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ABSTRACT

In this paper we give closed-form analysis results of the
jamming probabilities and throughput of cognitive radio trans-
missions when facing a wideband jammer. We first set up a
Markov model of the cognitive radio transmissions which
consists of three states: spectrum sensing, channel access,
and channel switching. The jamming probabilities of the
three states are derived under the assumption of a wideband
jammer. The normalized transmission throughput is then
derived. This expression is simple enough for us to analyze
and optimize some important jamming and anti-jamming
parameters for optimal anti-jamming design. Simulations
are conducted to verify the analysis results.
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1. INTRODUCTION

Cognitive radio technology provides a flexible radio plat-
form for enhancing the radio transmission performance and
for enhancing the spectrum utilization. Some people have
focused specifically on the cognitive function of this tech-
nique to develop radios that can learn from the environment
and thus behave accordingly, which provides another level
of adaptivity. On the other hand, many other people have
focused on this technology’s potential of resolving the crit-
ical spectrum shortage problem [1] since cognitive radios
can be developed to find and exploit the spectrum white
space, i.e., the spectrum resource that is not being used by
the primary users. This type of secondary spectrum access
is called dynamic spectrum access (DSA). There are many
practical systems in developing, such as the IEEE 802.22
devices working in the TV bands [2].

In DSA systems, secondary users have to guarantee no
interference to any primary user (PU) who is using this spec-
trum at this time in this location [2] [3]. Therefore, in a typ-
ical setting, the cognitive radios have to periodically sense
the spectrum to detect whether the spectrum is white. They

have to vacate the channel immediately even when extremely
weak PU signal is detected. This unique feature of cognitive
radio makes the DSA system quite different from the con-
ventional wireless communication systems. DSA systems
have many unique properties that need careful investigation.

We have been focusing on studying the anti-jamming
performance of cognitive radio transmissions [4] [5] because
the anti-jamming capability of cognitive radios are extremely
different from that of conventional radios. While cognitive
radios may enjoy better anti-jamming capability because of
their flexible physical- and MAC-layer functions, our study
shows that they are in fact more susceptible to jamming at-
tacks. This is primarily because of the requirement of vacat-
ing channel upon a negative spectrum sensing result, which
provides the jammers a low-cost and easy way of conduct-
ing jamming. A jammer can drastically increase its jam-
ming capability by using extremely low power signals to
jam multiple channels at the same time. The conventional
PHY-layer anti-jamming techniques such as spreading may
not be effective in dealing with this kind of jamming at-
tacks. The upper-layer anti-jamming techniques such as
channel hopping and switching may be too costly. Chan-
nel switching among cognitive radios is time-consuming
since the spectrum white space channels are time-varying
and need to be detected in real time.

In our recent study [5], we have conducted a joint PHY-
and MAC-layer study of the anti-jamming performance of
cognitive radios. With a Markov model of the cognitive ra-
dio functions, we have derived the throughput expression
of cognitive radios in face of multiple jammers. Unfortu-
nately, the expressions are mathematically too complex to
do any further analysis and system optimization except sim-
ulations.

In this paper, we will conduct an analytical study of the
jamming probabilities and throughput, and then investigate
and optimize some important parameters that are critical for
anti-jamming design. For this purpose, we will first sim-
plify our model and the throughput expression into a form
that is suitable for further analysis. Then, we will optimize
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Fig. 1. Illustration of cognitive radio transmissions.
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Fig. 2. Markov model for cognitive radio transmission un-
der various jamming probabilities.

the throughput expressions over some important system pa-
rameters.

The organization of this paper is as follows. In Section
2, we give the models of the cognitive radio transmission
and the jammer. Then in Section 3, we drive the throughput
and conduct an analytical study. Simulations are conducted
in Section 4. Conclusions are then given in Section 5.

2. COGNITIVE RADIO TRANSMISSION MODEL
AND JAMMER MODEL

We consider a simplified cognitive radio transmission model
that includes three states: spectrum sensing, data transmis-
sion and channel switching, as shown in Fig. 1. The work-
ing sequence of a cognitive radio always begins with the
spectrum sensing. If the spectrum sensing indicates the
channel is available for secondary access, then the cogni-
tive radio transmits a data packet: the model shifts into the
data transmission state. If the spectrum sensing indicates
the channel is not available (due to either primary user ac-
tivity or jamming activity), the cognitive radio will conduct
channel switching: the model then shifts into the channel
switching state. In order to simplify the analysis, we as-
sume that the channel switching is always successful. For
data transmission, whether it is being jammed or not, the
model always shifts back to the spectrum sensing state. We
can use the Markov model in Fig. 2 to model this system.

Let the durations of spectrum sensing slot, data trans-
mission slot, and channel switching slot be Ts, Td, and Tc,
respectively. Usually the spectrum sensing duration Ts is
much smaller than both Td and Tc for high throughput.

We use signal-to-noise-and-interference ratio (SINR) to
measure the signal and jamming levels. For the data trans-
mission slot, we assume that the minimum workable SINR
is Γd. An SINR less than Γd means being jammed. For
the spectrum sensing slot, we assume that if the SINR is
larger than the detection threshold Γs, then the cognitive
radio will make a decision that the channel is occupied by
primary users, and thus not available. We assume that the
cognitive radios can not determine whether the signal comes
from primary users or jammers. Obviously, Γd is usually
much larger than Γs. For example, a typical Γd might be
10 ∼ 20 dB, while a typical Γs might be −10dB.

In Fig. 2, we use ps, pd and pc to describe the proba-
bilities of the cognitive radios staying in the spectrum sens-
ing, data transmission and channel switching states, respec-
tively. In addition, pjs and pjd are the probabilities that the
spectrum sensing and the data transmission are jammed, re-
spectively.

In this paper, we consider a single jammer for simplic-
ity. We assume that the jammer has the same capabilities
as a cognitive radio, including spectrum sensing and RF
transceiving. The jammer does not know the secret keys the
cognitive radios are using for channel selection and com-
munication. Therefore, it does not know the channel used
by the cognitive radios, and thus the only way left for the
jammer is to randomly select channels to jam. We do not
consider the capability that the jammer can smartly detect
which channel the cognitive radios are using by observing
the activity of each channel.

The jammer model used in this paper is somewhat dif-
ferent from that in [5]. Instead of assuming that the jammer
fastly switches channels and uses short jamming pulses, we
assume a wideband jammer that can adjust the number of
channels it jams simultaneously. The jamming pulse dura-
tion is fixed to be Tj that satisfies

Tj ≥ Td > Ts. (1)

We assume that the jammer’s total jamming power be PJ ,
whereas the cognitive radio’s transmission power is Ps. Then
the actual jamming power sent to each channel is

Pk =
PJ

k
, (2)

if the jammer chooses k channels to jam simultaneously.
We assume the maximum number of channels (i.e, the max-
imum transmission bandwidth) of the jammer be KJ . Then

0 ≤ k ≤ KJ . (3)

Conventionally, jamming is successful only if the SINR
of the receiver is less than threshold Γd. In cognitive radio
case, however, jamming may be more easily deployed and
more effective by jamming the spectrum sensing slot [5]. As



long as the jamming signal emitted to the spectrum sensing
slot makes the SINR larger than the sensing threshold Γs,
the cognitive radios must vacate the channel and take the
time-consuming channel switching procedure to negotiate a
new one.

As the anti-jamming performance metric, we consider
the average throughput R of the cognitive radio transmis-
sions, which can be calculated from the probabilities of the
three states in Fig. 2 and the corresponding slot lengths.
Note that only the data transmission state with successful
(unjammed) data transmission is counted toward the aver-
age throughput.

3. JAMMING PROBABILITIES AND
THROUGHPUT ANALYSIS

3.1. Jamming probabilities

Consider a cognitive radio communication system, where a
pair of cognitive radio transmitter and receiver is conducting
transmission at unit throughput. A jammer with the similar
channel sensing and transmission capability as a cognitive
radio wants to jam the cognitive radio transmissions.

First, we consider the data transmission slot, which has
slot length Td and receiving SINR threshold Γd. Because
the jamming duration Tj ≥ Td, we assume this full slot is
either being jammed or free of jamming signal. Therefore,
if there is a jamming signal, the cognitive radio’s received
signal’s SINR can be described as

γd =
Psα

2
s

Pkα2
j + N

(4)

where α2
s is the Rayleigh flat fading channel (power) coef-

ficient of the cognitive radio, α2
j is the Rayleigh flat fading

channel (power) coefficient of the jamming signal, N is the
power of the additive white Gaussian noise (AWGN). We
assume that the channel power coefficients α2

s , α2
j are in-

dependent exponential random variables with unit mean. If
there is no jamming signal, the SINR is

γ′
d =

Psα
2
s

N
. (5)

Assume there are M white space channels available for
secondary spectrum access. If the jammer randomly selects
a block of k channels to jam, then it has probability k/M of
sending a jamming signal to the channel being used by the
cognitive radios, and has probability 1−k/M of not sending
jamming signal to the right channel. Therefore, the proba-
bility that the data transmission is jammed can be written
as

pjd = P [γd < Γd]
k

M
+ P [γ′

d < Γd]
(

1 − k

M

)
. (6)

Note that the transmission outage caused by Rayleigh fad-
ing is also counted in the jamming probability.

Proposition 1. Assume independent Rayleigh flat fad-
ing channels. The probability that the data transmission is
jammed is

pjd = 1 − e−
NΓd
Ps

(
1 +

PJΓd

M(Ps + PkΓd)

)
. (7)

Proof. From (4), we can derive

P [γd < Γd] = P [Psα
2
s − PkΓdα

2
j < NΓd]. (8)

Since α2
s and α2

j are two independent exponential random
variables with unit mean, their joint distribution can be writ-
ten as

f(x, y) = fα2
s
(x)fα2

j
(y) = e−xe−y, for x ≥ 0, y ≥ 0.

(9)
Then the probability (8) can be directly evaluated as

P [γd < Γd] =
∫ ∞

0

e−y dy

∫ NΓd
Ps

+
PkΓd

Ps
y

0

e−x dx

=
∫ ∞

0

e−y
[
1 − e−

NΓd
Ps e−

PkΓd
Ps

y
]

dy

= 1 − e−
NΓd
Ps

Ps

Ps + PkΓd
. (10)

It is easy to see that

P [γ′
d < Γd] = 1 − e−NΓd/Ps . (11)

Substituting (10) and (11) into (6), using (2)-(3), after some
straightforward deductions, we can get (7). �

The SINR and the jamming probability of the spectrum
sensing slot are different than those in data transmission
slot. The SINR in this case is in fact the interference (or
jamming) to noise ratio γs. Since the cognitive radios must
be extremely sensitive in order to detect even weak primary
user signals, we use an extremely small threshold Γs, and
γs ≥ Γs means that either there is primary user activity or
the jammer successfully disguises primary users to prevent
the cognitive radios to use this channel. In our sense, this
means that the spectrum sensing slot is jammed.

Since the jamming signal duration Tj > Ts, we can as-
sume that the jamming signal either occupy the entire sens-
ing slot, or the sensing slot is free of jamming signal. In case
of absence of primary user, when there is jamming signal in
this sensing slot, then we have SINR

γs =
Pkα2

j

N
. (12)

Otherwise, if there is no jamming signal in this sensing slot,
then the SINR becomes simply 1/N . Obviously, we must



have 1/N < Γs. Therefore, for jamming probability, we
just need to consider (12). The probability of having jam-
ming signal in this sensing slot is similarly k/M when the
jammer selects k channels to jam simultaneously. The prob-
ability that the sensing slot is jammed can then be defined
as

pjs = P [γs ≥ Γs]
k

M
. (13)

Proposition 3. The probability that a channel sensing
slot is jammed is

pjs =
PJ

MPk
e
−NΓs

Pk . (14)

Proof. From equation (12) we can derive

P [γs ≥ Γs] = P

[
α2

j ≥ NΓs

Pk

]
= e

−NΓs
Pk . (15)

Considering (2), we can obtained (14). �

3.2. Average throughput

The jamming probability pjs in (14) defines the transitional
probability in the Markov model in Fig. 2. According to the
steady state property of the Markov model, we can calculate
the probabilities of the three states ps, pd and pc by solving
the following equation⎡

⎣ −1 1 1
1 − pjs −1 0

pjs 0 −1

⎤
⎦
⎡
⎣ ps

pd

pc

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ . (16)

Although this equation has infinitely many solutions, it can
give us a way to represent pd and pc by ps, i.e.,

pd = (1 − pjs)ps, pc = pjsps. (17)

With the state probabilities, we can define the normal-
ized average throughput of the cognitive radio transmission
as

R =
pd(1 − pjd)Td

psTs + pdTd + pcTc
. (18)

From the normalized average throughput definition (18)
and the Markov model stead-state equation (17), the through-
put under wideband jamming signal Pk is

R =
(1 − pjs)(1 − pjd)Td

Ts + (1 − pjs)Td + pjsTc
. (19)

To simplify notation, we let Tc = Td. Then (19) can be
changed to

R =
e−

NΓd
Ps

1 + Ts

Td

(
1 +

ΓdPJ

MPs + MPkΓd

)(
1 − e

−NΓs
Pk

PJ

MPk

)
.

(20)

3.3. Anti-jamming capability analysis

For the wideband jammer, the major parameter for adjust-
ing jamming attack strength is the jamming signal’s band-
width, which specifically refers to the number of channels
k = PJ/Pk that can be jammed at the same time. In con-
trast, one of the major parameters for the cognitive radio
to adjust its anti-jamming capability is the number of white
space channels M .

If considering just Pk and M , the optimal anti-jamming
design of cognitive radios can be casted into the following
max-min optimization

max
M>0

min
0≤Pk≤PJ

R (21)

The inside min operation refers to the jammer’s strategy to
reduce throughput, while the outside max operation refers
to the cognitive radio’s strategy to increase throughput.

First, we analyze the jammer’s strategy to reduce through-
put. We can define an optimization parameter

y =
Pk

PJ
=

1
k
, (22)

and rewrite the throughput (20) as R(y) where

R(y) =
e−

NΓd
Ps

1 + Ts

Td

(
1 +

Γd/M
Ps

PJ
+ yΓd

)(
1 − e

−NΓs
PJ y

1
My

)
.

(23)
Note that the practical range of y is 1/KJ ≤ y ≤ 1. For the
convenience of analysis, we assume a continuous y within
[0, 1] for the moment. If y is extremely small, such as in

the neighborhood of zero, then the item e
−NΓs

PJ y 1
My ≈ 0 can

be omitted from R(y). In this case, the derivative

∂R(y)
∂y

≈ − e−
NΓd
Ps

1 + Ts

Td

Γ2
d

M(Ps/PJ + Γdy)2
< 0, (24)

which means R(y) is a monotone decreasing function of y
when y is extremely small. On the other hand, for other y
ranges, because NΓs/PJ is usually a very small number,
we can assume e−NΓs/(PJy) ≈ 0. In this case, we have

R(y) ≈ e−
NΓd
Ps

1 + Ts

Td

(
1 +

Γd/M
Ps

PJ
+ yΓd

)(
1 − 1

My

)
. (25)

By taking the derivative of (25) with respect to y, we can
easily find that

∂R(y)
∂y

≈ e−
NΓd
Ps

1 + Ts

Td

1
M

(
1

Ps/(PJΓd) + y
+

1
y

)
> 0, (26)

which means that the throughput R(y) becomes a monotone
increasing function for relatively large y. Therefore, the



minimum R(y) should happen with some extremely small
y values, whereas the maximum throughput happens either
when y = 1 or y = 0. The former means that the jammer
just jams one channel at a time, while the latter means there
is no jamming signal. Since we are more interested in the
jamming case, so the maximum throughput can be written
as

Rmax =
e−

NΓd
Ps

1 + Ts

Td

(
1 +

Γd/M
Ps

PJ
+ Γd

)(
1 − e

−NΓs
PJ

1
M

)
.

(27)
The optimal jamming parameter for the minimum through-

put is shown below.
Proposition 3. The jammer can use the (approximately)

optimal jamming parameter

yo = max
{

1
KJ

,
NΓs

PJ

}
(28)

for the minimum throughput

Rmin =
e−

NΓd
Ps

1 + Ts

Td

(
1 +

Γd/M
Ps

PJ
+ yoΓd

)(
1 − e

− NΓs
PJ yo

1
Myo

)
.

(29)
Proof. From (23) we can take the derivative ∂R(y)/∂y

and let it be zero to find the optimal y. After some straight-
forward deductions we have(

1 − 1
My

e
−NΓs

PJ y

)
Γ2

d

M(Ps/PJ + Γdy)2
(30)

−
(

1 +
Γd/M

Ps/PJ + Γdy

)
e
−NΓs

PJ y
1

My2

(
1 − NΓs

PJy

)
= 0

Unfortunately, (30) is too complex to find a closed-form so-
lution to y. Therefore, as an approximation, we can consider
the major items in (30). Because the minimum R(y) hap-
pens when y is extremely small, we can consider only those
items in (30) involving O(y−2) and O(y−3). Then (30) can
be approximately simplified to

(
1 +

Γd/M

Ps/PJ + Γdy

)
e
−NΓs

PJ y
1

My2

(
1 − NΓs

PJy

)
= 0

(31)
which directly gives solution

y =
NΓs

PJ
. (32)

Because the value in (32) may be too small, considering
the practical limit of the wideband jammer KJ in (3) and
the monotone increasing property of R(y) for not extremely
small y, we can derive (28). The throughput equation (29)
can be directly obtained by applying yo into (23). �

If the M and the jamming bandwidth are large enough
so that yo = NΓs/PJ , then the minimum throughput be-
comes

Rmin =
e−

NΓd
Ps

1 + Ts

Td

(
1 +

PJ/M

PJΓd + NΓs

)(
1 − e−1PJ

MNΓs

)

≤ e−
NΓd
Ps

1 + Ts

Td

(
1 − P 2

J

M2N2Γ2
s

)
. (33)

On the other hand, if M is relatively small so the jammer
can jam all the channels with y = 1/M , then the throughput
becomes

Rmin =
e−

NΓd
Ps

1 + Ts

Td

(
1 +

Γd

M Ps

PJ
+ Γd

)(
1 − e

−MNΓs
PJ

)
. (34)

Considering the fact that PJ/N is usually large (e.g.,
20 dB), while Γs is usually small (e.g., −10 dB), all the
throughput expressions indicate that the minimum through-
put is fairly small. In other words, in order to make the
throughput not so small (e.g., 0.5), it can be easily seen that
the M should be extremely large (e.g., several hundred).
This makes it a very challenging task for anti-jamming cog-
nitive radio design.

As to the anti-jamming parameter optimization, the cog-
nitive radios must reduce the length of spectrum sensing slot
Ts to increase the throughput. They can also increase the
spectrum sensing threshold Γs to increase the throughput,
but this may bring more interference to primary users. The
most effective approach might be to increase the number of
usable channels M . It is easy to verify that ∂Rmin/∂M >
0, which means that it always increases throughput by using
larger M . In the extreme case, we have

lim
M→∞

Rmin(M) =
e−

NΓd
Ps

1 + Ts

Td

. (35)

which equals to the jamming-free throughput. Unfortunately,
from (33) we can see that the throughput increases only
with respect to O(1 − 1/M 2), which means larger M only
brings smaller throughput increase, or the throughput in-
crease tends to saturate at large M .

4. SIMULATIONS

In this section, we use simulations to verify the analysis re-
sults derived in Section 3. We used the following param-
eters in the simulations: M = 100, KJ = 100, Td = 5,
Tc = 5, Ts = 0.25, Γd = 10dB, Γc = 10 dB, Γs = −10
dB, Ps = PJ = −80 dBm, N = −100 dBm.

First, we use simulations to verify that the analysis re-
sults of the throughput R fits the simulated results. For this
purpose, we used Monte-Carlo simulations to simulate the



cognitive radio transmissions and the jammer, with chan-
nel coefficients and white space channel selection randomly
generated. For the jammer, we evaluate the jamming sig-
nal bandwidth y from 0 (jamming-free) up to 0.1. For the
theoretical results, we used equations (19) to calculate R.
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Fig. 3. Comparison of simulation results to the theoretical
analysis results of the average throughput.

The simulation results are shown in Fig. 3. From the
results, we can see that the theoretical analysis results fit
well to the simulated results, which demonstrates the valid-
ity of the modelling and analysis. It clearly shows that the
throughput reduces with y when y is extremely small, but
increases with y when y becomes larger.

Next, we evaluate the anti-jamming performance of cog-
nitive radios when they can hop among more white space
channels. For the total number of channels M from 1 to
300, we calculate the theoretical throughput under two dif-
ferent jamming conditions. The results are shown in Fig. 4.
From the figure, we can see that while increasing the chan-
nel number M can drastically increase the anti-jamming ca-
pability, such a benefit tends to saturate after tens of chan-
nels have been used.

5. CONCLUSIONS

In this paper, with a simplified Markov model of the cogni-
tive radio transmissions and a simplified jamming model, a
simple closed-form expression of cognitive radio through-
put is obtained. Then the optimal jamming parameter, i.e.,
jamming bandwidth (in terms of number of jammed chan-
nels), are derived, which gives various approximate mini-
mum throughput expressions. Some anti-jamming parame-
ter optimization is also discussed, in particular the number
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Fig. 4. Average throughput as function of number of white
space channels, under various jamming conditions.

of white space channels. We have verified the analysis re-
sults by simulations. The results indicate that the cognitive
radios are extremely susceptible to smart jammers which try
to jam the spectrum sensing procedure.
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