
 
 

  
 
  Abstract— Minimum cost optimization for multicast with 
network coding has attracted great research interests. In this 
paper, based on an information model that differentiates 
intermediate nodes in a multicast network into network coding, 
routing or replicating nodes, a method is developed to solve the 
minimum energy cost multicast problem in wireless networks. 
Besides transmission energy, many other important parameters 
can be conveniently optimized as well, such as the number of 
packets undergoing network coding, the number of network 
coding nodes, as well as node classification. Some simulations 
results are shown to verify that the proposed method is 
promising, especially since network coding may be expensive or 
impossible for certain wireless nodes.  

Index Terms— network optimization, wireless network, 
multicast network, network coding. 

 

I. INTRODUCTION 
 
The basic idea of network coding is to make messages 

sent on a node’s output link to be some function of messages 
that arrived earlier on the node’s input links. An example of 
such functions is the XOR function, which is the addition 
operation (linear) in finite field GF (2𝑛𝑛 ). The capacity of 
multicast networks with network coding has been shown in 
[1] as  min𝑡𝑡∈𝑇𝑇Mincut(𝑠𝑠, 𝑡𝑡), which is the upper bound of the 
multicast rate. It has also been shown that linear network 
coding is sufficient to achieve the multicast capacity [2-3] 
and the coding coefficients necessary to achieve the capacity 
can be computed in polynomial time [4-5].  

Minimum cost optimization for multicast with network 
coding is one of the special subjects in network coding and 
has attracted great interests. When using network coding, 
there are two types of minimum cost optimization problems 
for multicast: i) Find the optimal subgraph to code over, and 
ii) determine the code to use over the subgraph [6]. In this 
paper, we focus on the first problem. The optimization of 
single multicast and multiple multicast connections were 
formulated in [7] and the minimum energy cost problem in 
wireless network was discussed. A decentralized algorithm 
was proposed in [8] with which the intermediated nodes can 
determine network coding coefficients according to local 
information.  

Nevertheless, the information model used in [7-8] is based 
on the assumption that each of the nodes in the network has 

the ability to conduct network coding. In practice, some 
nodes may not be so powerful to conduct network coding, 
especially in wireless networks where nodes are limited by 
battery power, computing power as well as communication 
capability.  

Therefore, a more reasonable model should take node 
differentiation into consideration. An interesting node 
differentiation scheme was considered in [9], where the 
nodes are classified into three different types: routing, 
replicating or network coding. Nevertheless, only wire-line 
network is considered in [9]. In this paper, by exploiting the 
information model with node classification, we will set up 
an optimization framework to solve the minimum energy 
cost multicast problem in wireless networks. 

For convenience, Table 1 lists all the notations to be used 
in the rest of this paper. 

II. INFORMATION MODEL WITH NODE 
DIFFERENTIATION 

 
Consider network (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of nodes 

(vertices), 𝐸𝐸 is the set of edges (directed links). Let 𝑐𝑐𝑖𝑖𝑖𝑖  be 
the non-negative capacity of the edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. In this paper, 
we consider only the single source multicast problem over a 
network. Note that multiple independent source multicast 
problems can be converted into single source multicast 
problems [1]. Multicast session (𝑠𝑠,𝑇𝑇) stands for a multicast 
session which has a sender 𝑠𝑠 ∈ 𝑉𝑉 and a set of receivers 
𝑇𝑇 ⊆ 𝑉𝑉. The number of receivers is |𝑇𝑇| ∈ [1, |𝑉𝑉| − 1], where 
|𝑉𝑉| is the number of nodes. If |𝑇𝑇| is equal to 1, then the 
problem becomes a unicast problem. On the other hand, if 
|𝑇𝑇| is equal to |𝑉𝑉| − 1, it becomes a broadcast problem. 

To model all the possible receiver sets in the multicast 
problem, let us define 𝑃𝑃 as the power set of 𝑇𝑇 (except the 
empty set) and 𝑄𝑄 as a set containing all collections of two 
or more disjoint sets in 𝑃𝑃. We can order the elements in 𝑃𝑃 
and 𝑄𝑄 such that 𝑃𝑃𝑙𝑙  is the 𝑙𝑙-th element in 𝑃𝑃 while 𝑄𝑄𝑚𝑚  is 
the 𝑚𝑚-th element in 𝑄𝑄. If the receiver set 𝑇𝑇 includes 𝐾𝐾 
receivers, then there are 2𝐾𝐾−1  non-emepty sets 𝑃𝑃𝑙𝑙 , 
𝑙𝑙 = 1,⋯ , 2𝐾𝐾 − 1 . For example, if there are 3  receivers 
{1, 2, 3} for this multicast flow, then 

   𝑃𝑃 = {{1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3} }, 
𝑄𝑄 = {{{1}, {2}}, {{1}, {3}}, {{2}, {3}}, �{1}, {2,3}�, 

                 {{2}, {1,3}}, {{3}, {1,2}}, {{1}, {2}, {3}}}. 
Corresponding to all the sets 𝑃𝑃𝑙𝑙 , for the flows in each 
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edge (𝑖𝑖, 𝑗𝑗) , we define 𝑋𝑋𝑖𝑖𝑖𝑖  as a 2𝐾𝐾 − 1  dimentional 
information flow vector, where the 𝑙𝑙 -th element 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙) 
represents the information flow common to and only 
common to the receivers in the set 𝑃𝑃𝑙𝑙  that passes through 
the edge (𝑖𝑖, 𝑗𝑗). Note that 𝑋𝑋𝑖𝑖𝑖𝑖  is the variable that we want to 
optimize. Note also that ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙  is the overall 
information flow that passes through the edge (𝑖𝑖, 𝑗𝑗) and 
will be received by the receiver 𝑡𝑡 .  

There are two basic constraints for the multicast network 
optimization problem: 

A. Edge constraint 
It means that the amount of information common to all the 

sets 𝑃𝑃𝑙𝑙 ∈ 𝑃𝑃 that passes through the edge (𝑖𝑖, 𝑗𝑗) can not be 
higher than the capacity of the edge. We can set up the edge 
constrain as ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙) ≤ 𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑙𝑙∈𝑃𝑃 , ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. 

B. Node constraint 
For the sender 𝑠𝑠, the in-link flow is 0, while the out-link 

flow is 𝑅𝑅. For the receiver 𝑡𝑡, the in-link flow is 𝑅𝑅, while 
the out-link flow is 0. For any intermediate node, the in-link 
flow must be equal to the out-link flow. The rate 𝑅𝑅 is the 
transmission rate (or the value of  𝑠𝑠 − 𝑇𝑇 flow where 𝑠𝑠 is 
the sender and 𝑇𝑇 is the set of receivers). In many other 
research of the max-flow problem, 𝑅𝑅 has been served as the 
objective function for maximization. In our case, 𝑅𝑅 is a 
constraint, i.e., the transmission rate that we want to meet at 
minimum energy cost. 

While the rate constraints for the sender and the receivers 
are straight-forward, the rate constraints for intermediate 
nodes are not so clear yet considering the differentiation of 
the intermediate node. To match the different functions of 

these nodes, let us define two extra variables 𝑟𝑟𝑚𝑚𝑖𝑖  and 𝑛𝑛𝑚𝑚𝑖𝑖  
first. The former will be used to describe routing/replicating 
nodes, while the latter will be used to describe network 
coding nodes. 

The variable 𝑟𝑟𝑚𝑚𝑖𝑖  is a routing/replication variable 
associated with the set 𝑄𝑄𝑚𝑚  at node i. It stands for the flow 
to each receiver in the set ∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄 that will be replicated 
into multiple copies, with each copy meant for a set in 𝑄𝑄𝑚𝑚 . 
If the node is a routing node, then 𝑟𝑟𝑚𝑚𝑖𝑖 = 0. On the other 
hand, if the node is a replicating node, then 𝑟𝑟𝑚𝑚𝑖𝑖  is equal to 
the rate of the input flow. Let  |𝑄𝑄𝑚𝑚 | be the number of sets in 
𝑄𝑄𝑚𝑚 , then we need to replicate each flow by |𝑄𝑄𝑚𝑚 | − 1 times 
to get |𝑄𝑄𝑚𝑚 | flows. 

The variable 𝑛𝑛𝑚𝑚𝑖𝑖  is a network coding variable associated 
with the set 𝑄𝑄𝑚𝑚  at node i. It stands for the flows, each for a 
set of receivers 𝑄𝑄 ∈ 𝑄𝑄𝑚𝑚 , which merge into a single flow that 
will reach all the receivers in the set ∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄. If the node i 
is a network coding node, the 𝑛𝑛𝑚𝑚𝑖𝑖  is equal to the rate of the 
input flow and |𝑄𝑄𝑚𝑚 | flows will be network coded to a 
single flow. 

Now let us define the rate constraints for the three types of 
intermediate nodes. For routing nodes, nothing happens to 
the information flow.  For replicating nodes, it replicates 
the packets and each copy of the packet in the out-link has to 
reach nodes in a set 𝑃𝑃𝑙𝑙 ∈ 𝑄𝑄𝑚𝑚 . For example, for node i, if 
there is one in-link flow common to a receiver set 
𝑃𝑃3={1,2,3}, and there are two out-links to the receiver {1} 
and the receiver set {2,3}, respectively, then Qm =
�{1}, {2,3}� which is the set of receiver sets. In this case, 
|𝑄𝑄𝑚𝑚 | = 2 and we need to copy the packet |𝑄𝑄𝑚𝑚 | − 1 = 1 
time. Now we have two copies of the packet, one for 
𝑃𝑃1 = {1}, and the other for 𝑃𝑃2 = {2,3}. Then for 𝑃𝑃1  we 
have flow constraint 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃1)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃1)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 + 𝑟𝑟𝑚𝑚𝑖𝑖 . 
Similarly for 𝑃𝑃2 we have 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃2)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃2)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 − 𝑟𝑟𝑚𝑚𝑖𝑖 . 
Combining these two cases, for the replicating node, we 
have node constraint 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 =  
∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 + ∑ 𝑟𝑟𝑚𝑚𝑖𝑖 − ∑ 𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚 :𝑃𝑃𝑙𝑙=∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄𝑚𝑚 :𝑃𝑃𝑙𝑙∈𝑄𝑄𝑚𝑚   
For network coding nodes, two or more flows will be 

combined together by coding. For example, for node i, if 
there are two in-links common to the receiver {1} and the 
receiver set {2,3}, and there is one out-link common to the 
receiver set 𝑃𝑃3 ={1,2,3}, then Qm = �{1}, {2,3}� . In this 
case, |𝑄𝑄𝑚𝑚 | = 2 and the two flows merge into a single one. 
The constraint for 𝑃𝑃1 becomes 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃1)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃1)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 − 𝑛𝑛𝑚𝑚𝑖𝑖 , 
whereas the constraint for 𝑃𝑃2 is 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃3)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃3)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 + 𝑛𝑛𝑚𝑚𝑖𝑖 . 
Combining these two cases, for the network coding node, we 
have node constraint 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 =  
∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 − ∑ 𝑛𝑛𝑚𝑚𝑖𝑖 + ∑ 𝑛𝑛𝑚𝑚𝑖𝑖𝑚𝑚 :𝑃𝑃𝑙𝑙=∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄𝑚𝑚 :𝑃𝑃𝑙𝑙∈𝑄𝑄𝑚𝑚   

TABLE I 
NOTATIONS USED IN THE PAPER 

(𝑉𝑉,𝐸𝐸) A network, 𝑉𝑉 is the set of nodes, 𝐸𝐸 is the set of edges 
(directed links) 

cij   Non-negative capacity of edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 
aij   Non-negative cost per unit flow pass through the edge 

(i, j) ∈ E 
𝑑𝑑ij   Distance between wireless nodes 𝑖𝑖 and 𝑗𝑗 
(s, T)  A single source multicast session which has a sender 

𝑠𝑠 ∈ 𝑉𝑉 and a set of receivers 𝑇𝑇 ⊆ 𝑉𝑉 
𝐾𝐾 Number of receivers in 𝑇𝑇 
𝑃𝑃 Power set of T (except the empty set),  𝑃𝑃𝑙𝑙  is its 𝑙𝑙 -th 

ordered element 
𝑄𝑄 A set containing all collections of two or more disjoint 

sets in 𝑃𝑃, 𝑄𝑄𝑚𝑚  is its 𝑚𝑚-th ordered element 
Xij   A 2K − 1  dimensional information flow vector 

associated with the edge (i, j). xij (Pl) is its 𝑙𝑙-th element 
which represents the information flow common to and 
only common to the receivers in the set Pl 

𝑅𝑅 Transmission rate 
rm

i   A routing/replication variable associated with the set Qm  
at node i, which is the flow for each receiver in the set 
∪Q∈Qm Q being replicated with each copy meant for a set 
in Qm  

nm
i   A network coding variable associated with the set Qm  at 

node i, which is the flow for each set of receivers Q ∈ Qm  
that merges to form one flow that reaches all the receivers 
in the set ∪Q∈Qm Q 

zij   Actual information flow in each edge (i, j) ∈ E 
 



 
 

 
Fig. 1 List of three types of intermediate nodes and the associated 
node constraints. 

 Now, we can develop the node constraints in general.  
For the sender 𝑠𝑠, we have  

∑ ∑ 𝑥𝑥𝑠𝑠𝑠𝑠 (𝑃𝑃𝑙𝑙)(𝑠𝑠,𝑗𝑗 )∈𝐸𝐸𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙 = 𝑅𝑅1, ∀𝑡𝑡 ∈ 𝑇𝑇, 
which means that all the information common to the receiver 
𝑡𝑡 passing through all out-links of the sender 𝑠𝑠 is 𝑅𝑅1. It is 
the rate of the information flow that we want to support. 
Obviously, 𝑅𝑅1 can not be larger than the value of max flow 
rate 𝑅𝑅. 

For the receiver 𝑡𝑡, we have 
∑ ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)(𝑗𝑗 ,𝑡𝑡)∈𝐸𝐸𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙 = 𝑅𝑅1, ∀𝑡𝑡 ∈ 𝑇𝑇, 

which means that all the information common to the receiver 
𝑡𝑡 passing through all in-links of the receiver 𝑡𝑡 is 𝑅𝑅1. 

For each intermediate node, we have  
∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 + ∑ (𝑟𝑟𝑚𝑚𝑖𝑖 − 𝑛𝑛𝑚𝑚𝑖𝑖 ) −𝑚𝑚 :𝑃𝑃𝑙𝑙∈𝑄𝑄𝑚𝑚

∑ (𝑟𝑟𝑚𝑚𝑖𝑖 − 𝑛𝑛𝑚𝑚𝑖𝑖 )𝑚𝑚 :𝑃𝑃𝑙𝑙=∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄 , ∀𝑃𝑃𝑙𝑙 ∈ 𝑃𝑃.  
The above results are listed in Fig. 1. 
A node can be routing/replicating/network coding node at 

the same time. For example, consider an intermediate node 
has four in-links: one for receiver {1}, one for receiver {2}, 
one for receiver {3}, one for receiver set {4,5}; and four 
out-links: one for receiver {1}, one for receiver set {2,3}, 
one for receiver {4}, one for receiver {5}. Then the 
intermediate node is a routing node for the receiver {1}, a 
network coding node for the receiver set {2,3} and a 
replicating node for the receiver set {4,5}. 

III. MINIMUM COST MULTICAST PROBLEM  
 

We assume that the total cost of using an edge is 
proportional to the flow on it and 𝑎𝑎𝑖𝑖𝑖𝑖  is the non-negative 
cost per unit flow pass through the edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 . 
Considering the edge constraints and node constraints, it is 
straightforward to optimize the flow allocations for 
minimizing the cost under the following optimization 
framework:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚      � 𝑎𝑎𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸

 

subject to  

𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 𝑧𝑧𝑖𝑖𝑖𝑖 ≥� 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)
𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙

, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸,∀𝑡𝑡 ∈ 𝑇𝑇 

𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙) ≥ 0, ∀𝑃𝑃𝑙𝑙 ∈ 𝑃𝑃, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, 
             𝑟𝑟𝑚𝑚𝑖𝑖 ≥ 0,𝑛𝑛𝑚𝑚𝑖𝑖 ≥ 0,   ∀𝑚𝑚, ∀𝑖𝑖 ∈ 𝑉𝑉 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)𝑃𝑃𝑙𝑙∈𝑃𝑃 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖 ,∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸                (1) 
Edge Constraints: 

∑ (𝑟𝑟𝑚𝑚𝑖𝑖 − 𝑛𝑛𝑚𝑚𝑖𝑖 )𝑚𝑚 :𝑃𝑃𝑙𝑙∈𝑄𝑄𝑚𝑚  −∑ (𝑟𝑟𝑚𝑚𝑖𝑖 − 𝑛𝑛𝑚𝑚𝑖𝑖 )𝑚𝑚 :𝑃𝑃𝑙𝑙=∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄  

Node Constraints: 

� � 𝑥𝑥𝑠𝑠𝑠𝑠 (𝑃𝑃𝑙𝑙)
(𝑠𝑠,𝑗𝑗 )∈𝐸𝐸𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙

= 𝑅𝑅1, ∀𝑡𝑡 ∈ 𝑇𝑇 

� � 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)
(𝑗𝑗 ,𝑡𝑡)∈𝐸𝐸𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙

= 𝑅𝑅1, ∀𝑡𝑡 ∈ 𝑇𝑇 

� 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)
(𝑖𝑖 ,𝑗𝑗 )∈𝐸𝐸

= � 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)
(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸

+ 

                       ∀𝑃𝑃𝑙𝑙 ∈ 𝑃𝑃,∀𝑖𝑖 ∈ 𝑉𝑉 − {𝑠𝑠,𝑇𝑇} 

Note that we have introduced variables 𝑧𝑧𝑖𝑖𝑖𝑖  corresponding to 
the actual rate of information flow on each edge (i, j) ∈ E. It 
is limited by the maximum flow rate to any receiver in the 
edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. We must also make sure that it is no more 
than the edge capacity cij . The objective function is the sum 
of 𝑧𝑧𝑖𝑖𝑖𝑖  weighted by the unit cost of transmission the flow. 
As a result, the summation result is the cost to transmit data 
to all receivers at rate 𝑅𝑅1.  

The edge constraints ∑ xij (Pl)Pl∈P ≤ 𝑐𝑐𝑖𝑖𝑖𝑖  and 𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 𝑧𝑧𝑖𝑖𝑖𝑖 ≥
∑ 𝑥𝑥𝑖𝑖𝑖𝑖(𝑃𝑃𝑙𝑙)𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙  can be omitted if the cost variables 𝑎𝑎𝑖𝑖𝑖𝑖  are 
set to extremely large values. In this case, the optimization 
problem may be easier to solve. We have not specify the 
cost. In fact, many natural cost criteria can be used, such as 
the transmission power, transmission energy, number of 
network coding node (i.e., ∑ 𝑛𝑛(𝑖𝑖)𝑖𝑖 , where 𝑛𝑛(𝑖𝑖) = 1 if 
nm

i > 0  for some m, and 𝑛𝑛(𝑖𝑖) = 0 , otherwise), or the 
number of network coding operations (i.e., ∑ 𝑛𝑛𝑚𝑚𝑖𝑖𝑖𝑖 ) [9]. 

IV. MINIMUM ENERGY MULTICAST OPTIMIZATION 
IN WIRELESS NETWORKS 

   
Wireless networks are a special type of networks that 

has “multicast advantage”, which means that if data is 
transmitted from node i to node j, then all nodes whose 
distance from i is smaller than j can receive this data for free. 
This is due to the broadcasting nature of wireless 
transmissions, and the transmitted signal strength attenuates 
rapidly along with transmission distance. This broadcasting 
property of wireless transmissions makes the set of out-links 
from a node i is a set that include all the wireless nodes 
within a certain fixed radius of the node i. As shown in [7], 
the networking optimization model in previous sections can 
be conveniently modified to taking the broadcasting nature 
of the wireless transmissions into consideration.  

Recall that the variable 𝑧𝑧𝑖𝑖𝑖𝑖   is defined as the actual 
information flow rate of the edge (𝑖𝑖, 𝑗𝑗). If another node k is 
farther away from the node i than the node j, i.e., 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 𝑑𝑑𝑖𝑖𝑖𝑖 , 



 
 

then the unit cost parameters 𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎𝑖𝑖𝑖𝑖 . Due to the 
broadcasting nature of wireless transmissions, the 
transmission on the edge (𝑖𝑖, 𝑘𝑘) can also be received by the 
node j. Therefore, the flow from the node i to the node j just 
need to satisfy the constraint  

𝑧𝑧𝑖𝑖𝑖𝑖 + � �𝑧𝑧𝑖𝑖𝑖𝑖 −� 𝑥𝑥𝑖𝑖𝑖𝑖(𝑃𝑃𝑙𝑙)
𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙

�
�𝑘𝑘�(𝑖𝑖,𝑘𝑘)∈𝐸𝐸,𝑎𝑎𝑖𝑖𝑖𝑖≥𝑎𝑎𝑖𝑖𝑖𝑖 �∖{𝑗𝑗 }

 

≥ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙 ,        ∀𝑡𝑡 ∈ 𝑇𝑇 
which is equivalent to 

∑ �𝑧𝑧𝑖𝑖𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖(𝑃𝑃𝑙𝑙)𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙 � ≥ 0�𝑘𝑘�(𝑖𝑖,𝑘𝑘)∈𝐸𝐸,𝑎𝑎𝑖𝑖𝑖𝑖≥𝑎𝑎𝑖𝑖𝑖𝑖 � , ∀𝑡𝑡 ∈ 𝑇𝑇. 
Considering that wireless nodes are usually primarily 

limited in energy supply, we choose the energy usage as the 
optimization objective. In this case, the energy cost per unit 
flow of the edge (𝑖𝑖, 𝑗𝑗)  is 𝑎𝑎𝑖𝑖𝑖𝑖 , which is proportional to  
power of 𝑑𝑑𝑖𝑖𝑖𝑖−𝛼𝛼 , where 𝛼𝛼 is path loss exponential. As a 
matter of fact, there are at least two ways to define the 
energy-related parameters and formulate the energy-related 
optimization framework. 

The first approach is the make edge capacity 𝑐𝑐𝑖𝑖𝑖𝑖  constant, 
which means the received signal power is constant, but the 
transmission power various according to the transmission 
distance. In this case, the parameters 𝑎𝑎𝑖𝑖𝑖𝑖  are determined 
according to distances 𝑑𝑑𝑖𝑖𝑖𝑖 . 

In contrast, an alternative approach is to make the 
transmission power to be constant, while making the edge 
capacity varying according to the transmission distances. In 
our simulations, we will simulate both approaches.  
   Based on the general optimization framework (1), we 
can formulate minimum energy cost optimization for 
wireless networks as follows. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚      ∑ 𝑎𝑎𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖(𝑖𝑖 ,𝑗𝑗 )∈𝐸𝐸   
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡      

∑ �𝑧𝑧𝑖𝑖𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖(𝑃𝑃𝑙𝑙)𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙 � ≥ 0�𝑘𝑘�(𝑖𝑖,𝑘𝑘)∈𝐸𝐸,𝑎𝑎𝑖𝑖𝑖𝑖≥𝑎𝑎𝑖𝑖𝑖𝑖 � , 
∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸′,∀𝑡𝑡 ∈ 𝑇𝑇 

 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙) ≥ 0,   ∀𝑃𝑃𝑙𝑙 ∈ 𝑃𝑃, ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 
 𝑟𝑟𝑚𝑚𝑖𝑖 ≥ 0,𝑛𝑛𝑚𝑚𝑖𝑖 ≥ 0,∀𝑚𝑚,∀𝑖𝑖 ∈ 𝑉𝑉 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)𝑃𝑃𝑙𝑙∈𝑃𝑃 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖 ,   ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸             (2) 
Edge Constraints: 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖 (𝑃𝑃𝑙𝑙)(𝑖𝑖,𝑗𝑗 )∈𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)(𝑗𝑗 ,𝑖𝑖)∈𝐸𝐸 + ∑ (𝑟𝑟𝑚𝑚𝑖𝑖 − 𝑛𝑛𝑚𝑚𝑖𝑖 )𝑚𝑚 :𝑃𝑃𝑙𝑙∈𝑄𝑄𝑚𝑚   

Node Constraints: 

� � 𝑥𝑥𝑠𝑠𝑠𝑠 (𝑃𝑃𝑙𝑙)
(𝑠𝑠,𝑗𝑗 )∈𝐸𝐸𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙

= 𝑅𝑅1, ∀𝑡𝑡 ∈ 𝑇𝑇 

� � 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑃𝑃𝑙𝑙)
(𝑗𝑗 ,𝑡𝑡)∈𝐸𝐸𝑙𝑙:𝑡𝑡∈𝑃𝑃𝑙𝑙

= 𝑅𝑅1, ∀𝑡𝑡 ∈ 𝑇𝑇 

             −∑ (𝑟𝑟𝑚𝑚𝑖𝑖 − 𝑛𝑛𝑚𝑚𝑖𝑖 )𝑚𝑚 :𝑃𝑃𝑙𝑙=∪𝑄𝑄∈𝑄𝑄𝑚𝑚 𝑄𝑄  
                       ∀𝑃𝑃𝑙𝑙 ∈ 𝑃𝑃,∀𝑖𝑖 ∈ 𝑉𝑉 − {𝑠𝑠,𝑇𝑇} 

Note that 𝐸𝐸′  is a subset of 𝐸𝐸, where the major difference is 
that if 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖  then 𝐸𝐸′  just includes one of two edges 
(𝑖𝑖, 𝑘𝑘) and (𝑖𝑖, 𝑗𝑗). 

For applying the optimization framework (2), we can 
easily add other constraints as well, such as those associated 
with the node types, e.g., specifying that the node i is not a 

network coding node by 𝑛𝑛𝑚𝑚𝑖𝑖 = 0,∀𝑚𝑚, or specifying that the 
node i is a routing node by 𝑟𝑟𝑚𝑚𝑖𝑖 = 0,𝑛𝑛𝑚𝑚𝑖𝑖 = 0,∀𝑚𝑚. We may 
also add constraints with respect to other special wireless 
transmission properties besides the broadcasting nature 
addressed in this paper. However, such study will be 
reported elsewhere.  

V. SIMULATION 
 
In this section, we use simulation to study the 

performance of the minimum energy cost optimization 
framework. We consider the classical butterfly network with 
wireless transmissions instead of wireline transmissions. The 
network is a single-source multicast network with one 
sender 𝑆𝑆  and two receivers 𝑌𝑌  and 𝑍𝑍 . The wireless 
transmission ranges of the network nodes are shown in Fig. 
2, where each dashed line indicates the broadcast circle of 
the node in the center. All the other nodes (except the one in 
the center point) inside a broadcast circle can receive the 
data sent by the center node.  

Considering the two multicast receivers 𝑌𝑌 and 𝑍𝑍 , we 
have 𝑃𝑃 = {{𝑌𝑌}, {𝑍𝑍}, {𝑌𝑌,𝑍𝑍}}  which has three elements 
𝑃𝑃1 = {𝑌𝑌},  𝑃𝑃2 = {𝑍𝑍}, 𝑃𝑃3 = {𝑌𝑌,𝑍𝑍} . We have the set 
𝑄𝑄 = {{{𝑌𝑌}, {𝑍𝑍}}}  which consists of only one element 
𝑄𝑄1 = {{1}, {2}} . In the optimization problem, the 
optimization variables are the information flow rate vector 
Xij  associated with each edge (i, j). Each vector Xij  has 3 
elements corresponding to the receiver sets in P, respectively. 
Note that the wireless network is treated as a special wireline 
network with broadcasting, so we can still use the “edge” 
concept for simplification. 

 
In the first series of experiments in our simulations, we set 

the energy cost coefficients 𝑎𝑎𝑖𝑖𝑖𝑖  to 1. We also set the edge 
capacity 𝑐𝑐𝑖𝑖𝑖𝑖  to be unit. 

Without node type constraint, the information flow rate 
vectors Xij  after the optimization procedure are annotated in 
Fig. 3. It clearly shows that the upper bound of the multicast 
rate, 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠, 𝑡𝑡), which is 2 unit flow per unit time, 
can be achieved. Specifically, the two date packets 𝑏𝑏1 and 
𝑏𝑏2 can be transmitted to the two receivers at unit time. To 
explain in details, for the edge 𝑆𝑆𝑆𝑆 , [0,0,1] means the 
information flow commons to the receivers set 𝑃𝑃3 = {𝑌𝑌,𝑍𝑍} 
is 1 because only the third item is 1. Node 𝑊𝑊 is a network 
coding node, because the information flows on the edge 𝑇𝑇𝑇𝑇 

 
Fig. 2. Wireless network with the classical butterfly network 
topology.  



 
 

(which is common to 𝑃𝑃2) and on the edge 𝑈𝑈𝑈𝑈 (which is 
common to 𝑃𝑃1) merge into a single information flow on the 
edge 𝑊𝑊𝑊𝑊 (which is common to 𝑃𝑃3). Similarly, we can find 
that the nodes 𝑇𝑇, 𝑈𝑈 and 𝑋𝑋 are replicating nodes. 

 
In contrast, with node type constraint (more specifically, 

the node 𝑊𝑊 does not have the ability of conducting network 
coding), the information flow vectors after optimization are 
shown in Fig. 4. In this case, it is well known that the upper 
bound of the multicast rate cannot be achieved. Instead, the 
maximum data rate achievable is 1.5. In other words, three 
data packets 𝑏𝑏1, 𝑏𝑏2,𝑏𝑏3 can be transmitted to the destinations 
𝑌𝑌 and 𝑍𝑍 by using two units of time. 

 
For the above two cases, the actual rates 𝑧𝑧𝑖𝑖𝑖𝑖  for all edges 

(𝑖𝑖, 𝑗𝑗)  are shown in the first two rows in Table II. 
Specifically, the case 1 is corresponding to Fig. 3, whereas 
the case 2 is corresponding to Fig. 4. The “multicast 
advantage” created by the broadcasting property of the 
wireless transmissions are clearly seen. For example, the 
edge 𝑇𝑇𝑇𝑇 has rate 0.5 instead of 1 because the node 𝑊𝑊 
can also received the transmission from 𝑇𝑇 to 𝑌𝑌. By using 
such a lower rate, more energy can be saved. 

Next, we simulated the cases with non-unit 𝑎𝑎𝑖𝑖𝑖𝑖 . We just 
made some nodes movable so as to change the distances 
between some nodes. Due to the importance of the node 𝑊𝑊, 
we moved 𝑊𝑊 closer to 𝑇𝑇, which made the values of the 
energy cost coefficients 𝑎𝑎𝑇𝑇𝑇𝑇 ,𝑎𝑎𝑈𝑈𝑈𝑈 ,𝑎𝑎𝑊𝑊𝑊𝑊  changing to 
0.5, 1.5, 1.8,  respectively. The case with 𝑊𝑊 as network 
coding node is listed as case 3 in Table II, whereas the case 
with 𝑊𝑊 being no network coding node is listed as case 4. 
Both cases gives the same overall rate as case 1 and 2, but 
with quite different edge rates. In addition, the uneven rates 
due to the broadcasting property become even more 
phenomenon. Specifically, some edges (such as 𝑇𝑇𝑇𝑇) have 
rate 0, which means some transmissions can be avoided. 
Note that in this case the receiving node (such as 𝑊𝑊) can 

still receive information because they can hear others’ 
transmissions. This type of ceasing transmissions surely can 
save more energy.  
The above simulations were conducted with the first 

approach (i.e., fixing edge capacity to be unit) discussed in 
Section IV. As the second approach, we also conducted 
simulation by letting edge capacities 𝑐𝑐𝑇𝑇𝑇𝑇 , 𝑐𝑐𝑈𝑈𝑈𝑈 , 𝑐𝑐𝑊𝑊𝑊𝑊  be 
1.5, 0.5, 1.8, respectively. We also let  𝑎𝑎𝑖𝑖𝑖𝑖 = 1/𝑐𝑐𝑖𝑖𝑖𝑖  for all 
edges. Some simulation results are listed in Table II as the 
case 5, which had node constraints.  

 

 

VI. CONCLUSIONS 
In this paper, by classifying the intermediate nodes in a 

multicast network into network coding/replicating/routing 
nodes, a method is presented to formulate and solve the 
minimum energy cost multicast problem in wireless 
communication networks with network coding. Both the 
node differentiation and the wireless broadcasting property 
are addressed. The resulted optimization framework may be 
convenient to include more wireless transmission properties 
different from the conventional wire-line transmissions. This 
will be our on-going work. The simulation result shows that 
the method is useful to find the subgraph to achieve the 
minimum energy cost and maximum data rate in the wireless 
networks in case certain nodes do not have the ability to do 
network coding. 
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TABLE II. SIMULATION RESULTS OF FIVE DIFFERENT CASES 
Cases zij  

No. R Cost ST SU TW UW TY WX UZ XY XZ 
1 2 6 1 1 0.5 0.5 0.5 1 0.5 0.5 0.5 
2 1.5 4.5 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0.25 0.25 
3 2 7.3 1 1 0 1 1 1 0 0.5 0.5 
4 1.5 5.15 0.75 0.75 0 0.5 1 0.5 0.5 0.25 0.25 
5 1.5 4.78 0.75 0.75 0 0.5 1 0.5 0.5 0.25 0.25 

 

 
Fig. 4. Information flow vectors of the network optimized with node 
type constraint. Specifically, the node 𝑊𝑊 can not conduct network 
coding. 

 
Fig. 3 . Information flow vectors of the network optimized without 
node type constraint. The node 𝑊𝑊 becomes network coding node. 
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