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Abstract —

In contrast to the pessimistic view on perfect se-
crecy, studies on information-theoretic secrecy have
shown that perfect secrecy may be possible in prac-
tice. A typical example is the Wyner’s wire-tap chan-
nel concept. However, existing approaches mostly de-
pend on unrealistic noise or error-rate assumptions.
‘We propose a more practical way in this paper which
uses advanced space-time transmissions for enhanced
information-theoretical secrecy. Based on the funda-
mental limits of MIMO blind channel identification,
space-time transmissions with proper randomization
can effectively prevent the adversary from channel es-
timation while allowing reliable transmission between
the authorized parties. The high error rate suffered
by the adversary enhances secret channel capacity.
This paper points out a new and practical approach
for secret-key agreement which achieves perfect se-
crecy based on the physical-layer signal processing
techniques.

I. INTRODUCTION

Secret-key agreement denotes the procedure for two parties
to achieve agreement on some encryption keys which are se-
cret in a certain level to any adversary. With cryptography
terminology, the problem is usually described as that Alice
sends messages to Bob who will extract a secret key from the
messages, during which the adversary Eve who has access to
the channel between Alice and Bob can not obtain sufficient
information about the key.

The Shannon secrecy model [1] is usually the basis for
encryption techniques and secret-key agreement protocols,
where Eve is assumed to have full access to the channel,
i.e., she has identical received messages as Bob. Under such
a model, perfect secrecy becomes an impractical concept,
whereas keys can be generated based on some intractable com-
putational problems such as factorizing integers in a feasible
time. However, such intractability assumption is unproved,
so does the secrecy [2]. New computing power, especially the
future quantum computer, has been shown to challenge such
intractability assumption. As an example, [3] suggests that
the complexity of factorizing integers can be only polynomial
with quantum computer models.
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As a result, there have been great interests to find ways
for realizing perfect secrecy, which on the one hand is an in-
teresting problem with great impact on cryptography, on the
other hand is important to guarantee security in practice for
the future. Researches on practical perfect secrecy are mostly
based on the fact that the Shannon secrecy model is in many
cases too strong. In contrast, Eve and Bob may have different
received signals.

Under this new viewpoint, one of the most successful ways
is quantum key distribution (QKD), which has obtained rapid
progress recently after decades of investigation [4]. The down-
side of QKD might be that currently it still requires dedicated
laser links, and it is unknown how QKD can be used con-
veniently in ordinary multi-hop networks, especially wireless
networks.

For wireless networks, more promising ways may lie in
the various studies on information-theoretic secrecy [5]-[8],
which show that perfect secrecy (or unconditional secrecy, or
information-theoretical secrecy) may be realizable in practice
under some special circumstances. Their common idea is that
in many practical communication systems, especially wireless
systems, Eve’s channels or signals are not exactly the same as
Bob’s, e.g., their receiving noise and thus their bit-error-rate
(BER) are different.

With the wire-tap channel concept [5], if the channel from
Alice to Bob and the channel from Alice to Eve have different
BER € < 0.5 and ¢ < 0.5, respectively, then the secret channel
capacity from Alice to Bob can be [8]

] h(d) —nh(e), if §>¢

€= { 0, else (1)

where h(e) denotes the binary entropy function defined by

h(e) = —elogy e — (1 — €)log,(1 — €). Obviously, it requires

that Eve’s channel be noisier than Bob’s in order to achieve

any positive capacity if only noise is considered as the factor

of receiving error. Such a requirement in most cases does not
seem practical, unfortunately.

It has been shown [6] that the above noise requirement
can be relaxed to a level that Eve suffers from a known (and
large enough) error floor only. In this case, as long as the
two channels are different, then perfect secrecy is achievable
with positive secret channel capacity even if Eve’s channel
is better than Bob’s. To realize this objective, Bob and Alice
have to exchange information over another public and insecure
channel, e.g., they can inform each other the indices of the
data bits that they have received reliably. Specifically, the



secret channel capacity is [6]
Ca2 = h(e+ 0 — 2¢d) — h(e), (2)

which means that perfect secrecy can be achieved in practice
with positive capacity unless ¢ = 0.5 (i.e., Bob does not receive
reliably) or 6 = 0,1 (i.e., Eve can reliably receive signals).

Obviously, (2) is better than (1) for a wide range of € and
6. Unfortunately, if only noise is considered as the source
of receiving error as did in the existing literature, then Eve’s
error rate § can be much less than Bob’s. If § < ¢, the capacity
specified by (2) becomes too small to be useful. Therefore, the
problem remains to find valid ways to realize perfect secrecy
in practice, or more specifically, to guarantee a high enough
d.

In this paper, we show that, instead of considering noise
only, attacking the problem within the physical-layer signal
processing framework provides new approaches. In particu-
lar, Bob and Eve’s difference on channels can be exploited.
One possible way is in the multiple-input multiple-output
(MIMO) systems, where space-time transmissions can be ex-
ploited to deprive Eve’s blind identification capability. It is
widely known that there are certain indeterminacy for the
blind identification of MIMO channels, and successful blind
identification is possible only for some very limited special
cases. Without the knowledge of her own channels, Eve can
not estimate the received signals successfully, which gives us
the required high error rate 9.

Therefore, we develop a randomized space-time transmis-
sion scheme which exploits the redundancy of array trans-
missions to create impossible blind identification problems for
Eve. This is in contrast to traditional space-time researches
that focus on exploiting such redundancy for bandwidth effi-
ciency and power efficiency.

This paper is organized as follows. In Section II, a frame-
work of space-time transmission for secret-key agreement is
described. In Section III, we develop the new space-time
transmission scheme. Then, the performance of the new
scheme is analyzed in Section IV in terms of the trade-off be-
tween transmission power and secrecy. Simulations are given
in Section V and conclusions are presented in Section VI.

II. SYSTEM DESCRIPTION

We consider a wireless network where mobile users com-
municate with a base-station, as illustrated in Fig. 1. The
objective is for the base-station to send secret messages to
a mobile user from which the latter can obtain a secret key.
During this procedure, other users, although can listen to the
transmission with their own receivers, should obtain little in-
formation about the key. We therefore name the base-station
as Alice, the desired mobile user as Bob, and all other users
as Eve.

We assume that Alice has sufficient number of antennas so
that some of them can be used for secret transmission, whereas
the others can be used for general purpose unsecured trans-
missions. As a result, there are two channels between Alice
and Bob. One is the secure channel, which is uni-directional
from Alice to Bob. The other is bi-directional and insecure,
which is a public channel between Alice and Bob so that they
can exchange information during secret-key agreement [6] or
conduct normal encrypted data transmission after secret-key
agreement. Note that Eve can have perfect knowledge about
the messages on the public channel, and can listen to the trans-
missions in the secure channel as shown in Fig. 1.
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Figure 1: System model for secret-key agreement with
space-time transmissions.
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Figure 2: The block diagram of space-time transmission.

Let Alice have J antennas for secret transmissions, which
can be realized by either physical antenna array or coopera-
tive transmitters. We define them as J transmitters. Packets
transmitted by these J transmitters are targeted for Bob only
while Eve should be deprived of signal interception capability.

We consider specifically the secret transmission of the J
transmitters. A beamforming-like array transmission proce-
dure shown in Fig. 2 is used by the J transmitters. A sym-
bol sequence {b(n)}, obtained via any traditional modulation
scheme, is fed to all J transmitters. Before transmission, the
sequence is processed by the transmitters. Though more com-
plex space-time encoding and filtering can be used, we con-
sider single-tap weights w;(n) for simplicity. In addition, each
of the transmitters may appropriately delay (or advance) the
signal by d;. The transmitted signal from the transmitter 7 is
thus s;(n), whereas Bob receives signal z(n).

If the propagation channel is Rayleigh flat fading, and all
the J transmitters are synchronized, the received signal at
Bob is

J
w(n) =Y hisi(n) +v(n) =hs(mn) +o(n),  (3)

where v(n) denotes AWGN with zero-mean and variance o2,
channel coefficients h] are independent complex circular sym-
metric Gaussian distributed with zero-mean and unit variance.

The vectors are defined as h = [hi, ---, hs]* and
s1(n) w1(n)
s(n) 2 : = : b(n) 2 w(n)b(n).  (4)
s(n) wy(n)

In this paper, (\)*, ()7, and (-)” denote conjugation, trans-
position and Hermitian, respectively.

Since channel estimation is required, we assume that h is
block fading [9], i.e., it is constant or slowly time-varying when
transmitting a block of symbols but may change randomly
between blocks. The symbols b(n) are independent uniformly
distributed with zero-mean and unit variance.



Eve may use multiple receiving antennas for better inter-
ception, and the interception becomes much easier with a flat-
fading channel model. Therefore, we consider the worst case
(to Alice and Bob) where Eve receives signals from M receiv-
ing antennas

Zu,1(n) hu,1,1(0) hu,1,7(0)

ZTu,m(N) B, n,1(0) B, (0)
wi(n — du,1)b(n — du,1) Vy,1(n)

X : + : . (B
wy(n —du,)b(n —du,s) Vu, M (1)

The notations are similar to (3) except that (-). is used to
denote the unauthorized user Eve. The delays d.,; may not be
zero because the transmitters adjust J; in favor of Bob. While
introducing such delays is an important way for enhancing
secrecy, in this paper we assume zero delays for simplicity,
ie., du,; =0 for all 4 . The equation (5) can then be written
as

xu(n) = Hyw(n)b(n) + vu(n). (6)

Each element of the channel matrix H, has the same distri-
bution as h;, but is independent from h;.

In this paper, we focus only on the secrecy of the down-
link transmission (from the base-station to the mobile user).
Once the downlink is secured, the uplink can be easily secured.
In addition, we consider passive adversary only, i.e., Eve can
only passively listen to the transmissions rather than actively
altering/retransmitting the packets.

We assume that Eve can not receive identical signal as Bob
from the secret channel, ie., z(n) and x.(n) are different.
This assumption is necessary for our scheme, and is equiv-
alent to the assumptions made in the existing information-
theoretic secrecy models. In our scheme, such a difference is
mainly due to the fact that the channels h and H,, are neither
identical, nor highly correlated. Extensive studies on MIMO
channels show that as long as the distance between Bob and
Eve is larger than some wavelengths, their channels can be
considered as fading independently. Therefore, we exploit the
channel difference rather than the noise difference to achieve
information-theoretic secrecy.

III. RANDOMIZED SPACE-TIME TRANSMISSIONS

Though Eve does not know her channel H,,, she may try
to estimate them by either training or blind methods, or by
a brute-force search of all possible channels. Interestingly, it
does not matter whether Eve knows the channel h or not,
which is one of the differences between the proposed method
and those using channels directly as encryption keys. In con-
trast, Alice and Bob do not know both channels h and H,
either, and in particular, have no ways to estimate H,,. Ways
have to be designed for them to estimate h so that special
transmission /receiving schemes can be designed, during which
no ways should be provided to Eve for successful interception.

III.A TRANSMISSION AND RECEIVING PROCEDURE

We first give the transmission and receiving procedure from
Alice to Bob with the consideration of the signal model (3)-
(4). According to the received signal

z(n) = h¥ w(n)b(n) + v(n), (7)

the transmitters need to use special transmitting weights w(n)
to fulfill the secrecy objective. Our basic idea is to make
h"w(n) deterministic but H,w(n) changing randomly in
each symbol interval. For this purpose, w(n) should be ran-
dom since the transmitters do not know H,,. In addition, ways
have to be designed so that either the transmitters or the re-
ceiver can estimate the channel. Piloting methods should be
avoided because we depend on that fact the Eve can not es-
timate the channel H,. As far as blind channel estimation
is concerned, Bob has not priority over Eve. Therefore, it is
better to let transmitters (Alice) to estimate the channel h.

We first give the transmission and receiving procedure as-
suming that Alice knows the channel h, and then provide ways
for Alice to estimate the channel. Alice can design the trans-
mitting weights vector w(n) such that

h"w(n) = |h], (8)

where |[h| = /327 |hi|?. Although (8) looks similar to

transmit beamforming [10], the major difference is that w(n)
changes randomly after each symbol b(n) is transmitted. This
can be realized by selecting randomly the elements of w(n)
while satisfying the constraint (8). Obviously, if the channel
h is constant or slowly time-varying, we need J > 2 trans-
mitters for randomization purpose. This explains why array
transmission is required.

Bob can detect symbols after estimating the received signal
power |[hl|?,

b(n) = ||Ib||~"z(n), )
where ||h||* can be estimated as + Ele lz(n)|?.

To implement this transmission scheme, the channel h has
to be known to the transmitters instead of the receiver. There-
fore, it is not necessary to transmit training sequences to Bob
for channel estimation, which enhances secrecy because Eve
has no training available either.

There are at least two ways for the transmitters to estimate
the channel h. First, if the downlink and uplink channels are
reciprocal, the transmitters can estimate h directly from the
uplink received signals. This is the case in fast time-division-
duplexing (TDD) transmissions [10]. Since we consider the
downlink secrecy only, Bob can transmit either training or
secret sequences to Alice for the latter to estimate the channel.

The second way is to ask Bob to feedback some received
signal information to the transmitters. Since explicit train-
ing should be avoided, Alice can send a training sequence
randomized by w(n) which are known to herself only. Bob
only estimates and feedbacks y(n) = h w(n), with which the
transmitters can estimate channel h based on their knowledge
of w(n).

Finally, in order for the receiver to achieve synchroniza-
tion in time and frequency, some pilot tones or signals can
be transmitted by a special pilot transmitting antenna, which
are not within, but synchronized with the antennas for secret
transmissions.

III.B TRANSMITTING WEIGHTS DESIGN

The transmitting weights vector w(n) has to be chosen
appropriately in order to satisfy (8) while preventing Eve from
detecting b(n) based on (6). In addition, we need to limit the
total transmission power as well as the transmission power of
each single transmitter.



Before presenting our designs, we first show that tradi-
tional transmit beamforming methods do not guarantee se-
crecy although they are optimal in terms of performance and
power efficiency. A typical transmit beamforming method uses
w(n) = h/||hl||, which has unit total transmission power since
Ells(m)[[2] = Eltr(w(n)b(n)b* (m)yw™ (n))] = E{lw(n)[|?] = 1.
Obviously, w(n) is not random if the channel h is constant
or slowly time-varying. The received signal of Eve becomes
xu(n) = (Huh/||h|)b(n) + vu(n), from which many blind
equalizers including the constant modulus algorithm (CMA)
can be applied for symbol detection. The same conclusion
holds for other designs of w(n) that are not random. This
explains why we should make w(n) random for randomized
array transmissions.

More generally, w(n) can be obtained from the singu-
lar value decomposition (SVD) of h, ie., h¥ = UDVZ,
In this special case, U = 1, D = diag{||h|,0,---,0}, and
V is a J x J unitary matrix whose first column equals
h/||hJ|. For transmit beamforming, w(n) can be calculated as
w(n) = V[1,22(n), -, zs(n)]" 2 V[1, zf'(n)]", where z;(n),
j =2,---,J, can be arbitrary. Such a classic approach does
not have any secrecy even if w(n) is randomized by choosing
randomly z1(n). For example, CMA may be used to estimate
symbols from

1

Xu(n) = H.V |: zl(n) :| b(’l’l,) + Vu(n)~ (10)

Therefore, there is a tradeoff of transmission power for se-
crecy. In order to guarantee secrecy, we may not achieve the
optimal unit transmission power. This can be further demon-
strated by the following observations. For J = 2, if we guaran-
tee unit transmission power, then there is no degree of freedom
in w(n) left for randomization. In addition, if we solve (8) by
first choosing randomly w;(n), 3 < 4 < J, and then looking
for wi(n) and wz(n) for both (8) and unit power, it turns
out that there may not have solutions. This means that unit
transmission power is not always possible at least for J = 3.

Based on such observations, we design transmitting weights
which trade transmission power for secrecy. We first select
randomly an h; from h. Note that h; should be sufficiently
large in order to avoid numerical problem when calculating
h; ! and in order to realize certain constraints on transmission
power. We can select a threshold a and choose those h; which
satisfy |hi|? > a.

Then we choose randomly w;(n), where 1 < j < J and
j # 4. The flexibility of choosing w;(n) is the key point for re-
alizing transmission secrecy. By choosing w;(n) properly, we
can prevent the blind equalization conducted by Eve, while
Bob does not depend on channel knowledge for symbol es-
timation. For example, we can draw them from some i.i.d.
complex Gaussian random process, which will be described
more in Section IV-B.

Denote z;(n) = [wi(n),---
and hi = [h1,~~'
calculated as

ywi—1(n), wir1(n), - - wy(n)]"
JRi—1,hiv1,- -+, hy]T. The weights vector is

Ihl|=hf z;(n)
w(n) =P; hy (11)
z;(n)
The matrix P; is a J x J commutation matrix whose function
is to insert the first row of the following vector into the ith
row. Since h; is chosen randomly, P; is also random.

The complexity of this transmission procedure is linear.
Note that efficient computation is important because w(n)
are recalculated in each symbol interval. On the other hand,
the power efficiency may not be optimized, even under the
consideration of the tradeoff with secrecy.

IV. TRANSMISSION POWER AND SECRECY

IV.A TRANSMISSION POWER

Although we do not explicitly apply any power constraints
on w(n), the transmission power can be statistically controlled
by adjusting the mean and variance of the random variables
w;(n), j # i

Let us first consider the case that the mean and variance
are 1 = 0 and o2, respectively. Then the total transmission
power is

Pin, = E[w"(n)w(n)h, P
>, |m]? | [hi]?0?
= (J-1)o T e (12)

for a given channel realization h and a given choice of h;. We
have (12) because the item w;(n) in (11) has mean ||h|/h]
and variance ||h;||?a?/|h:|?.

Equation (12) shows that small h; increases the total trans-
mission power, so the threshold a should be carefully selected.
Since h; is a complex Gaussian random variable with zero
mean and unit variance, |h;|? is exponentially distributed with
unit mean. The probability for the selected channel coefficient
hi to have energy |h;|* greater than « is

Pllhi|*> > af :/ e tdt =e . (13)

In other words, with J transmitters, the average number of
selectable coefficients is Je™ .

Proposition 1. With Rayleigh fading channels, if the co-
efficients are selected with energy threshold « (13), then the
expected total transmission power is

Po=(J 1> +1+(J-1)1+)0,a). (14)

Proof. If channels are random, then the ensemble average

of the power (12) becomes

h;||?
P.=E[Pp]=J 1) +1+E [%} (1+0°%). (15)
Since the channel coefficients are independent from each other,
we have

1
Pi=(J-1)0"+1+(J - 1)(1+02)E[W]. (16)
Because |h;|*> has exponential distribution, we have
1 1 2 5
El—]= il d|h | = 1(0, ). 1
[|h1|2] /a |hi|26 | | (O,CM) ( 7)
Hence (14) is obtained. O

For transmission secrecy, what is more important is the
ratio of the transmission power between different transmit-
ters. Transmission power should be almost identical among
the transmitters because otherwise Eve may utilize power-
spectral information for blind channel estimation. Such an



Solid: total power. Dashed: power ratio

Figure 3: Total transmission power P, and power ratio
P, ;/ P, ; of the ith transmitter to the jth transmitter (j #
i) when h; is selected in (11). J = 4. Solid lines: total
power. Dashed lines: power ratio.

objective is fulfilled by both the random matrix P,; and by
choosing parameters p and o properly. Especially, if the chan-
nel h is slowly time-varying or even constant for a long time,
we need to avoid the case that the power of one of the trans-
mitters is exceptionally larger than the others. Otherwise the
array transmission behaves as that with a single transmitter,
and secrecy can be compromised. This becomes true even if
the random matrix P; is considered.

Therefore, we have to constrain the ratio of the transmis-
sion power of the ith transmitter P;; = (||h||®+|/hs|*c>)/|h:|?
to that of the jth transmitter P;; = 0. The power ratio can
be obtained from (14) as

P
Pt,]' g

_ 1+ (-1 + oI'(0, )

) .

(18)

Obviously, it is usually impossible to obtain unit ratio unless
we change the probability of choosing h; according to the value
of |hi|* in a way that the transmitter with smaller |h;|? has
smaller probability of being selected. But the probability dif-
ference among all selectable channel coefficients should not be
too large, because otherwise the randomness of P; is reduced.

Fig. 3 illustrates the dependence of the total transmission
power or power ratio on the parameters. The total power
P, increases when o increases or o decreases, whereas the
power ratio is a decreasing function of both o2 and «. Larger
o? increases P; but decreases P;;/P; ;. Since both P; and
P;;/P;; should be small, there is a trade-off between them
when choosing o2. In the simulations in Section V, we have
chosen 02 = 0.5. On the other hand, larger o reduces both
P, and P ;/P;;. But from (13), it reduces the number of
selectable h; as well as the randomness of P;. Hence there is
also a trade-off when choosing a. We have used @ = 0.5 in
simulations.

IV.B TRANSMISSION SECRECY

Eve knows only her received signal x.(n) as represented
by (6), and may also know that Alice and Bob depends on h
for secret transmission, i.e., (8). One of the ways for her is
to estimate H, and apply Hy' to obtain w(n)b(n). If this is
successful, then some information may be leaking if w(n) is

not properly designed. Therefore, the important thing is to
make Eve unable to estimate H,,.

We have removed explicit training so that Eve has no train-
ing available for channel estimation. If the channels are re-
ciprocal, then the transmitters can estimate channel h from
the uplink signal transmitted by Bob, without leaking chan-
nel information to Eve. Otherwise, the transmitters depend
on feedback from Bob for channel estimation. However, if
raw data are fed-back and are not secure, whether they are
y(n) = hw(n) or raw received samples, the secrecy of the
downlink transmission can be lost. For example, if Eve has in-
tercepted the feedback data y(n), n =1,---,J, then together
with its own estimations y.(n) = Hyw(n), n = 1,---,J, it
can derive a vector hH !, By this vector, it can intercept
symbols b(n) from x,(n).

Therefore, before using feedback, a secure initialization
method has to be adopted to secure the first transmission for
the subsequent feedback to become secure. We may exploit
the reciprocal channel property to realize this objective. For
example, Bob can first send a training sequence to Alice using
the downlink frequency. After Alice estimates the channel,
secure downlink transmission is setup. Feedback methods can
then be used for channel estimation during which the feedback
data can be secured via instantly exchanged keys.

Without training, Eve may turn to blind identification. In
this case, the flexibility of choosing randomizing parameters
helps us successfully fulfill this objective. It has been shown
that for MIMO blind equalization, if the input signal vec-
tor s(n) is Gaussian distributed with some correlations, then
there is at least a constant matrix indeterminacy. On the
other hand, all the existing blind techniques require some a
priori knowledge on the statistics of the input sequence, such
as independence [11], non-Gaussian distribution [12], distinct
power spectral [13], etc. From (11), we can choose w;(n) prop-
erly to violate such assumptions. For example, we can choose
wj(n) such that w;(n)b(n) is Gaussian distributed with some
mean g and variance 0. Then w(n) is instantaneously jointly
Gaussian distributed with some correlations. The correlations
can be unknown because Eve does not know p, o2, as well as
channel coefficients. By using random p and o? and keeping
them time-varying, the source does not have even a sufficiently
constant distribution from Eve’s view point.

For example, Gaussian source is completely specified by
moments up to second order. For the second-order moments,
Eve may obtain R, = H,E[w(n)b(n)b*(n)w" (n)HY =
H,R.HY. There exist some J x J unitary matrices Q such
that R, = H,QPR,QHY as long as Q”R.Q = R.. Since
she does not know R, there is no extra information on Q.
Moreover, the unknown R makes the ambiguity matrix arbi-
trary, not only unitary.

If the blind equalization is not applicable, the last way left
for Eve is to try a brute-force search of all possible channels
H, (or, strictly speaking, Q). Note that in this case, it does
not matter whether Eve knows h or not. This is then the
idea of information-theoretic secrecy, which means that Eve
does not obtain more information from her received signals
than simply guessing the channels without even looking at
the signal. Hence, perfect secrecy is claimed.

Nevertheless, we may still be interested to see the com-
plexity of Eve’s exhaustive search. Let us assume that she use
K-level quantization for each single value (a complex num-
ber has two such values). Then the brute-force search needs
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Figure 4: Receiving performance comparison. o:proposed
method with J = 4. 4:transmit beamforming with J = 4.
x:theoretical BER curve with Rayleigh fading channel
(no diversity). A:blind detector of Eve.

to consider at least K2/ possible combinations of H,, and
K27 possible combinations of h. This gives an overall com-
plexity K27(/+1  Such a complexity can in fact be much
more amplified by the fact that Alice chooses randomly w(n)
and may also adjust channels as well as (8).

With J = 4 and QPSK transmission, in order to achieve
bit-error-rate (BER) under 0.1, by simulations we find K > 4
even in the noiseless case. When K = 4, the complexity be-
comes 42¥4*(2x4+1) — 9144 " 1f considering a more realistic
BER of 0.01 at signal-to-noise-ratio (SNR) 25 dB per receiv-
ing antenna, then K should be at least 128, which gives a
complexity over 204, Considering that Bob’s error rate is
much lower than the above figures, based on either (1) or (2),
we can obtain sufficiently large secret channel capacity.

V. SIMULATIONS

In this section, we show the performance of the proposed
method in terms of BER and secret channel capacity. We
compare the BER of Bob and Eve, which will then be used
to calculate the secret channel capacity using (1) and (2).
For comparison purpose, we evaluate the performance of the
optimal transmit beamforming and give the theoretical BER
curve of the Rayleigh fading channel without diversity. Chan-
nels are assumed block Rayleigh fading. Each packet contains
200 QPSK symbols. We use 5000 runs to obtain each BER
value. We use o = 0.5, 62 = 0.5.

The BER results are shown in Fig. 4. Transmissions with
the proposed method have similar BER performance as the op-
timal transmit beamforming. They both exploit the diversity
of J = 4 transmitters, which makes their BER curves much
better than that of the theoretical Rayleigh fading without
diversity. Note that the proposed method uses more transmis-
sion power than beamforming. Eve can not intercept symbols.

With the obtained BER of Eve and Bob as ¢ and ¢, respec-
tively, the secret channel capacity is calculated and shown in
Fig. 5, where both (1) and (2) are evaluated. For compari-
son purpose, we have also shown the corresponding capacity
when § = €/10. As can be seen, the proposed method achieves
sufficiently superior secret channel capacity in all SNR ranges.

VI. CONCLUSIONS
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Figure 5: Secret channel capacity. o,x:proposed method.
A\ ,O:traditional method when Eve’s BER can be lower.

This paper proposes a new method for realizing perfect
secrecy for secret-key agreement. With space-time transmis-
sions and based on the limit of blind MIMO channel estima-
tion, a randomization procedure is proposed to prevent Eve
from channel estimation while permitting Bob receiving sig-
nals successfully. This induces a much higher receiving error
rate for Eve so that traditional information-theoretic secrecy
can be realized in practice. The trade-off between transmis-
sion power and secrecy is studied.
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