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ABSTRACT

In this paper, we analyze the allowable transmission power of
cognitive radios when used as secondary users in a dynamic
spectrum access network. Closed-form upper and lower bounds
are derived, while accurate solutions to transmission power
are available through numerical evaluation. The transmis-
sion power depends on the distance between primary and
secondary transmitters as well as the number of randomly
distributed primary receivers. The results show that at the
cost of a small SINR redundancy of primary users, cognitive
radios can use a significant level of transmission power in
certain conditions.

Index Terms— cognitive radio, dynamic spectrum ac-
cess, transmission power, signal to interference and noise ra-
tio (SINR)

1. INTRODUCTION

Cognitive radio (CR) has attracted great attention recently as
a potential way of realizing dynamic spectrum access (DSA).
CR-based DSA can help resolve the shortage problem of the
overly crowded wireless communication spectrums [1]. It has
been finding many practical applications, such as using the
TV band for secondary spectrum access, or in certain military
applications for both spectrum efficiency and security.

In DSA networks, there are various ways to support sec-
ondary spectrum access. One of the ways is for secondary
users to utilize the spectrum hole which the primary users
do not use during some time period and in some place. An-
other way is to allow the secondary users to utilize the same
spectrum at the same time and the same place with the pri-
mary users. In order to mitigate the interference to primary
users, secondary transmitters may use an underlay approach
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for spectrum access, such as the ultra-wideband (UWB) trans-
mission. An alternative approach is overlay, in which sec-
ondary transmitters can have larger transmission power. In
this case, in order to limit the interference to the primary
users, the secondary transmitters either schedule their trans-
mission power so that their interference to primary users is
limited to an acceptable level [2], or exploit special coding
techniques such as dirty paper coding so that they can use a
portion of the transmission power to help the primary users
while the rest of the power to transmit their own informa-
tion [3].

In this paper, we focus on an approach similar to [2] where
secondary spectrum access is allowable as long as the inter-
ference to primary users is within a certain threshold. We will
analyze the signal-to-interference-and-noise-ratio (SINR) and
find the secondary transmitters’ allowable transmission power.
In contrast to [2] which studies fixed users (both number and
location), we derive the average transmission power by con-
sidering uniformly distributed primary receivers in the net-
work. Some preliminary results along this line has been re-
ported in [4], but without the closed-form bounds being de-
rived.

The organization of this paper is as follows. In Section
2, we give the system model. Then in Section 3, we analyze
the transmission power by a geometric method for a single
secondary transmitter. Simulations are conducted in Section
4. Conclusions are then given in Section 5.

2. DSA SYSTEM MODEL

We consider a cellular-like system, where in a cell there is a
base station that communicates with multiple mobile users.
We denote the base station as primary transmitter T0 and the
mobile users as primary receivers. In addition, there is a sec-
ondary transmitter (denoted as T1) and the corresponding sec-
ondary receivers. Both the number and the positions of the
primary receivers are unknown to the secondary users. We
put the base station T0 in the center of a cell with radius r0,



and let the distance between T0 and T1 be d. We assume there
are M primary receivers that are uniformly distributed inside
the cell.

The secondary transmitter T1 may transmit at the same
time and the same frequency as the primary user T0. The
transmission power of T1 should be determined appropriately
so that all the primary receivers can still work. In other words,
while secondary transmission degrades the primary receivers’
SINR, such a degradation should be smaller than certain thresh-
old. For this purpose, the primary system should have been
designed with certain redundancy in SINR, i.e., the worst case
SINR of the primary receivers is larger than the minimum re-
quired SINR Γ0 when there is no secondary spectrum access.

Let the redundancy be described by a factor ∆Γ0. In case
of without secondary transmission, primary receivers have
SINR no less than

KP0r
−α
0

N
≥ Γ0 + ∆Γ0, (1)

where P0 is the transmission power of the base station T0, N
is the AWGN noise power at the receiver which we assume
identical for all the receivers, the parameter α is the path-loss
exponent, and K is the constant that includes all other prop-
agation effects such as antenna gains and carrier wavelength.
In case of secondary spectrum access, we just need to assure
the SINR γ0 of any primary receiver to satisfy

γ0 ≥ Γ0. (2)

3. SECONDARY TRANSMISSION POWER

If there are primary receivers close to T1, then the transmis-
sion power of T1 has to be small in order to avoid introduc-
ing excessive interference. The transmission power of T1 de-
pends on the position of the primary receivers. Considering
the random distribution of primary receivers and the fact that
T1 does not have detailed information about the locations of
the primary receivers, we evaluate the expected transmission
power of T1 in this section.

3.1. Upper bound of secondary transmission power

To derive the upper bound of the secondary transmission power,
let us consider first the case that all the primary receivers are
located outside of a circle of radius x around T0. We can
model the cummulative distribution of this case as

F1(x) =
(

1 − πx2 − A0

πr2
0 − A0

)M

, (3)

where x0 ≤ x ≤ r0 and A0 = πx2
0. Note that the parameters

x0 and A0 are used in order to include the general case where
the primary receivers have a distance at least x0 away from
the primary transmitter T0. This distance may be due to the
far-field effect of antenna transmissions, or due to some other
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Fig. 1. A cell with a primary transmitter T0 and all the pri-
mary receivers being outside of the circle with radius x. T1
is the secondary transmitter. The primary receiver R0 has the
highest SINR, which is exploited to derive the upper bound of
T1’s transmission power.

reasons. Then the probability density that there are some pri-
mary receivers with distance x to T0 but no primary receivers
closer to T0 than x is

f1(x) = −dF1(x)
dx

=
2πMx

πr2
0 − A0

(
1 − πx2 − A0

πr2
0 − A0

)M−1

.

(4)
Note that the negative sign in (4) is to guarantee a positive
density.

Proposition 1. If the minimum distance between T0 and
primary receivers is x, then the transmission power of T1 sat-
isfies

P1(x) ≤ (x + d)α

(
P0

Γ0
x−α − N

K

)
. (5)

The equality is achieved when the SINR Γ0 is actually achieved
by some primary receivers.

Outline of Proof. To save space, we only outline the
proof. Details will be reported elsewhere. We can prove (5)
by considering the two circles in Fig. 1, where the bigger one
is the circle of T0 with radius r0 whereas the smaller one is
the circle with radius x. We can show that if there is a primary
receiver R0 lies in the intersection of the small circle and the
line T0-T1, then R0 has the highest SINR among all the pri-
mary receivers. The transmission power of T1 derived from
this SINR is an upper bound of the secondary transmission
power. R0’s SINR is

γR0(x) =
KP0x

−α

KP1(x)(x + d)−α + N
,

from which (5) can be obtained. �

The upper bound of the expected secondary transmission
power can then be derived from (5). When evaluating of aver-
age power, however, it might be better to use its decibel value.
Therefore, we change (5) first into

P1(x)(dB) = 10 log10

[
(x + d)α

(
P0

Γ0
x−α − N

K

)]
. (6)



where P1(x)(dB) denotes the upper bound for this special
case. The upper bound of the expected secondary transmis-
sion power is then evaluated as

P1(dB) =
∫ r0

0

P1(x)(dB)f1(x)dx (7)

From (7), we can evaluate P1(dB) numerically.
Nevertheless, to analyze the connections between the trans-

mission power and the transmission parameters, a closed-form
solution is more desirable. In order to derive closed-form so-
lution to (7), we have to take some simplifications. First, we
let x0 = 0, so A0 = 0. Then, we consider only the noiseless
case with N = 0. After some tedious but straight-forward
integration deduction, we have

P1,N=0(dB) =

10 log10

P0

Γ0

(r0

d

)−α

+ 5[ψ(M + 1) − ψ(1)] log10 eα

+10

[√
πMΓ(M)r0

2Γ
(
M + 3

2

)
d

2F1

(
1
2
, 1, M +

3
2
,
r2
0

d2

)

− r2
0

2(M + 1)d2 2F1

(
1, 1, M + 2,

r2
0

d2

)]
. (8)

Note that Γ(·), 2F1(·) and ψ(·) denote Gamma function, Hy-
pergeometric function, and PolyGamma function, respectively.
From (8), we can readily see that the secondary transmission
power increases when the ratio d/r0 becomes large, or the
number of primary receivers M reduces. A big path-loss ex-
ponent α is helpful for secondary spectrum access.

3.2. Lower bound of secondary transmission power

The evaluation of the lower bound of secondary transmission
power needs to take a different approach. In contrast to the
approach in Section 3.1, we consider the scenario that all the
primary receivers are away from T1 with a distance x. Such
a scenario gives a circle of radius x centered around T1, as
shown in Fig. 2. Depending on the position of T1, the range
of x is different. Specifically, if d ≤ r0, i.e., T1 is within the
primary cell, then x0 ≤ x ≤ r0 + d. Otherwise, if d > r0,
then the valid range of x is max{x0, d − r0} ≤ x ≤ d + r0.

The cummulative distribution of the case that there are no
primary receivers in the circle of T1 depends on the area A(x)
of the cross section of the two circles in Fig. 2. Specifically,
the cummulative distribution can be found as

F2(x) =
(

1 − A(x) − A0

πr2
0 − A0

)M

, (9)

where max{x0, d−r0} ≤ x ≤ d+r0. If the radius x is small
so that x0 ≤ x ≤ r0 − d, as shown in Fig. 1(a), then the area
of the cross section is

A(x) = πx2, 0 ≤ x ≤ r0 − d. (10)
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Fig. 2. Circles of primary transmitter T0 and secondary trans-
mitter T1. (a) For 0 ≤ x ≤ r0−d, primary receiver R0 has the
smallest SINR. (b) For r0−d < x ≤ r0+d, primary receivers
R0 and R1 have the same smallest SINR. Such smallest SINR
are used to derive the lower bound of the secondary transmis-
sion power.

Otherwise, if the radius x is larger so that r0−d < x ≤ r0+d,
as shown in Fig. 1(b), then the area of the intersection is

A(x) = x2η+r2
0φ−dr0 sin(φ), r0−d ≤ x ≤ r0+d, (11)

where

η = cos−1

(
d2 + x2 − r2

0

2xd

)
, φ = cos−1

(
r2
0 + d2 − x2

2r0d

)
.

(12)
For the case of d > r0, it can be easily verified that the area is

A(x) =
r2
0

2
[2φ − sin(2φ)] +

x2

2
[2η − sin(2η)], (13)

where d − r0 ≤ x ≤ d + r0. Considering that F2(x) in (9) is
a decreasing function of x, probability density function of x
should be

f2(x) = −dF2(x)
dx

. (14)

Proposition 2. Let all primary receivers lie outside of
the circle of T1 with radius x, and the noise power be negli-
gibly small (i.e., N � KP1(x)(r0 + d)−α). If d ≤ r0, the



secondary transmission power satisfies

P1(x) ≤


xα
[

P0
Γ0

(d + x)−α − N
K

]
, if x0 ≤ x ≤ r0 − d

xα
(

P0
Γ0

r−α
0 − N

K

)
, if r0 − d ≤ x ≤ r0 + d.

(15)

If d > r0, then

P1(x) ≤ xα

(
P0

Γ0
r−α
0 − N

K

)
(16)

if max{x0, d − r0} ≤ x ≤ r0 + d. The equality can be
achieved in some special primary receiver distributions.

Outline of Proof. Considering first the two circles in Fig.
2 (a), where the bigger one is the circle of T0 with radius r0

while the smaller one is the circle of T1 with radius x, we can
show that the primary receiver R0 has the lowest SINR, based
on which we can drive the first equation in (15). The other
part of (15) can be proved similarly by considering Fig. 2 (b),
and so does (16). �

Note that although we have “≤” in (15)-(16), they are de-
rived from the primary users with the lowest SINR. There-
fore, we can define the lower bound of P1(x) as P1(x) which
equals to the right hand side of (15) and (16). The meaning
of “lower bound” is that the secondary transmission power
can always be larger than this lower bound without causing
interference problem. Obviously, the secondary transmission
power can be smaller than this value as well, in which case it
just means the secondary transmitter does not fully utilize the
transmission capacity.

The lower bound of the expected transmission power of
the secondary transmitter T1 can thus be obtained by eval-
uating the expectation of P1(x) over the probability density
f2(x),

P1(dB) =
∫

10 log10[P1(x)]f2(x)dx. (17)

If the distance of a secondary transmitter T1 to a primary
transmitter T0 is known, then the lower bound of the aver-
age transmission power of T1 can be determined from (17)
numerically.

The closed-from solution to (17) is even more difficult to
derive than the upper bound case, mainly because the density
function is nontrivial. Again, we have to adopt some approx-
imations. First, the lower bound is usually extremely small
when d < r0, i.e., when T1 lies within the cell. Therefore,
we consider only the d ≥ r0 case for closed-form solutions.
Next, to deal with the major problem of the non-trivial den-
sity function, we approximate the cummulative distribution
function F2(x) by

F̃2(x) =
(

1 − (x + r0 − d)2

4r2
0

)M

, d − r0 ≤ x ≤ d + r0,

(18)

which means we reduce the cross section area to a circle with
radius (x+ r0 −d)/2. Note that we have also let x0 = 0. The
density function can thus be approximated as

f̃2(x) =
M

2r2
0

(x+ r0 −d)
(

1 − (x + r0 − d)2

4r2
0

)M−1

. (19)

With the above simplifications, the lower bound of the
secondary transmission power is approximated as

P1(dB) ≈
∫ d+r0

d−r0

10 log10

(
P0x

α

Γ0rα
0

)
f̃2(x)dx. (20)

If we consider the special case that T1 is near the cell
boundary, i.e., d/r0 → 1, then we can reduce (20) into

P1,d/r0→1(dB) ≈ 10 log10

2αP0

Γ0
−5[ψ(M+1)−ψ(1)] log10 eα.

(21)
In this case, (21) shows that the secondary transmission power
reduces with the number of primary receivers when the sec-
ondary transmitter is near cell boundary.

To evaluate (20) in more general case, we can further ap-
ply an approximation log(x − r0 + d) ≥ x/(x − r0 + d) +
log(d − r0), where log(·) is natural logarithm. Then we can
reduce (20) into

P1(dB) ≈ 10 log10

P0

Γ0

(
d − r0

d

)α

+

10αr0
(d−r0) log(10)

[
M

√
πΓ(M)

Γ(M+ 3
2 ) 2F1

(
1, 3

2 , M + 3
2 ,

4r2
0

(d−r0)2

)
− 4r0

(M+1)(d−r0) 2F1

(
1, 2, M + 2,

4r2
0

(d−r0)2

)]
. (22)

On the other hand, if we use the approximation log(x −
r0 + d) ≤ x/(d − r0) + log(d− r0) instead, then we can get
a relatively looser but more succinct approximation as

P1(dB) ≈
10 log10

(
P0(d−r0)

α

Γ0dα

)
+ 10αr0

(d−r0) log(10)
M

√
πΓ(M)

Γ(M+ 3
2 )

(23)

Both (22) and (23) indicate that the lower bound of expected
secondary transmission power is an increasing function of
d/r0. Especially, if M is large enough, then the lower bound
increases with log10(d/r0 − 1)α.

4. SIMULATIONS

In this section, we compare numerically the bounds and the
exact values of the secondary transmission power. We assume
the transmission power of T0 be 100 watts, the AWGN noise
power be N = 5×10−10 watts. The gains of the transmission
antenna and the receiving antenna are all 1. We have effective
primary transmission range r0 ≈ 1000 meters. We set the
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Fig. 3. Secondary transmission power as functions of pri-
mary/secondary transmitters distance ratio.

path loss exponent as α = 3 to simulate an urban cellular ra-
dio environment. Γ0 = 20 dB is the primary receiver’s SINR
requirement in case of without secondary transmissions. An
SINR redundancy of 3 dB is simulated.

For the bounds of the secondary transmission power, we
directly evaluate both the integration equations and the close-
form solutions. The latter is indicated as “approx” in simula-
tion figures. For the exact values of the secondary transmis-
sion power, which are denoted as “average” in the simulation
figures, we use Monte-Carlo simulations, where in each run
we randomly generate M primary receivers, and then calcu-
late the transmission power based on the assumption that the
secondary transmitter T1 knows all their positions.

In Fig. 3, we can see that the bounds evaluated from nu-
merical integrations are very close to the bounds calculated
from closed-form expressions. In addition, the exact values in
general lie between the upper bounds and the lower bounds.

In Fig. 4, we can see that the exact values of the sec-
ondary transmission power are close to upper bound when
M is small, and are close to the lower bound when M be-
comes large. In addition, the closed-form expressions again
fit tightly to the numerical integrations.

5. CONCLUSIONS

In this paper, we analyzed the allowable transmission power
of cognitive radios when used for secondary spectrum access
purpose. Transmission power of a single secondary cognitive
radios are derived in the form of integration equations, and
closed-form solutions are obtained under certain simplifica-
tions. Simulations are conducted to show their effectiveness.

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Primary Receivers (M)

P
ow

er
 R

at
io

 P
1/P

0 (
d/

r 0=
2)

 

 

Upper bound
Upper bound (approx)
Average
Lower bound
Lower bound (approx)
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of primary receivers.

6. REFERENCES

[1] Q. Zhao and B. M. Sadler, “A survey of dynamic spec-
trum access,” IEEE Singal Processing Mag., vol. 24, no.
3, pp. 79-89, May 2007.

[2] M. Gastpar, “On capacity under receive and spatial
spectrum-sharing constraints,” IEEE Trans. Info. The-
ory, vol. 53, no. 2, pp. 471-487, Feb. 2007.

[3] N. Devroye, P. Mitran and V. Tarokh, “Achievable rates
in cognitive radio channels,” IEEE Trans. Info. Theory,
vol. 52, no. 5, pp. 1813-1827, May 2006.

[4] X. Li, J. Hwu and N. Fan, “Transmission power and ca-
pacity of secondary users in a dynamic spectrum access
network,” IEEE Military Communications Conference
(MILCOM’2007), Orlando, FL, Oct. 29-31, 2007.


