown in Fig. 2, Alice transmits vectors
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where wi(n) denotes the weighting coefficient of the ith transmit
antenna during the symbol interval n. Note that transmitters may
introduce intentional delays δi, or even use more complex space-
time processing, which will be investigated in the future.

Assume the propagation channel be Rayleigh flat fading. The
signal received by Bob (with one antenna) is

x(n) = hHs(n) + v(n), (2)

where v(n) is zero-mean AWGN. The coefficients of the J ×
1 channel vector h are independent complex circular symmetric
Gaussian distributed with zero-mean and unit variance. In this let-
ter, (·)∗, (·)T and (·)H denote conjugate, transpose and Hermitian,
respectively.

With M receiving antennas, Eve receives signals

xe(n) = Hes(n) + ve(n), (3)

where xe(n) and He are with dimension M × 1 and M × J ,
respectively. The vector ve(n) is AWGN with zero-mean and co-
variance matrix σ2

vIM , where IM is the M × M identity matrix.
We assume that each element of He has the same distribution as,
but is independent from, those of h. From the extensive studies
on antenna array channels, we know that as long as the distance
between Bob and Eve is larger than several carrier wavelengths,
then their channels can be considered as independent. We will use
simulations and experiments to demonstrate it in Section 4.

Therefore, we assume that channels h and He are different,
and Eve does not know h and He. However, Eve may try blind
or non-blind methods to estimate He from xe(n). On the other
hand, Alice and Bob do not know h and He either. Our objective
is to design the transmission weights w(n) so that Bob can detect
symbols b(n) successfully with low bit-error-rate (BER) while Eve
can not estimate symbols.

3. DELIBERATE RANDOMIZATION FOR LPI

A way to create high BER for Eve is to prevent Eve from chan-
nel/symbol estimation, which means, first, Alice can not trans-
mit training signals by the J transmit antennas, and second, Eve’s
blind deconvolution capability has to be prevented as well. In this
section, we propose a transmission scheme with which Bob can
detect signals without channel knowledge so that no training is to

be transmitted. Without training, Eve has to rely on blind decon-
volution. Then, we propose a deliberate randomization scheme to
randomize Eve’s signal so that blind deconvolution has unresolv-
able ambiguity. Note that the necessary pilots for Bob’s synchro-
nization purpose can be transmitted by the antennas of the public
channel.

3.1. Transmission and receiving procedure from Alice to Bob

In order for Bob to estimate symbols, the channel from Alice to
Bob has to be resolved. Traditionally, this can be conducted by
either Alice or Bob. We ask Alice instead of Bob to estimate and
utilize the knowledge of h. Alice can estimate h based on channel
reciprocity [5]. Bob first transmits a training signal to Alice using
the same carrier frequency as the secret channel, from which Alice
can estimate the backward channel. Since the forward channel h
equals the backward channel according to reciprocity, Alice can
immediately use the estimated channel as h to design transmis-
sion parameters. This procedure can be repeated for time-varying
channels. Note that this procedure gives no useful information to
Eve.

With the knowledge of h, Alice designs w(n) so that

hHw(n) = ‖h‖, (4)

where ‖h‖ denotes the norm of h. From the received signal x(n) =

‖h‖b(n)+v(n), Bob can detect symbols from b̂(n) = ‖h‖−1x(n),
where ‖h‖−1 can be easily calculated from the received signal
power.

Therefore, Alice needs to design w(n) under the constraint
(4), which can be performed as follows. In each symbol inter-
val, Alice first selects randomly an element with sufficiently large
magnitude from h. Let hi be selected during the symbol interval
n. The weighting vector w(n) is then calculated as

w(n) = Pi(n)

»
ai − fH

i zi(n)
zi(n)

–
(5)

where ai = ‖h‖/h∗
i , fi = [h1, · · · , hi−1, hi+1, · · · , hJ ]T /hi,

zi(n) = [w1(n), · · · , wi−1(n), wi+1(n), · · · , wJ (n)]T , and Pi(n)
is a J × J permutation matrix whose function is to insert the first
row of the following vector into the ith row. Note that zi(n) is
arbitrary.

3.2. A deliberate randomization scheme

From (5), we can choose zi(n) appropriately to prevent Eve from
blind deconvolution. For example, this purpose can be fulfilled
by simply making zi(n) with a distribution unknown to Eve since
blind deconvolution requires known source statistics. It is well
known that successful blind deconvolution requires that the re-
ceiver knows some special statistics or structure of the transmitted
signals. However, most of existing researches have been on when
blind deconvolution can be conducted, not when blind deconvo-
lution can not be conducted [6]. The proof of the incapability of
blind deconvolution is rarely seen.

To furbish a rigorous quantitative proof of the incapability of
blind deconvolution, we consider a more structured scheme where
Alice designs zi(n) such that ri(n) = zi(n)b(n) is (J−1)-variate
Gaussian distributed with mean µ and covariance matrix Σ, i.e.,
ri(n) ∼ NJ−1(µ, Σ) [7]. The parameters µ and Σ are arbitrary
and unknown to both Eve and Bob, and can even be time-varying.



From (5) and (1), the transmitted signal vector is

s(n) = Pi(n)

»
aib(n) − fH

i ri(n)
ri(n)

–
. (6)

For each selected channel coefficient hi, the expected total trans-
mission power is

tr{E[s(n)sH(n)]} = tr{µµH + Σ}+
|ai|2 + fH

i (µµH + Σ)fi, (7)

whereas the diagonal entry of E[s(n)sH(n)] gives the transmis-
sion power of each antenna. We need both to reduce the total
power and to balance the power among the transmitting antennas.
This can be conducted by choosing properly µ and Σ. Details will
be reported elsewhere due to space limit.

3.3. Indeterminacy of Eve’s blind deconvolution

From (6), Alice’s transmitted signal can be written as s(n) =
G(n)ri(n) + g(n)b(n) where

G(n) = Pi(n)

» −fH
i

IJ−1

–
, g(n) = Pi(n)

»
ai

0J−1

–
. (8)

We have used 0J−1 to denote a J − 1 dimensional zero vector.
Eve’s received signal can be written as

xe(n) =
ˆ

HeG(n) IM

˜ »
ri(n)
ve(n)

–
+ Heg(n)b(n). (9)

Obviously, in each symbol interval n, Eve’s signal is M -variate
Gaussian distributed [due to the random ri(n)], i.e.,

xe(n) ∼ NM (HeG(n)µ + Heg(n)b(n),

HeG(n)ΣGH(n)HH
e + σ2

vIM

´
(10)

Proposition 1. From the distribution of xe(n), the channel
matrix He is indistinguishable from HeQ with a J × J matrix

Q = Pi(n)

»
u 0
0 V

–
P−1

i (n), (11)

where u is an arbitrary non-zero scalar and V is a (J−1)×(J−1)
arbitrary nonsingular matrix.

Proof. Define

H̃e = HeQ,

G̃(n) = u−1G(n)V, g̃(n) = u−1g(n)

µ̃ = V−1µ, Σ̃ = V−1Σ(V−1)H .

Then we can verify that H̃eG̃(n) = HeG(n)V, H̃eg̃(n) =

Heg(n), and H̃eG̃(n)µ̃G̃(n)HH̃H
e = HeG(n)ΣGH(n)HH

e .
The distribution (10) does not change if He, G(n), g(n), µ and
Σ are replaced by H̃e, G̃(n), g̃(n), µ̃ and Σ̃, respectively. There-
fore, there is a matrix Q ambiguity for estimating He blindly. �

The same conclusion holds if considering the sequence {xe(n)}
with respect to an unknown sequence {b(n)} because xe(n) are
independent for different n. The known statistic property of {b(n)}
does not help.

Let us assume that Eve can estimate He up to the ambiguity
matrix Q in (11), then by substituting He with HeQ and removing
He, Eve’s signal can be changed to

x̃e(n) = Pi(n)

»
ufH

i

V

–
ri(n) + Pi

»
uai

0J−1

–
b(n) + ṽe(n).

(12)
In order to detect b(n), Eve has to first resolve Pi(n), i.e., deter-
mine which hi for i ∈ [1, J ] is chosen in each symbol interval. If
the decision is wrong, then Eve in fact detects b(n) from an entry
in Vri(n), which gives an bit error rate of 0.5. On the other hand,
if the decision is correct, then the detection of b(n) is suscepti-
ble to the interference fH

i ri(n). The signal-to-interference ratio
(SIR) can be made large enough for a high error rate by choosing
properly Σ.

Since Eve can not estimate He, she may use a brute-force ex-
haustive search to look for a vector hHH−1

e (assume He is invert-
ible). The complexity increases exponentially with the channel
length J . If such a complexity becomes prohibitive, the best way
left for Eve is to directly use Bob’s symbol detection procedure, in
which case the error rate depends on the difference between h and
He (with M = 1). We will examine it by extensive simulations in
Section 4.

4. SIMULATIONS AND EXPERIMENTS

In this section, we use two simulations and experiments to study
the effectiveness of the proposed transmission scheme by evaluat-
ing the BER of Bob and Eve. Eve is assumed to estimate symbols
directly using Bob’s method. In the first simulation experiment,
we used randomly generated channels. We used J = 4 and QPSK
transmission. Each BER was evaluated as the average of 5000
runs, and 400 QPSK symbols were transmitted during each run.
The results of BER as functions of receiving SNR are shown in
Fig. 5 as the solid lines, from which we see that Bob can reliably
receive signals while Eve can not.

In the second simulation experiment [8], our objective is to
show how confident we can say that Bob and Eve’s channels are
different. We considered a 3×3×7 (height/wide/length, in meters)
room, where there were some objects (such as a Box), as shown
in Fig. 3. We placed an antenna grid, with the minimum distance
between antennas (grid length) to be half of a wavelength. Some of
the grid antennas are shown in the figure, together with a transmit
antenna placed in the other end of the room. We let the transmit
antenna to transmit signals, and we obtained the signals received
by all the receive antennas. This procedure is conducted using
electromagnetic simulation software (based on FDTD). From the
signals we can estimate all effective channels on a λ = 0.3 meters
grid.

Considering the far field only, we obtained altogether 490 chan-
nels. Then we used each of them as h while each of the rest as
He to find the error rates of Bob and Eve with the simulation pa-
rameters in the first experiment. For each SNR value, Bob’s error
rate was the average of all these 490 cases, while Eve’s error rate
was obtained as the minimum value among all possible channels
(100%) or the majority (99%) of the channels. Note that the posi-
tions where Eve was within 2λ of Bob were avoided. The results
are shown in Fig. 5 as the dashed curves. It can be seen that for
at least 99% of all possible channels, Eve’s error rate is extremely
large.



We are also building a testbed using the wireless transmis-
sion modules of ComBlock.com [8]. We implemented two QPSK
transmitters and two QPSK receivers. One snap shot of the ex-
periment is shown in Fig. 4. Four channels were estimated and
fed into the program of the first simulation experiment to estimate
BER. The results fit well with those obtained by purely simula-
tions (solid lines in Fig. 5). Note that the two receiving antennas
(one for Bob, one for Eve) were purposely placed very close to
each other.
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Fig. 3. Settings of a room for electromagnetic wave propagation
simulation.
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Fig. 4. Experiment setup with 2 transmitting antennas (red arrow)
and 2 receive antennas (blue arrow).

5. CONCLUSIONS

In this paper, we propose to use deliberately randomized array
transmissions to realize wireless transmissions with LPI. The ar-
ray redundancy is exploited to guarantee the indeterminacy of the
eavesdropper’s blind deconvolution. The LPI is proved. The method
is demonstrated by both simulations and preliminary testbed ex-
periments.
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Fig. 5. BER of Bob and Eve. Solid lines: Rayleigh fading chan-
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The proposed scheme uses higher transmission power, and
thus trade power for transmission security. Although LPD is not
directly addressed, the randomization procedure may in fact re-
duce the received power at any unwanted places when the array is
large enough. A more detailed study on LPD is left for future.
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