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ABSTRACT

Two-way amplify-and-forward (AF) relay network with both coop-
erative communication and analog network coding (ANC) has at-
tracted great attention. In this paper, we formulate the fundamental
issue, i.e., the optimal selection of multiple AF relays in a two-way
dual-hop cooperative network, into linear fractional programming
(LFP) problems. Firstly, in case of channel reciprocity, by minimiz-
ing the sum of the inverse of signal-to-noise ratios (SNR), the AF
relays can be selected optimally by the LFP algorithms. Moreover,
we derive a closed-form solution to this case, and prove that a node
either participates relaying with full transmission power, or ceases
relaying. Then, for the general (possibly channel non-reciprocity)
case, by maximizing the weighted sum SNR, we show that the re-
lay selection can be optimized by the sum-of-ratios LFP algorithms.
Simulations are conducted to verify the proposed results.

Index Terms— Cooperative communications, two-way relay-
ing, analog network coding, linear fractional programming, sum-of-
ratios linear fractional programming, signal-to-noise ratio

1. INTRODUCTION

Two-way cooperative relaying has attracted great attention in the last
few years because of its advantages of exploiting redundant nodes
as relays and of using the analog (physical-layer) network coding
(ANC) to boost transmission performance. One of the common pro-
tocols for the two-way relaying is that first all sources broadcast their
transmitted signals simultaneously. These signals combine in the air
before reaching the relaying nodes, which is called analog network
coding. The relaying nodes then broadcast the received signals back
to the source nodes. With the knowledge of their own transmitted
signals, the source nodes will decode the ANC-coded signals and
demodulate the signals transmitted from other sources.

While two-way relaying has been an active research area for
years, a fundamental issue, i.e., how to select relays optimally from
all available redundant nodes, remains open and challenging. This
is true even for the one-way cooperative transmissions, where the
relay selection problem can be classified into single-relay selection
and multiple-relay selection [1]. While the single-relay selection
has been studied extensively [2], the latter is more challenging [3].
Some suboptimal or heuristic methods have thus been proposed, e.g.
selecting relays closer to the source node, or selecting relays with
signal-to-noise ratio (SNR) above a certain heuristic threshold [4].
Obviously, the relaying nodes selection and optimization problem
is even more challenging for two-way and ANC-coded cooperative
transmissions. It is in fact still a mostly open problem [5]-[7]. In the
recent and also representative work [5], the closed-form expressions

to the optimal relay selection were developed for a special channel-
reciprocal case. However, only approximate solutions to the general
(possibly channel-nonreciprocal) case were derived.

A popular relaying strategy for two-way ANC-coded coopera-
tive networks is the amplify-and-forward (AF) relaying [4], where
each relay node simply retransmits the signal it has received, with
appropriate amplification only for desirable transmission power.
This strategy has attracted great practical interests because it can
simplify relay design, reduce processing energy, and reduce pro-
cessing delay [5][8]. In [9], we derived a closed-form solution to the
problem of multiple-relay selection for maximum destination SNR
in a dual-hop AF cooperative network. Nevertheless, [9] studied
one-way relay network only without ANC.

In this paper, following our research in one-way AF relay net-
work [9], we derive the optimal relay selection in two-way AF ANC-
coded cooperative networks. We will show that the problem can
be solved by the sum-of-ratios linear fractional programming, for
which many standard and effective algorithms exist. Moreover, if
reciprocity between the source-relay channels and the relay-source
channels can be assumed, we can formulate a much simpler linear
fractional programming for the optimal relay selection. A surpris-
ingly simple closed-form solution can also be derived, which shows
many interesting properties of the optimal relay selection.

The organization of this paper is as follows. In Section 2, we
give the system model. In Section 3, we develop the optimal relay
selection and propose the algorithms. Simulations will be conducted
in Section 4 and conclusions will be given in Section 5.

2. SYSTEM MODEL

Consider a wireless ad-hoc two-way AF relaying network with two
source nodes (S1 and S2), and N other nodes that can potentially
work as relays, as illustrated in Fig. 1. The forward channels from
S1 and S2 to the relay node i, i = 1, · · · , N , are denoted as h1,i and
h2,i, respectively. We use g1,i and g2,i to denote their corresponding
backward channels from the relay node i to the source nodes S1 and
S2, respectively.

We assume that the relays use the so-called multiple access
broadcast channel (MABC) relaying scheme [6], which is a dual-
slot relaying scheme with analog network coding [10]. As shown in
Fig. 2, during the first time slot T1, the source nodes broadcast the
signals s1(n) and s2(n) to all the other nodes simultaneously. The
signal received by the node i is thus

xi(n) =
p

PS1h1,is1(n) +
p

PS2h2,is2(n) + vi(n), (1)

where PS1 and PS2 are the transmission powers of the source nodes
S1 and S2, respectively. We denote the maximum available trans-
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Fig. 1. Dual-hop two-way cooperative wireless network with N can-
didate relay nodes. The forward channels are h1,i and h2,i, while the
backward channels are g1,i and g2,i, i = 1, · · · , N . The SNRs of
the sources nodes are γ1 and γ2, respectively.
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Fig. 2. The dual-hop MABC relaying scheme, with the associated
transmission signals and channels.

mission power of the two source nodes as P̄S1 and P̄S2 . The variable
vi(n) is the additive white Gaussian noise (AWGN) at the receiving
node i.

During the second time slot T2, each relay node i amplifies the
received signal xi(n) and re-broadcasts the received signal with cer-
tain desirable transmission power Pi. The transmitted signal is

ui(n) =

s
Pi

E[|xi(n)|2]xi(n). (2)

where E[·] denotes expectation and

E[|xi(n)|2] = PS1 |h1,i|2 + PS2 |h2,i|2 + σ2
vi

. (3)

Note that without loss of generality, we assume the transmitted sig-
nals s1(n) and s2(n) both have unit power. Let P̄i be the maximum
available transmission power of the relay node i. Then 0 ≤ Pi ≤ P̄i.
Pi = 0 means that the node i is not selected as relay.

The received signals at the source nodes S1 and S2 are then,
respectively,

y1(n) =

NX
i=1

g1,iui(n) + vS1(n) (4)

and

y2(n) =

NX
i=1

g2,iui(n) + vS2(n), (5)

where vS1(n) and vS2(n) are the AWGN at the source nodes S1 and
S2. We assume that all AWGNs are independent from each other and
from the source nodes’ signals, and have zero mean and variances
σ2

vi
at each relay node i. Specifically, σ2

vS1
and σ2

vS2
denote the

noise variance at the source nodes S1 and S2, respectively.
As in the typical analog network coding setting, each of the two

source nodes decodes the signal received from the relays by exploit-
ing the knowledge of its own transmitted signals. In addition, within

our AF transmission, we assume that the relaying nodes do not need
to estimate channels or synchronize timing. This is in contrast to the
transmit-beamforming requirement in [7] and [5], where each relay
had to know the phases of both its receiving channel and its trans-
mitting channel, and had to guarantee perfect timing synchronization
with other relays. Although it can enhance destination SNR, the cost
of acquiring perfect channel information and synchronization may
well outweigh many relays’ contribution.

In the sequel, we will derive each source node’s SNR, and
formulate the optimal relay selection problem as maximizing the
weighted sum of these SNRs.

Without loss of generality, consider the source node S1. Its re-
ceived signal (4) can be changed to

y1(n) =

NX
i=1

s
Pi

E[|xi(n)|2]g1,i

p
PS2h2,is2(n)

+
NX

i=1

s
Pi

E[|xi(n)|2]g1,ivi(n) + vS1(n), (6)

because the signal component s1(n) is known to this node and can
thus be removed. The SNR of (6) can be derived as

γ1 =

PN
i=1

Pi
E[|xi(n)|2]

|g1,i|2PS2 |h2,i|2PN
i=1

Pi
E[|xi(n)|2]

|g1,i|2σ2
vi

+ σ2
S1

. (7)

Assume the source nodes transmit with full power, i.e., PS1 =
P̄S1 and PS2 = P̄S2 . Define the ratio of the transmission power for
each node i as

zi =
Pi

P̄i
, i = 1, · · · , N, (8)

and define the nominal edge SNR (i.e., the SNR of the receiving node
when no other nodes transmit but just the node on the other hand of
the edge and the node transmits with full transmission power)

α1,i =
P̄S1 |h1,i|2

σ2
vi

, α2,i =
P̄S2 |h2,i|2

σ2
vi

;

β1,i =
P̄i|g1,i|2

σ2
S1

, β2,i =
P̄i|g2,i|2

σ2
S2

. (9)

Then the SNR expression (7) can be simplified to

γ1 =

PN
i=1

α2,iβ1,i

α1,i+α2,i+1
zi

1 +
PN

i=1

β1,i

α1,i+α2,i+1
zi

(10)

Similarly, the SNR of the source node S2 can be derived as

γ2 =

PN
i=1

α1,iβ2,i

α1,i+α2,i+1
zi

1 +
PN

i=1

β2,i

α1,i+α2,i+1
zi

(11)

For more succinct notations, we define N × 1 vectors a, b, c
and d, whose ith elements are, respectively,

ai = α2,i, bi =
β1,i

α1,i + α2,i + 1

ci = α1,i, di =
β2,i

α1,i + α2,i + 1
(12)

In addition, define the N × 1 vector z = [z1, · · · , zN ]T , where [·]T
denotes transportation. Then, we can rewrite (10) and (11) as

γ1 =
(a � b)T z

1 + bT z
, γ2 =

(c � d)T z

1 + dT z
, (13)



where � denotes element-wise vector/matrix product (Hadamard
product).

Note that we have assumed that each source node knows its own
transmitted signal and can thus remove (subtract) such signal from
the mixture. Nevertheless, differently from most existing work in
ANC-coded two-way relay networks, we do not assume perfect syn-
chronization among the relaying nodes, nor between the two source
nodes. We do not assume that the relaying nodes have perfect knowl-
edge about the backward and forward channels.

Based on (13), many different optimization objective functions
can be defined to optimize the relay node selection. In this paper, we
propose to maximize the weighted sum of SNRs, i.e.,

arg max
0≤zi≤1,i=1,··· ,N

λγ1 + (1 − λ)γ2 (14)

where λ ∈ [0, 1] is any arbitrary constant to define the tradeoff be-
tween the two source nodes. The optimization (13)-(14) is in the
form of the sum-of-ratios linear fractional programming (LFP). Note
that our case is in fact a special, and thus simpler, case of the gen-
eral sum-of-ratios LFP because we have only two linear fractional
ratios. The general sum-of-ratios LPF has posed significant theoret-
ical and computational challenges, which has stimulated the devel-
opment of many successful algorithms to solving this type of opti-
mization [11]-[15]. This is in contrast to the perfectly synchronized
transmit-beamforming case [5] where the optimization could be con-
ducted approximately only.

In next section, we first consider the special case with channel
reciprocity, for which we can derive even a closed-form solution.
Then we address the general case of channel non-reciprocity.

3. OPTIMAL SELECTION OF RELAYS

3.1. Linear fractional programming in channel reciprocity case

We first consider a special case where the channels are reciprocal,
i.e., the backward channels equal to the forward channels. As shown
in Fig. 3, we have

g1,i = h1,i, g2,i = h2,i. (15)

This situation holds, e.g., in time-division-duplex (TDD) relaying
systems.

Similarly to [5], we can use the following optimization criteria
rather than (14),

arg min0≤zi≤1,i=1,··· ,N f(z) =
λ

γ1
+

1 − λ

γ2
(16)

It was proved in [5] that (16) and (14) share the same capacity region,
although their optimization results may be different for each specific
λ.
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Fig. 3. System model of the two-way relaying network in reciprocal
channel case.

Due to channel reciprocity, we have α1,i = β1,i, α2,i = β2,i,
i = 1, · · · , N . Then we have d � c = b � a. Define

e = b � a. (17)

Then the optimization (16) becomes

arg min0≤zi≤1,i=1,··· ,N f(z) =
1 + [λbT + (1 − λ)dT ]z

eT z
(18)

This minimization problem is the linear fractional programming
(LFP), and can be solved by many standard LPF algorithms [16].
One popular algorithm is to adopt the Charnes-Cooper transforma-
tion

y =
1

eT z
z, t =

1

eT z
, (19)

to change the LFP (18) into the following linear programming

min f(y, t) = [λbT + (1 − λ)dT ]y + t (20)

s.t.,

8<
:

eT y = 1
y ≤ t[1, · · · , 1]T

t ≥ 0, y ≥ 0

Note that the constraints are due to the relationship between y and
t defined in (19), as well as the fact that 0 ≤ zi ≤ 1. Obviously,
the optimization (20) is a linear programming [16]. After finding the
optimal y∗ and t∗, the optimal relay vector can be derived as

z∗ =
y∗

t∗
. (21)

The optimal SNR is thus

λγ1 + λγ2 = λ
eT z∗

1 + bT z∗ + (1 − λ)
eT z∗

1 + dT z∗ . (22)

3.2. Closed-form solution to the channel reciprocity case

It is more desirable to derive closed-form solution to (16). Similar to
[9], the closed-form solution for relay node selection can be derived
as follows.

Proposition 1. For each node i, i = 1, · · · , N , we have the
optimal solution to (16) as

z∗
i =

8>><
>>:

1, if
PN

j=1,j �=i

h
λbj

“
α2,j

α2,i
− 1

”
+(1 − λ)dj

“
α1,j

α1,i
− 1

”i+

< 1

0, else

(23)

where the non-negative function

[x]+ =

j
x, if x > 0
0, else

(24)

Proof. From the f(z) in (18), we can take the derivative of f(z)
with respect to each variable zi as

∂f(z)

∂zi
=

1

(eT z)2
{

NX
j=1,j �=i

[λbi + (1 − λ)di] ajbjzj

− [λbj + (1 − λ)dj ] zjaibi − aibi} . (25)



Obviously, ∂f(z)/∂zi being positive or negative is independent of
zi. If ∂f(z)/∂zi ≥ 0, then the optimal value zi = 0. Otherwise, the
optimal value is zi = 1. So we just need to consider the condition

NX
j=1,j �=i

{[λbi + (1 − λ)di]ajbj

−[λbj + (1 − λ)dj ]aibi} zj ≷ aibi. (26)

With some deduction, (26) can be changed toX
j=1,j �=i

[λα1,ibj(α2,j − α2,i)

+(1 − λ)α2,idj(α1,j − α1,i)] zj ≷ α1,iα2,i. (27)

Then, following the proof of [9], we can readily prove (23). Details
are skipped due to page limit, and will be reported elsewhere. �

The Proposition 1 indicates that a node i either participates in
relaying with full (maximum) transmission power, or does not par-
ticipate in relaying at all. This phenomenon is similar to the one-way
AF relaying network studied in [9]. It is especially desirable for ef-
ficient multiple relay selection and optimization, since there is no
need of determining the transmission power of each relay node.

3.3. Sum-of-ratios linear fractional programming in channel
non-reciprocity case

In the general case that includes both the channel reciprocity case
and the channel non-reciprocity case, we need to deal with the sum-
of-ratios linear fractional programming (14). Note that channel non-
reciprocity may happen when the frequency-division-duplex (FDD)
is employed [5].

Sum-of-ratios LPF has been found in many applications, which
stimulated decades of research. Although the problem in the general
setting (with arbitrarily large number of ratios, number of variables,
as well as number of constraints) may still be challenging and de-
serve more investigation, there are many sophisticated algorithms
that can be used to solve the special case in our setting.

One of the relatively simple algorithm is developed in [15],
which exploits the mapping from the N -dimensional z-space to
the two-dimensional ratio space. Such a mapping fundamentally
reduces the complexity of the algorithm. Another popular algorithm
[13][14] is based on the parametric simplex algorithm. By applying
some appropriate transformations including the Charnes-Cooper
transformation we used in Section 3.2, the sum-of-ratios LFP can
be converted into parametric linear programming, which can thus
be solved by the parametric simplex algorithms. In addition, in a
more recent algorithm [11][12], the sum-of-ratios LFP is converted
into an equivalent concave minimization problem, which can then
be solved via a branch-and-bound search.

We have implemented the algorithm in [15] to solve the sum-of-
ratios LFP, as shown in simulations.

4. SIMULATIONS

In this section, we report our implementation of the proposed opti-
mization algorithms (for both the channel reciprocal case and the
channel non-reciprocal cases) and the application of them in the
simulation of a random wireless ad hoc network. We simulated
a random wireless ad hoc network of N + 2 nodes with N relay
candidate nodes. The nodes’ positions were randomly generated
within a square of 1000 × 1000 meters. The nominal edge SNRs
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Fig. 5. Comparison of the proposed algorithms to the exhaustive
search.

αi,j and βi,j were calculated as 108d−2.6
ij where dij is the propaga-

tion distance. Source and destination nodes were fixed with distance
d0,N+1 = 1000 meters.

We simulated our new algorithms in Sections 3.1 and 3.3, as
well as our optimal analytical results in Section 3.2. We compared
them with the schemes using a single relay, or using all the N relay
nodes, or the direct transmission without relaying. 10, 000 runs of
the simulations were conducted to find the average sum SNR in each
case.

First, we simulated the transmissions with the relay nodes se-
lected optimally from all available relay candidates by the LFP algo-
rithm in Section 3.1 and the closed-form expression in Section 3.2.
The results were then compared to the cases of without optimal re-
lay selections, either using all the N relay candidates or using one
relay with similar distances from both sources. We also compared
our optimal relaying scheme with the baseline transmission without
any relay. Simulation results in Fig. 4 show that the closed-form
expression for optimal relay selection (23) had the identical perfor-
mance as the optimal results obtained by LFP, which indicates the
derivation is correct and the results are optimal. They both achieved
the sum SNR that is much better than other cases.

Then, in order to verify that our optimal algorithms indeed
achieves the optimal relay selection, we compared the average
sum SNR achieved by our optimal relay selection algorithms to
an exhaustive search based power control scheme. Note that the
exhaustive search of the optimal transmission power for each relay



N 1 2 3 4 5
LFP 5.246 7.251 7.987 8.421 8.792
Closed-form 5.246 7.251 7.987 8.421 8.792
Exhaustive min 5.246 7.251 7.987 8.421 8.792
Exhaustive max 5.246 7.256 8.042 8.556 8.991

Table 1. Compare average sum SNR obtained under various opti-
mization methods.
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Fig. 6. Optimal relation selection for max sum SNR in channel non-
reciprocal case.

candidate can only be conducted approximately in a finite grid.
Specifically, while zi could be any value between 0 and 1 in the
power control scheme, we assume that each relay node has ten
power levels only and exhaustively search min0≤zi≤1 f(z) in (18)
or max0≤zi≤1 λγ1 + (1 − λ)γ2 in (14). Note that when the trans-
mission power is zero, the relay is not selected. Unfortunately, the
exhaustive search of the power control scheme can only be used in
small networks due to the complexity. The simulation results are
shown in Fig. 5 and Table 1, which clearly shows that our proposed
algorithms indeed achieves the optimal performance. Note that in
“Exhaustive max” has higher SNR because it directly maximize
sum SNR, while the other three minimizes the sum of inverse SNR
instead.

For the simulation of nonreciprocal channel cases, we imple-
mented the sum-of-ratios linear fractional programming algorithm
of [15] to maximize the sum of SNRs (14). To simulate the channel
non-reciprocity, we changed randomly the channel coefficients g1,i

and g2,i after obtaining them according to the distance and fading
rules described before. We compared the optimization results with
the exhaustive search results. As shown in Fig. 6, we can clearly see
that the two approaches give identical results.

5. CONCLUSION

For a dual-hop amplify-and-forward two-way cooperative network
with analog network coding, we formulate a linear fractional pro-
gramming solution to the optimal selection of all possible relays if
channel reciprocity is assumed. Closed-form results are also ob-
tained, which indicates that each relay candidate either participates
in relaying with full transmission power or ceases relaying. For
the general case including the channel non-reciprocity case, we for-
mulate the problem into a sum-of-ratios linear fractional program-
ming, which can be solved by many standard optimization algo-
rithms. Simulations are conducted to verify the proposed optimiza-

tion algorithms.
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